Skip to main content

Theory and Modern Applications

Existence results for fractional neutral functional differential equations with infinite delay and nonlocal boundary conditions

Abstract

In this paper, we establish sufficient criteria for ensuring the existence of solutions and uniqueness for a class of nonlinear neutral Caputo fractional differential equations supplemented with infinite delay and nonlocal boundary conditions involving fractional derivatives. The theory of infinite delay and standard fixed point theorems are employed to obtain the existence results for the given problem. Examples will be constructed to illustrate the obtained results.

1 Introduction

Delay functional differential equations have emerged as a great tool for describing and modeling a wide range of real-world processes and changes involving long-term delays. There are many applications for this type of equations in the literature, for instance, population dynamics [1], immunology [2], disease models [3], ecological models [4], physiology and epidemiology [5], and neural networks [68]. The differential equation system with time delay is more complicated to treat and analyze than the classical one as its solution not only depends on the current situation but also takes the past state into consideration. The concept of the phase space \(\mathfrak{F}\) plays a significant role in the study of equations with unbounded delay, which is specified by fundamental axioms that were presented by Hale and Kato [9]; also to find more discussion on these axioms, see [10, 11]. For further details on the theoretical developments of delayed differential equations, we refer to the works [9, 1216].

In recent years, there have been interesting results in the study of the neutral fractional differential equation with infinite delay. Benchohra et al. [16] established some existence results relying on the Leray–Schauder type nonlinear alternative theorem and the Banach fixed point theorem for a class of initial value problems affected by infinite delay. Nouri et al. [17] investigated the existence of solutions by applying Krasnoselskii’s fixed point theorem and contraction mapping principle to integro-fractional delayed differential equations. Ahmad et al. [18] discussed some existence results for a class of impulsive multi-order fractional differential equations with unbounded delay. Very recently, Chen and Dong in [19] studied the existence and uniqueness of a class of two-term boundary value problems with infinite delay by employing the standard fixed point theorems. Also, by using the Hyers–Ulam stability theorem, they discussed the stability of solutions for the given problem. However, the work on delayed fractional differential equations is still interesting, and new contributions in this field are needed.

Motivated by the previous studies, in this paper we are devoted to studying the existence and uniqueness of solutions for a new class of nonlinear nonlocal boundary value problems involving Caputo fractional derivatives with infinite delay and nonlocal fractional derivative conditions. In precise terms, we investigate the following problem:

$$ \textstyle\begin{cases} {}^{C}D_{0^{+}}^{\delta}[u(t)- \int _{0}^{t}h(s,u_{s})\,ds]=f(t,u_{t}), \quad t\in \Omega :=[0,a], \\ u(t)=\theta (t), \quad t\in (-\infty ,0], \\ u(a)=\sum_{i=1}^{m}\lambda _{i}{}^{C}D_{0^{+}}^{ \gamma}u(\mu _{i})+\zeta , \quad \mu _{i}\in (0,a), \end{cases} $$
(1.1)

where \({}^{C}D_{0^{+}}^{\delta}\), \({}^{C}D_{0^{+}}^{\gamma}\) are the Caputo fractional derivatives of order \(1<\delta \leq 2 \), \(0<\gamma <1\), respectively. \(f: \Omega \times \mathfrak{F}\to \mathbb{R} \), \(h:\Omega \times \mathfrak{F}\to \mathbb{R}\), and \(\theta \in \mathfrak{F}\) such that \(\theta (0)=0\), where \(\mathfrak{F}\) is a phase space that will be explained in detail in Sect. 2. We define, for any \(u:(-\infty ,a]\to \mathbb{R}\) and any \(t\in \Omega \), the function \(u_{t}:(-\infty ,0]\to \mathbb{R}\) to be an element of the phase space \(\mathfrak{F}\) such that \(u_{t}(s)=u(t+s)\), \(s\leq 0\).

We arrange our work as follows: We recall some spaces, definitions, and lemmas needed in this work, and the equivalent integral equation to the linear variant of problem (1.1) is deduced in Sect. 2. Next, in Sect. 3, we obtain our main results with the aid of Krasnoselskii’s fixed point theorem, the Leray–Schauder type nonlinear alternative theorem, and the Banach fixed point theorem. Finally, illustrative examples are provided.

2 Preliminaries

For the present work, the space \((\mathfrak{F},\|.\|_{\mathfrak{F}})\) is defined as a seminormed linear space of functions that map \((-\infty , 0]\) into \(\mathbb{R}\) and satisfy the following axioms that were established by Hale and Kato in [9]:

\((B_{1})\):

For every \(t\in [0,a]\), if \(u:(-\infty ,a]\to \mathbb{R}\) and \(u_{0}\in \mathfrak{F}\), then the following conditions hold:

  1. (1)

    \(u_{t}\) is in \(\mathfrak{F}\),

  2. (2)

    \(|u(t)|\leq A\|u_{t}\|_{\mathfrak{F}}\),

  3. (3)

    \(\|u_{t}\|_{\mathfrak{F}} \leq \rho (t)\|u_{0}\|_{\mathfrak{F}}+\eta (t) \sup \{|u(\tau )|:0\leq \tau \leq t\}\),

where \(A \geq 0\) is a constant, \(\eta :[0,a]\to [0,\infty )\) is continuous, \(\rho :[0,\infty )\to [0,\infty )\) is locally bounded, and A, η, ρ are independent of \(u(.)\) and

$$ \eta _{a}=\sup_{t\in [0,a]}\eta (t), \qquad \rho _{a}=\sup_{t\in [0,a]} \rho (t); $$
(2.1)
\((B_{2})\):

For the function \(u(.)\) in \((B_{1})\), \(u_{t}\) is a \(\mathfrak{F}\)-valued continuous function on \([0,a]\);

\((B_{3})\):

The space \(\mathfrak{F}\) is complete.

Let the space \(\mathfrak{F}_{a}=\{u:(-\infty ,a]\to \mathbb{R}: u|_{(-\infty ,0]} \in \mathfrak{F}\text{ and }u|_{[0,a]}\in C(\Omega ,\mathbb{R} ) \}\), and let \(\|.\|_{\mathfrak{F}_{a}}\) be a seminorm in \(\mathfrak{F}_{a}\) defined by \(\|u\|_{\mathfrak{F}_{a}}=\|\theta \|_{\mathfrak{F}}+\sup_{s\in \Omega}|u(s)|\), \(u\in \mathfrak{F}_{a}\).

Definition 2.1

[20] For \(\delta >0\) and a function \(h: [0,\infty )\rightarrow{\mathbb{R}}\), the Riemann–Liouville fractional integral of order δ is defined by

$$ I^{\delta}_{0+}h(x)= \int _{0}^{x} \frac{(x-\tau )^{\delta -1}}{\Gamma (\delta )}h(\tau )\,d\tau , \quad x>0. $$

Definition 2.2

[20] For \(n-1<\delta \leq n\), \(n\in \mathbb{N}\), the Caputo derivative of order δ for a function \(h:[0,\infty ]\to {\mathbb{R}}\) with \(h(x)\in AC^{n}[0,\infty )\) is defined by

$$ ^{C}D_{0+}^{\delta} h (x)= \frac{1}{\Gamma (n-\delta )} \int _{0}^{x} \frac{h^{(n)}(\tau )}{(x-\tau )^{\delta -n+1}}\,d\tau ,\quad x>0. $$

Lemma 2.1

[20] Let \(\delta >0\) and \(h(x) \in AC^{n}[0,\infty )\) or \(C^{n}[0,\infty )\). Then

$$ \bigl( I_{0+}^{\delta} {}^{C}D_{0+}^{\delta} h \bigr) (x)=h (x)-\sum_{j=0}^{n-1} \frac{ h^{(j)}(0)}{j!}x^{j},\quad x>0, n-1< \delta < n. $$

The following lemma is related to the solution of the linear variant of problem (1.1).

Lemma 2.2

Let \(K\in C (0, a)\), \(S\in AC (0, a)\) \(u\in AC^{2} (\Omega ,\mathbb{R})\cap \mathfrak{F}_{a} \), and

$$\begin{aligned} \Lambda _{1}=a-\sum_{i=1}^{m} \lambda _{i} \frac {\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )}\neq 0. \end{aligned}$$
(2.2)

Then the solution of the following problem

$$ \textstyle\begin{cases} {}^{C}D_{0^{+}}^{\delta}[u(t)- \int _{0}^{t}S(s)\,ds]=K(t), \quad t\in \Omega :=[0,a], \\ u(t)=\theta (t), \quad t\in (-\infty ,0], \\ u(a)=\sum_{i=1}^{m}\lambda _{i}{}^{C}D_{0^{+}}^{\gamma}u( \mu _{i})+\zeta , \quad \mu _{i}\in (0,a), \end{cases} $$
(2.3)

is given by

$$ u(t)=\textstyle\begin{cases} \theta (t), \quad t\in (-\infty ,0], \\ \int _{0}^{t}S(s)\,ds+ \frac {1}{\Gamma (\delta )}\int _{0}^{t}(t-s)^{\delta -1}K(s)\,ds \\ \quad {}+ \frac {t}{\Lambda _{1}} (\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}K(s)\,ds+ \sum_{i=1}^{m}\lambda _{i}\int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}S(s)\,ds \\ \quad {}- \int _{0}^{a} \frac {(a-s)^{\delta -1}}{\Gamma (\delta )}K(s)\,ds- \int _{0}^{a}S(s)\,ds+ \zeta ), \quad t\in [0,a]. \end{cases} $$
(2.4)

Proof

At first, we apply the fractional integral \(I_{0^{+}}^{\delta}\) to both sides of the fractional differential equation in (2.3), and with the aid of Lemma 2.1, the general solution of (2.3) for \(t\in [0,a]\) can be written as

$$\begin{aligned} u(t) =& \int _{0}^{t}S(s)\,ds+\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1}K(s) \,ds+c_{1}+c_{2}t, \end{aligned}$$
(2.5)

where \(c_{1}\), \(c_{2}\) are arbitrary constants. Then, by using the condition \(u(0)=\theta (0)=0\) in (2.5), we get \(c_{1}=0\). In consequence, (2.5) takes the form

$$ u(t)= \int _{0}^{t}S(s)\,ds+\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{ \delta -1}K(s) \,ds+c_{2}t. $$
(2.6)

For \(t\in (0,a)\), we find

$$\begin{aligned} {}^{C}D_{0^{+}}^{\gamma}u(t) =&\frac{1}{\Gamma (1-\gamma )} \int _{0}^{t}(t-s)^{- \gamma}S(s)\,ds \\ &{}+ \frac{1}{\Gamma (\delta -\gamma )} \int _{0}^{t}(t-s)^{ \delta -\gamma -1}K(s) \,ds+c_{2} \frac {t^{1-\gamma}}{\Gamma (2-\gamma )}. \end{aligned}$$

The condition \(u(a)= \sum_{i=1}^{m}\lambda _{i}{}^{C}D_{0^{+}}^{ \gamma}u(\mu _{i})+\zeta \) together with (2.6) implies that

$$\begin{aligned} c_{2} =& \frac{1}{ (a- \sum_{i=1}^{m}\lambda _{i}\frac {\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )} )} \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}K(s)\,ds \\ &{}+ \sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}S(s)\,ds \\ &{}-\frac {1}{\Gamma (\delta )} \int _{0}^{a}(a-s)^{\delta -1}K(s)\,ds- \int _{0}^{a}S(s)\,ds+\zeta \Biggr), \end{aligned}$$

which, on inserting in (2.6), gives the solution (2.4). By direct computation, we can easily obtain the converse of the lemma. This finishes the proof. □

3 Main results

Using Lemma 2.2, we convert problem (1.1) into a fixed point problem by introducing an operator \(\mathcal{F}:\mathfrak{F}_{a}\to \mathfrak{F}_{a}\) as follows:

$$\begin{aligned} (\mathcal{F}u) (t)=\textstyle\begin{cases} \theta (t), \quad t\in (-\infty ,0], \\ \int _{0}^{t}h(s,u_{s})\,ds+ \int _{0}^{t} \frac {(t-s)^{\delta -1}}{\Gamma (\delta )}f(s,u_{s})\,ds \\ \quad {}+\frac {t}{\Lambda _{1}} (\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}f(s,u_{s})\,ds+ \sum_{i=1}^{m}\lambda _{i}\int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}h(s,u_{s})\,ds \\ \quad {}- \int _{0}^{a} \frac {(a-s)^{\delta -1}}{\Gamma (\delta )}f(s,u_{s})\,ds- \int _{0}^{a}h(s,u_{s})\,ds+\zeta ), \quad t\in [0,a]. \end{cases}\displaystyle \end{aligned}$$

Then we assume that the solution \(u(.)\) that satisfies (3.1) is a decomposition of two functions \(v,\bar{w}:(-\infty ,a]\to \mathbb{R}\) such that \(u(t)=v(t)+\bar{w}(t)\), which implies \(u_{t}=v_{t}+\bar{w}_{t}\) for \(t\in \Omega \).

These two functions, v and , have the following definitions:

$$\begin{aligned} v(t)=\textstyle\begin{cases} \theta (t), \quad t\in (-\infty ,0], \\ 0, \quad t\in [0,a], \end{cases}\displaystyle \end{aligned}$$
(3.1)

and

$$\begin{aligned} \bar{w}(t)=\textstyle\begin{cases} 0, \quad t\in (-\infty ,0], \\ w(t), \quad t\in [0,a], \end{cases}\displaystyle \end{aligned}$$
(3.2)

where \(w\in C([0,a],\mathbb{R})\) with \(w(0)=0\) and satisfies

$$\begin{aligned} w(t) =& \int _{0}^{t}h(s,v_{s}+ \bar{w}_{s})\,ds+ \int _{0}^{t} \frac {(t-s)^{\delta -1}}{\Gamma (\delta )}f(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}+\frac {t}{\Lambda _{1}} \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}f(s,v_{s}+ \bar{w}_{s})\,ds \\ &{} +\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}h(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}- \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}f(s,v_{s}+ \bar{w}_{s})\,ds- \int _{0}^{a}h(s,v_{s}+ \bar{w}_{s})\,ds+ \zeta \Biggr). \end{aligned}$$
(3.3)

Then we have \(u_{0}=\theta \).

Now, consider the space \(\mathfrak{F'}_{a}=\{w\in \mathfrak{F}_{a}: w_{0}=0\}\) and define a seminorm \(\|.\|_{\mathfrak{F'}_{a}} \) on \(\mathfrak{F'}_{a}\) by

$$ \Vert w \Vert _{\mathfrak{F'}_{a}}= \sup_{t\in [0,a]} \bigl\vert w(t) \bigr\vert + \Vert w_{0} \Vert _{\mathfrak{F}}= \sup _{t\in [0,a]} \bigl\vert w(t) \bigr\vert ,\quad w\in \mathfrak{F'}_{a}. $$

This implies that \(\|.\|_{\mathfrak{F'}_{a}} \) defines a norm on \(\mathfrak{F'}_{a}\), and as a consequence, \((\mathfrak{F'}_{a},\|.\|_{\mathfrak{F'}_{a}})\) is a Banach space. Then we define the operator \(\mathcal{P}:\mathfrak{F'}_{a}\to \mathfrak{F'}_{a}\) by

$$\begin{aligned} \mathcal{P}w(t) =& \int _{0}^{t}h(s,v_{s}+ \bar{w}_{s})\,ds+ \int _{0}^{t}\frac {(t-s)^{\delta -1}}{\Gamma (\delta )}f(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}+\frac {t}{\Lambda _{1}} \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}f(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}+\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}h(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}- \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}f(s,v_{s}+ \bar{w}_{s})\,ds- \int _{0}^{a}h(s,v_{s}+ \bar{w}_{s})\,ds+ \zeta \Biggr), \quad t\in [0,a]. \end{aligned}$$
(3.4)

Obviously, we note that the operator \(\mathcal{F}\) has a fixed point if and only if \(\mathcal{P}\) has a fixed point. In the following, for convenience, we define the notations:

$$\begin{aligned}& \Lambda _{2}=\frac{a^{\delta}}{\Gamma (\delta +1)}+ \frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{\delta -\gamma}}{\Gamma (\delta -\gamma +1)}+ \frac{a^{\delta}}{\Gamma (\delta +1)} \Biggr), \end{aligned}$$
(3.5)
$$\begin{aligned}& \Lambda _{3}=a+\frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum _{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )}+a \Biggr). \end{aligned}$$
(3.6)

In the first result, we prove the existence of solutions to problem (1.1) by applying Krasnoselskii’s fixed point theorem [21].

Lemma 3.1

(Krasnoselskii’s fixed point theorem). Let \(\mathcal{B}\) be a nonempty convex and closed subset of a Banach space E. Assume that \(\Psi _{1}\), \(\Psi _{2}\) are two operators from B to E such that (1) \(\Psi _{1}v+\Psi _{2}u \in \mathcal{B}\) whenever \(v, u \in \mathcal{B}\); (2) \(\Psi _{1}\) is continuous and compact; and (3) \(\Psi _{2}\) is a contraction mapping. Then there exists a fixed point \(j \in \mathcal{B}\) such that \(j=\Psi _{1}j+\Psi _{2}j\).

Theorem 3.1

Assume that \(f,h:\Omega \times \mathfrak{F}\to \mathbb{R}\) are continuous functions such that the following conditions hold:

\((H_{1})\):

There exists a constant \(L_{1}>0\) such that

$$ \bigl\vert h(t,u)-h(t,v) \bigr\vert \le L_{1} \Vert u-v \Vert _{\mathfrak{F}}\quad \textit{for all } t\in \Omega \textit{ and every } u, v \in \mathfrak{F}. $$
\((H_{2})\):

There are nonnegative continuous functions \(\kappa _{1},\kappa _{2}:\Omega \to (0,\infty )\) such that \(|f(t,u)|\leq \kappa _{1}(t)\), \(|h(t,u)|\leq \kappa _{2}(t)\) for all \(t\in \Omega\) and every \(u\in \mathfrak{F}\).

Then problem (1.1) has at least one solution on \((-\infty ,a]\) if

$$ L_{1}\eta _{a}\Lambda _{3}< 1, $$
(3.7)

where \(\eta _{a}\) and \(\Lambda _{3}\) are respectively given by (2.1) and (3.6).

Proof

Consider \(B_{r}=\{ w\in \mathfrak{F'}_{a}:\|w\|_{\mathfrak{F'}_{a}}\leq r\}\) with \(r>\kappa _{1}^{*}\Lambda _{2}+\kappa _{2}^{*}\Lambda _{3}+ \frac {a}{|\Lambda _{1}|}|\zeta |\), where \(\kappa _{i}^{*}=\sup_{t\in [0,a]}\kappa _{i}(t)\), \(i=1,2\), and \(\Lambda _{2}\) is defined by (3.5). Then let us define the operators \(\mathcal{R}:\mathfrak{F'}_{a}\to \mathfrak{F'}_{a}\) and \(\mathcal{Q}:\mathfrak{F'}_{a}\to \mathfrak{F'}_{a}\) on \(B_{r}\) as follows:

$$\begin{aligned} (\mathcal{R}w) (t) =&\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{ \delta -1}f(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}+\frac {t}{\Lambda _{1}} \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}f(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}- \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}f(s,v_{s}+ \bar{w}_{s})\,ds \Biggr) \end{aligned}$$

and

$$\begin{aligned} (\mathcal{Q}w) (t) =& \int _{0}^{t}h(s,v_{s}+ \bar{w}_{s})\,ds+ \frac {t}{\Lambda _{1}} \Biggl(\sum _{i=1}^{m}\lambda _{i} \int _{0}^{ \mu _{i}}\frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}h(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}- \int _{0}^{a}h(s,v_{s}+ \bar{w}_{s})\,ds+\zeta \Biggr). \end{aligned}$$

It is clear that the operator \(\mathcal{P}:\mathfrak{F'}_{a}\to \mathfrak{F'}_{a}\) defined by (3.4) can be split as \(\mathcal{R}+\mathcal{Q}=\mathcal{P}\). For \(w, w^{*}\in B_{r}\) and \(t\in \Omega \), we find

$$\begin{aligned}& \bigl\vert \mathcal{R}w(t)+\mathcal{Q}w^{*}(t) \bigr\vert \\& \quad \le \frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1} \bigl\vert f(s,v_{s} + \bar{w}_{s}) \bigr\vert \,ds \\& \qquad {} + \frac {t}{ \vert \Lambda _{1} \vert } \Biggl( \sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\& \qquad {}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \Biggr)+ \int _{0}^{t} \bigl\vert h \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \\& \qquad {}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}}\frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl\vert h \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds + \int _{0}^{a} \bigl\vert h \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds+ \vert \zeta \vert \Biggr) \\& \quad \le \kappa _{1}^{*} \Biggl(\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{ \delta -1}\,ds \\& \qquad {}+ \frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}\,ds+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}\,ds \Biggr) \Biggr) \\& \qquad {}+\kappa _{2}^{*} \Biggl(t+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}\,ds+a \Biggr) \Biggr)+ \frac {t}{ \vert \Lambda _{1} \vert } \vert \zeta \vert \\& \quad \le \kappa _{1}^{*} \Biggl(\frac{a^{\delta}}{\Gamma (\delta +1)}+ \frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{\delta -\gamma}}{\Gamma (\delta -\gamma +1)}+ \frac{a^{\delta}}{\Gamma (\delta +1)} \Biggr) \Biggr) \\& \qquad {}+\kappa _{2}^{*} \Biggl(a+\frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )}+a \Biggr) \Biggr)+\frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert \\& \quad = \kappa _{1}^{*}\Lambda _{2}+\kappa _{2}^{*}\Lambda _{3}+ \frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert < r. \end{aligned}$$

Thus, for \(w, w^{*}\in B_{r}\) and \(t\in [0,a]\), we have

$$ \bigl\Vert \mathcal{R}w+\mathcal{Q}w^{*} \bigr\Vert _{\mathfrak{F'}_{a}}= \sup_{t\in [0,a]} \bigl\vert \mathcal{R}w(t)+ \mathcal{Q}w^{*}(t) \bigr\vert \leq \kappa _{1}^{*} \Lambda _{2}+\kappa _{2}^{*}\Lambda _{3}+\frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert < r, $$

which implies that \(\mathcal{R}w+\mathcal{Q}w^{*}\in B_{r}\). Now, in view of condition \((H_{1})\), we show that \(\mathcal{Q}\) is a contraction. Let \(w, w^{*}\in B_{r}\) and \(t\in [0,a]\). Then

$$\begin{aligned}& \sup_{t\in [0,a]} \bigl\vert \mathcal{Q}w(t)-\mathcal{Q}w ^{*}(t) \bigr\vert \\& \quad \le \sup_{t\in [0,a]} \Biggl\{ \int _{0}^{t} \bigl\vert h(s,v_{s}+ \bar{w}_{s})-h \bigl(s,v_{s}+\bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \\& \qquad {}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}}\frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl\vert h(s,v_{s}+ \bar{w}_{s})-h \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \\& \qquad {}+ \int _{0}^{a} \bigl\vert h(s,v_{s}+ \bar{w}_{s})-h \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \Biggr) \Biggr\} \\& \quad \le L_{1}a \bigl\Vert w_{t}-w^{*}_{t} \bigr\Vert _{\mathfrak{F}} \\& \qquad {}+ \frac {a}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}}\frac {(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}L_{1} \bigl\Vert w_{s}-w^{*}_{s} \bigr\Vert _{ \mathfrak{F}}\,ds+L_{1}a \bigl\Vert w_{a}-w^{*}_{a} \bigr\Vert _{\mathfrak{F}} \Biggr) \\& \quad \le L_{1}a \eta _{a}\sup_{t\in [0,a]} \bigl\vert w(t)-w^{*}(t) \bigr\vert \\& \qquad {}+ \frac {a}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}}\frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}L_{1}\eta _{a} \sup_{s\in [0,a]} \bigl\vert w(s)-w^{*}(s) \bigr\vert \,ds \\& \qquad {}+L_{1}a \eta _{a}\sup_{t\in [0,a]} \bigl\vert w(t)-w^{*}(t) \bigr\vert \Biggr) \\& \quad \le L_{1}\eta _{a} \Biggl(a+\frac{a}{ \vert \Lambda _{1} \vert } \Biggl( \sum_{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )}+a \Biggr) \Biggr)\sup_{t\in [0,a]} \bigl\vert w(t)-w^{*}(t) \bigr\vert . \end{aligned}$$

Consequently, for \(w,w^{*}\in B_{r}\) and \(t\in [0,a] \), we have

$$\begin{aligned} \bigl\Vert \mathcal{Q}w-\mathcal{Q}w^{*} \bigr\Vert _{\mathfrak{F'}_{a}}=\sup_{t\in [0,a]} \bigl\vert \mathcal{Q}w(t)- \mathcal{Q}w^{*}(t) \bigr\vert \le L_{1}\eta _{a}\Lambda _{3} \bigl\Vert w-w^{*} \bigr\Vert _{\mathfrak{F'}_{a}}. \end{aligned}$$

The continuity of the operator \(\mathcal{R}\) can be directly deduced from the continuity of the functions f and h. Furthermore, \(\mathcal{R}\) is uniformly bounded on \(B_{r}\) as

$$ \Vert \mathcal{R}w \Vert _{\mathfrak{F'}_{a}}\leq \kappa _{1}^{*} \Lambda _{2}. $$

Finally, for the compactness of the operator \(\mathcal{R}\), we let \(w\in B_{r}\) and, in view of hypothesis \((H_{2})\), for \(t_{1},t_{2} \in [0,a]\), with \(t_{1} < t_{2}\), we have

$$\begin{aligned}& \bigl\vert (\mathcal{R}w) (t_{2})-(\mathcal{R}w) (t_{1}) \bigr\vert \\& \quad =\frac{1}{\Gamma (\delta )} \int _{0}^{t_{1}} \bigl\vert (t_{2}-s)^{\delta -1}-(t_{1}-s)^{ \delta -1} \bigr\vert \bigl\vert f(s,v_{s}+\bar{w}_{s}) \bigr\vert \,ds \\& \qquad {}+ \frac{1}{\Gamma (\delta )} \int _{t_{1}}^{t_{2}} \bigl\vert (t_{2}-s)^{ \delta -1} \bigr\vert \bigl\vert f(s,v_{s}+\bar{w}_{s}) \bigr\vert \,ds \\& \qquad {}+\frac {t_{2}-t_{1}}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\& \qquad {}+ \int _{0}^{a} \frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl\vert f(s,v_{s}+\bar{w}_{s}) \bigr\vert \,ds \Biggr) \\& \quad \le \kappa ^{*}_{1} \Biggl( \int _{0}^{t_{1}} \bigl\vert (t_{2}-s)^{\delta -1}-(t_{1}-s)^{ \delta -1} \bigr\vert \,ds+ \int _{t_{1}}^{t_{2}} \bigl\vert (t_{2}-s)^{\delta -1} \bigr\vert \,ds \\& \qquad {}+\frac {t_{2}-t_{1}}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}\,ds+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}\,ds \Biggr) \Biggr) \\& \quad \le \kappa ^{*}_{1} \Biggl( \frac{2(t_{2}-t_{1})^{\delta}}{\Gamma (\delta +1)}+ \frac{t_{2}^{\delta}-t_{1}^{\delta}}{\Gamma (\delta +1)}+ \frac{t_{2}-t_{1}}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{\delta -\gamma}}{\Gamma (\delta -\gamma +1)}+ \frac{a^{\delta}}{\Gamma (\delta +1)} \Biggr) \Biggr). \end{aligned}$$

From the above inequalities, it follows that \(|(\mathcal{R}w)(t_{2})-(\mathcal{R}w)(t_{1})| \to 0\) as \(t_{2} - t_{1}\to 0, \forall t_{1}\), \(t_{2} \in \Omega \) independently of \(w\in B_{r}\). Therefore, \(\mathcal{R}\) is equicontinuous, which implies that \(\mathcal{R}\) is relatively compact on \(B_{r}\). Thus, by the conclusion of the Arzelá–Ascoli theorem, \(\mathcal{R}\) is compact on \(B_{r}\). In consequence, as all the assumptions of Lemma 3.1 hold true, we conclude that problem (1.1) has at least one solution on \((-\infty ,a]\). □

Next, we apply the following nonlinear Leray–Schauder alternative theorem [22] for our second existence result.

Lemma 3.2

(Leray–Schauder nonlinear alternative). For a closed, convex, nonempty subset \(\mathcal{G}\) of a Banach space E and for an open subset B of \(\mathcal{G}\) with \(0\in B\), assume that \(\mathcal{N}:\overline{B}\to \mathcal{G}\) is a continuous, compact (in other words, \(\mathcal{N}(\overline{B})\) is a relatively compact subset of \(\mathcal{G}\)) map. Then either

  1. (1)

    \(\mathcal{N}\) has a fixed point in , or

  2. (2)

    there exist \(\nu \in \partial B\) (the boundary of B in \(\mathcal{G}\)) and \(\mu \in (0,1)\) with \(\nu =\mu \mathcal{N}(\nu )\).

Theorem 3.2

Let the following hypotheses hold:

\({(A_{1})}\):

There exist constants \(0\leq \eta _{a} C_{1}<1/\Lambda _{3}\) and \(C_{2}\geq 0\) such that \(| h(t,u)| \leq C_{1}\|u\|_{\mathfrak{F}} +C_{2}\), \(\forall (t,u)\in [0,a] \times \mathfrak{F}\).

\({(A_{2})}\):

There exist a nonnegative function \(\alpha \in C([0,a],{\mathbbm{ }\mathbb{R}}^{+})\) and a continuous nondecreasing function \(\vartheta :{\mathbb{R}}^{+}\rightarrow { \mathbb{R}}^{+}\) such that \(| f(t,u)| \leq \alpha (t)\vartheta (\|u\|_{\mathfrak{F}} )\), \(\forall (t,u)\in [0,a]\times \mathfrak{F}\).

\({(A_{3})}\):

A constant \(\mathcal{W}>0\) exists such that

$$ \frac{(1-\eta _{a} C_{1}\Lambda _{3})\mathcal{W} }{ (C_{2}+C_{1}\rho _{a} \Vert \theta \Vert _{\mathfrak{F}})\Lambda _{3}+\vartheta (\eta _{a}\mathcal{W} +\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}) \alpha ^{*} \Lambda _{2}+\frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert }>1, $$

where \(\alpha ^{*}= \sup_{t\in [0,a]} \alpha (t)\), \(\eta _{a}\), \(\rho _{a}\), \(\Lambda _{2}\), \(\Lambda _{3}\) are respectively given by (2.1), (3.5), and (3.6).

Then problem (1.1) has at least one solution on \((-\infty ,a]\).

Proof

Firstly, we prove that the operator \(\mathcal{P}:\mathfrak{F'}_{a}\to \mathfrak{F'}_{a}\) defined by (3.1) is continuous and completely continuous. This will be done in three steps.

(1) \(\mathcal{P}\) is continuous.

Let us take the sequence \(\{w_{n}\}\) such that \(w_{n}\to w\) in \(\mathfrak{F'}_{a}\). Then we have

$$\begin{aligned} \bigl\vert \mathcal{P}(w_{n}) (t)-\mathcal{P}(w) (t) \bigr\vert \le & \int _{0}^{t} \bigl\vert h(s,v_{s}+ \bar{w}_{n_{s}})-h(s,v_{s}+\bar{w}_{s}) \bigr\vert \,ds \\ &{}+\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1} \bigl\vert f(s,v_{s}+ \bar{w}_{n_{s}})-f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl\vert f(s,v_{s}+ \bar{w}_{n_{s}})-f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl\vert h(s,v_{s}+\bar{w}_{n_{s}})-h(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl\vert f(s,v_{s}+ \bar{w}_{n_{s}})-f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+ \int _{0}^{a} \bigl\vert h(s,v_{s}+ \bar{w}_{n_{s}})-h(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds ) \\ \leq & \Lambda _{2} \bigl\Vert f(\cdot ,v_{(.)}+ \bar{w}_{n_{(.)}})-f(\cdot ,v_{(.)}+ \bar{w}_{(.)}) \bigr\Vert \\ &{}+\Lambda _{3} \bigl\Vert h(\cdot ,v_{(.)}+ \bar{w}_{n_{(.)}})-h(\cdot ,v_{(.)}+ \bar{w}_{(.)}) \bigr\Vert , \end{aligned}$$

which, in view of the continuity of h and f, leads to

$$\begin{aligned}& \bigl\Vert \mathcal{P}(w_{n})-\mathcal{P}(w) \bigr\Vert \\& \quad \leq \Lambda _{2} \bigl\Vert f(\cdot ,v_{(.)}+ \bar{w}_{n_{(.)}})-f(\cdot ,v_{(.)}+\bar{w}_{(.)}) \bigr\Vert +\Lambda _{3} \bigl\Vert h( \cdot ,v_{(.)}+ \bar{w}_{n_{(.)}})-h(\cdot ,v_{(.)}+\bar{w}_{(.)}) \bigr\Vert \to 0, \end{aligned}$$

as \(n\to \infty \).

(2) \(\mathcal{P}\) maps bounded sets into bounded sets in \(\mathfrak{F'}_{a}\)

For any \(\ell >0\), we show that there exists a positive constant ξ such that for \(w\in B_{\ell}=\{w\in \mathfrak{F'}_{a}: \|w\|_{\mathfrak{F'}_{a}} \leq \ell \}\) we have \(\|\mathcal{P}(w)\|_{\mathfrak{F'}_{a}}\leq \xi \). Let \(w\in B_{\ell}\), for each \(t\in [0,a]\), we have

$$\begin{aligned} \bigl\vert \mathcal{P}(w) (t) \bigr\vert \le & \int _{0}^{t} \bigl\vert h(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds+\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl\vert h(s,v_{s}+\bar{w}_{s}) \bigr\vert \,ds \\ &{} + \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+ \int _{0}^{a} \bigl\vert h(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds+ \vert \zeta \vert \Biggr) \\ \le & \int _{0}^{t} \bigl[C_{1} \Vert v_{s}+\bar{w}_{s} \Vert _{ \mathfrak{F}}+C_{2} \bigr]\,ds+\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{ \delta -1} \bigl[\alpha (s) \vartheta \bigl( \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}} \bigr) \bigr]\,ds \\ &{}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl[ \alpha (s) \vartheta \bigl( \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}} \bigr) \bigr]\,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl[C_{1} \Vert v_{s}+ \bar{w}_{s} \Vert _{\mathfrak{F}}+C_{2} \bigr]\,ds \\ &{}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl[\alpha (s) \vartheta \bigl( \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}} \bigr) \bigr]\,ds \\ &{}+ \int _{0}^{a} \bigl[C_{1} \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}}+C_{2} \bigr]\,ds+ \vert \zeta \vert \Biggr) \\ \le & \bigl[C_{1} \bigl(\eta _{a}\ell +\rho _{a} \Vert \theta \Vert _{\mathfrak{F}} \bigr)+C_{2} \bigr] \Biggl(a+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}}\frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}\,ds+a \Biggr) \Biggr) \\ &{}+\alpha ^{*}\vartheta \bigl(\eta _{a}\ell +\rho _{a} \Vert \theta \Vert _{ \mathfrak{F}} \bigr) \Biggl( \frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{ \delta -1}\,ds \\ &{}+ \frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}\,ds \\ &{}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}\,ds \Biggr) \Biggr)+ \frac{a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert . \end{aligned}$$

So, by taking the norm on the space \({\mathfrak{F'}_{a}}\), we have

$$\begin{aligned} \bigl\Vert \mathcal{P}(w) \bigr\Vert _{\mathfrak{F'}_{a}} \leq & [C_{1}L+C_{2}] \Biggl(a+ \frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum _{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )}+a \Biggr) \Biggr) \\ &{}+\vartheta (L)\alpha ^{*} \Biggl(\frac{a^{\delta}}{\Gamma (\delta +1)}+ \frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{\delta -\gamma}}{\Gamma (\delta -\gamma +1)}+ \frac{a^{\delta}}{\Gamma (\delta +1)} \Biggr) \Biggr) \\ &{}+\frac{a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert \\ =&[C_{1}L+C_{2}] \Lambda _{3}+ \vartheta (L)\alpha ^{*}\Lambda _{2}+\frac{a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert := \xi , \end{aligned}$$

where

$$\begin{aligned} \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}} \leq & \Vert v_{s} \Vert _{\mathfrak{F}} + \Vert \bar{w}_{s} \Vert _{\mathfrak{F}} \le \eta _{a}\ell + \rho _{a} \Vert \theta \Vert _{\mathfrak{F}}:=L. \end{aligned}$$

(3) \(\mathcal{P}\) maps bounded sets into equicontinuous sets of \(\mathfrak{F'}_{a}\).

For a bounded set \(B_{\ell}\) of \(\mathfrak{F'}_{a}\) defined as in Step 2, let \(w\in B_{\ell}\) and \(0< t_{1}< t_{2}< a\). Then we have

$$\begin{aligned}& \bigl\vert \mathcal{P}(w) (t_{2})-\mathcal{P}(w) (t_{1}) \bigr\vert \\& \quad \le \Biggl\vert \int _{0}^{t_{2}}h(s,v_{s}+ \bar{w}_{s})\,ds- \int _{0}^{t_{1}}h(s,v_{s}, \bar{w}_{s})\,ds \\& \qquad {}+ \frac{1}{\Gamma (\delta )} \int _{0}^{t_{1}} \bigl((t_{2}-s)^{\delta -1}-(t_{1}-s)^{ \delta -1} \bigr)f(s,v_{s}+\bar{w}_{s})\,ds \\& \qquad {}+\frac{1}{\Gamma (\delta )} \int _{t_{1}}^{t_{2}}(t_{2}-s)^{\delta -1}f(s,v_{s}+ \bar{w}_{s})\,ds \\& \qquad {}+\frac{t_{2}-t_{1}}{\Lambda _{1}} \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}f(s,v_{s}+ \bar{w}_{s})\,ds \\& \qquad {}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}h(s,v_{s}+ \bar{w}_{s})\,ds + \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}f(s,v_{s}+ \bar{w}_{s})\,ds \\& \qquad {}+ \int _{0}^{a}h(s,v_{s}+ \bar{w}_{s})\,ds+\zeta \Biggr) \Biggr\vert \\& \quad \le \int _{t_{1}}^{t_{2}}[C_{1}L+C_{2}] \,ds+ \frac{1}{\Gamma (\delta )} \int _{0}^{t_{1}} \bigl((t_{2}-s)^{\delta -1}-(t_{1}-s)^{ \delta -1} \bigr)\alpha ^{*} \vartheta (L)\,ds \\& \qquad {}+\frac{1}{\Gamma (\delta )} \int _{t_{1}}^{t_{2}}(t_{2}-s)^{\delta -1} \alpha ^{*} \vartheta (L)\,ds +\frac{t_{2}-t_{1}}{ \vert \Lambda _{1} \vert } \Biggl( \sum _{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \alpha ^{*} \vartheta (L)\,ds \\& \qquad {}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}[C_{1}L+C_{2}] \,ds + \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}\alpha ^{*} \vartheta (L)\,ds \\& \qquad {}+ \int _{0}^{a}[C_{1}L+C_{2}] \,ds+ \vert \zeta \vert \Biggr), \end{aligned}$$

which implies that \(|\mathcal{P}(w)(t_{2})-\mathcal{P}(w)(t_{1})|\longrightarrow 0\) as \(t_{1}\longrightarrow t_{2}\). In view of the Arzelá–Ascoli theorem, we deduce from the foregoing three steps that \(\mathcal{P}:\mathfrak{F'}_{a}\to \mathfrak{F'}_{a}\) is completely continuous.

Finally, we show that for \(0<\sigma <1\) there exists an open set \(\Theta \subseteq \mathfrak{F'}_{a}\) and \(w\in \partial \Theta \) such that \(w\ne \sigma \mathcal{ P}(w)\).

Let \(w\in \mathfrak{F'}_{a}\) with \(w-\sigma \mathcal{ P}(w)=0\) for \(\sigma \in ( 0,1)\). Then, for \(t\in [0,a]\), we have

$$\begin{aligned} \bigl\vert w(t) \bigr\vert =& \bigl\vert \sigma (\mathcal{ P}w) (t) \bigr\vert \\ \le & \int _{0}^{t} \bigl\vert h(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds+ \frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl\vert h(s,v_{s}+\bar{w}_{s}) \bigr\vert \,ds + \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl\vert f(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds \\ &{}+ \int _{0}^{a} \bigl\vert h(s,v_{s}+ \bar{w}_{s}) \bigr\vert \,ds+ \vert \zeta \vert \Biggr) \\ \le & \int _{0}^{t} \bigl[C_{1} \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}} +C_{2} \bigr]\,ds+ \frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1} \bigl[\alpha (s) \vartheta \bigl( \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}} \bigr) \bigr]\,ds \\ &{}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl[ \alpha (s) \vartheta \bigl( \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}} \bigr) \bigr]\,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl[C_{1} \Vert v_{s}+ \bar{w}_{s} \Vert _{\mathfrak{F}} +C_{2} \bigr]\,ds \\ &{}+ \int _{0}^{a} \frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl[\alpha (s) \vartheta \bigl( \Vert v_{s}+ \bar{w}_{s} \Vert _{\mathfrak{F}} \bigr) \bigr]\,ds \\ &{}+ \int _{0}^{a} \bigl[C_{1} \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}} +C_{2} \bigr]\,ds+ \vert \zeta \vert \Biggr) \\ \leq & \bigl[C_{1} \bigl(\eta _{a} \Vert w \Vert _{ \mathfrak{F'}_{a}}+\rho _{a} \Vert \theta \Vert _{\mathfrak{F}} \bigr)+C_{2} \bigr] \Biggl(a+\frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum _{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )}+a \Biggr) \Biggr) \\ &{}+ \vartheta \bigl(\eta _{a} \Vert w \Vert _{ \mathfrak{F'}_{a}}+ \rho _{a} \Vert \theta \Vert _{\mathfrak{F}} \bigr) \alpha ^{*} \\ &{}\times \Biggl(\frac{a^{\delta}}{\Gamma (\delta +1)}+\frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum _{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{\delta -\gamma}}{\Gamma (\delta -\gamma +1)}+ \frac{a^{\delta}}{\Gamma (\delta +1)} \Biggr) \Biggr)+ \frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert \\ \leq & \bigl[C_{1} \bigl(\eta _{a} \Vert w \Vert _{ \mathfrak{F'}_{a}}+\rho _{a} \Vert \theta \Vert _{\mathfrak{F}} \bigr)+C_{2} \bigr]\Lambda _{3}+\vartheta \bigl(\eta _{a} \Vert w \Vert _{ \mathfrak{F'}_{a}}+\rho _{a} \Vert \theta \Vert _{\mathfrak{F}} \bigr) \alpha ^{*} \Lambda _{2}+\frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert , \end{aligned}$$

which, on taking the norm for \(t \in [0,a]\), implies that

$$ \frac{(1-\eta _{a} C_{1}\Lambda _{3}) \Vert w \Vert _{ \mathfrak{F'}_{a}} }{ (C_{2}+C_{1}\rho _{a} \Vert \theta \Vert _{\mathfrak{F}})\Lambda _{3}+\vartheta (\eta _{a} \Vert w \Vert _{ \mathfrak{F'}_{a}}+\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}) \alpha ^{*}\Lambda _{2}+\frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert } \leq 1. $$

In view of hypothesis \((A_{3})\), there exists a constant \(\mathcal{W}>0\) such that \(\|w\|_{ \mathfrak{F'}_{a}} \ne \mathcal{W}\). Let us set

$$ \Theta = \bigl\{ w \in \mathfrak{F'}_{a} : \Vert w \Vert _{ \mathfrak{F'}_{a}}< \mathcal{W} \bigr\} . $$

Note that the operator \(\mathcal{ P} :\overline{\Theta} \to \mathfrak{F'}_{a}\) is continuous and completely continuous.

By this choice of Θ, there is no \(w\in \Theta \) such that \(w=\sigma \mathcal{ P}(w)\) for some \(\sigma \in (0,1)\). Consequently, by the conclusion nonlinear alternative of the Leray–Schauder theorem (Lemma 3.2), we deduce that \(\mathcal{ P}\) has a fixed point \(w\in \overline{\Theta}\), which is a solution to problem (1.1). This finishes the proof. □

In our last result, we prove the uniqueness of solutions to (1.1) with the aid of the Banach contraction mapping principle.

Theorem 3.3

Let \(f,h\in C(\Omega \times \mathfrak{F} ,\mathbb{R})\), and condition \((H_{1})\) and the following condition satisfy:

\((H_{3})\):

There exists a positive constant \(L_{2}\) such that

$$ \bigl\vert f(t,u)-f(t,v) \bigr\vert \le L_{2} \Vert u-v \Vert _{\mathfrak{F}} \quad \textit{for all } t\in \Omega \textit{ and every } u, v \in \mathfrak{F}. $$

Then problem (1.1) has a unique solution on \((-\infty ,a]\) if

$$ \eta _{a} (L_{1}\Lambda _{3}+L_{2}\Lambda _{2})< 1, $$
(3.8)

where \(\eta _{a}\), \(\Lambda _{2}\), and \(\Lambda _{3}\) are respectively defined by (2.1), (3.5), and (3.6).

Proof

Putting \(\sup_{t\in [0,a]}|f(t,0)|=\hat{f}\), also \(\sup_{t\in [0,a]}|h(t,0)|=\hat{h}\), we consider the set

$$ B_{\bar{r}}= \bigl\{ w\in \mathfrak{F'}_{a}: \Vert w \Vert _{\mathfrak{F'}_{a}}\leq \bar{r} \bigr\} $$

with

$$ \bar{r}> \frac {(L_{1}\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}+\hat{h})\Lambda _{3}+(L_{2}\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}+\hat{f})\Lambda _{2}+\frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert }{1-L_{1}\eta _{a}\Lambda _{3}-L_{2}\eta _{a}\Lambda _{2}} $$

and show that \(\mathcal{P}B_{\bar{r}}\subset B_{\bar{r}}\). For \(w\in B_{\bar{r}}\) and \(t\in [0,a]\), we have

$$\begin{aligned} \bigl\vert (\mathcal{P}w) (t) \bigr\vert \le & \Biggl\vert \int _{0}^{t}h(s,v_{s}+ \bar{w}_{s})\,ds+\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1}f(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}f(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}h(s,v_{s}+ \bar{w}_{s})\,ds \\ &{}- \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}f(s,v_{s}+ \bar{w}_{s})\,ds- \int _{0}^{a}h(s,v_{s}+ \bar{w}_{s})\,ds+ \zeta \Biggr) \Biggr\vert \\ \le & \int _{0}^{t} \bigl\vert h(s,v_{s}+ \bar{w}_{s})-h(s,0) \bigr\vert + \bigl\vert h(s,0) \bigr\vert \,ds \\ &{}+\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1} \bigl\vert f(s,v_{s}+ \bar{w}_{s})-f(s,0) \bigr\vert + \bigl\vert f(s,0) \bigr\vert \,ds \\ &{}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl\vert f(s,v_{s}+ \bar{w}_{s})-f(s,0) \bigr\vert + \bigl\vert f(s,0) \bigr\vert \,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl\vert h(s,v_{s}+\bar{w}_{s})-h(s,0) \bigr\vert + \bigl\vert h(s,0) \bigr\vert \,ds \\ &{}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl\vert f(s,v_{s}+ \bar{w}_{s})-f(s,0) \bigr\vert + \bigl\vert f(s,0) \bigr\vert \,ds \\ &{}+ \int _{0}^{a} \bigl\vert h(s,v_{s}+ \bar{w}_{s})-h(s,0) \bigr\vert + \bigl\vert h(s,0) \bigr\vert \,ds+ \vert \zeta \vert \Biggr) \\ \le & \int _{0}^{t} \bigl(L_{1} \Vert v_{s}+\bar{w}_{s} \Vert _{ \mathfrak{F}}+\hat{h} \bigr) \,ds+ \frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{ \delta -1} \bigl(L_{2} \Vert v_{s}+\bar{w}_{s} \Vert _{\mathfrak{F}}+\hat{f} \bigr)\,ds \\ &{}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl(L_{2} \Vert v_{s}+ \bar{w}_{s} \Vert _{\mathfrak{F}}+\hat{f} \bigr)\,ds \\ &{}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl(L_{1} \Vert v_{s}+ \bar{w}_{s} \Vert _{\mathfrak{F}}+\hat{h} \bigr)\,ds \\ &{}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl(L_{2} \Vert v_{s}+ \bar{w}_{s} \Vert _{\mathfrak{F}}+\hat{f} \bigr)\,ds + \int _{0}^{a} \bigl(L_{1} \Vert v_{s}+ \bar{w}_{s} \Vert _{\mathfrak{F}}+\hat{h} \bigr) \,ds+ \vert \zeta \vert \Biggr) \\ \le & \bigl(L_{1} \bigl(\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}+\eta _{a}\bar{r} \bigr)+ \hat{h} \bigr) \Biggl(a+ \frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )}+a \Biggr) \Biggr) \\ &{}+ \bigl(L_{2} \bigl(\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}+\eta _{a} \bar{r} \bigr)+ \hat{f} \bigr) \\ & {}\times \Biggl(\frac{a^{\delta}}{\Gamma (\delta +1)}+\frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum _{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{\delta -\gamma}}{\Gamma (\delta -\gamma +1)}+ \frac{a^{\delta}}{\Gamma (\delta +1)} \Biggr) \Biggr)+ \frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert \\ \le & \bigl(L_{1} \bigl(\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}+\eta _{a}\bar{r} \bigr)+ \hat{h} \bigr)\Lambda _{3}+ \bigl(L_{2} \bigl(\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}+\eta _{a} \bar{r} \bigr)+\hat{f} \bigr)\Lambda _{2}+\frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert < \bar{r}, \end{aligned}$$

which, on taking the norm for \(t\in [0,a]\), implies that \(\|\mathcal{P}w\|_{ \mathfrak{F'}_{a}}<\bar{r}\), where for \(t\in [0,a]\) we have

$$\begin{aligned} \Vert v_{t}+\bar{w}_{t} \Vert _{\mathfrak{F}} \leq & \Vert v_{t} \Vert _{\mathfrak{F}}+ \Vert \bar{w}_{t} \Vert _{\mathfrak{F}} \\ \le & \rho _{a} \Vert \theta \Vert _{\mathfrak{F}}+\eta _{a}\sup \bigl\{ \bigl\vert w(s) \bigr\vert : s \in [0,t] \bigr\} \\ \le & \rho _{a} \Vert \theta \Vert _{\mathfrak{F}}+\eta _{a}\bar{r}. \end{aligned}$$

Thus, \(PB_{\bar{r}}\subset B_{\bar{r}}\).

Now, we shall show that the operator \(\mathcal{P}:\mathfrak{F'}_{a}\to \mathfrak{F'}_{a}\) is a contraction map. For that, let us consider \(w,w^{*}\in \mathfrak{F'}_{a}\). Then we have for each \(t\in [0,a]\)

$$\begin{aligned}& \bigl\vert \mathcal{P}w(t)-\mathcal{P}w^{*}(t) \bigr\vert \\& \quad \le \int _{0}^{t} \bigl\vert h(s,v_{s}+ \bar{w}_{s})+h \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \\& \qquad {}+\frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{ \delta -1} \bigl\vert f(s,v_{s}+\bar{w}_{s})-f \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \\& \qquad {}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )} \bigl\vert f(s,v_{s}+ \bar{w}_{s})-f \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \\& \qquad {}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )} \bigl\vert h(s,v_{s}+\bar{w}_{s})-h \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \\& \qquad {}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )} \bigl\vert f(s,v_{s}+ \bar{w}_{s})-f \bigl(s,v_{s}+ \bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \\& \qquad {}+ \int _{0}^{a} \bigl\vert h(s,v_{s}+ \bar{w}_{s})-h \bigl(s,v_{s}+\bar{w}^{*}_{s} \bigr) \bigr\vert \,ds \Biggr) \\& \quad \le \int _{0}^{t}L_{1} \bigl\Vert w_{s}-w^{*}_{s} \bigr\Vert _{ \mathfrak{F}} \,ds+ \frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1}L_{2} \bigl\Vert w_{s}-w^{*}_{s} \bigr\Vert _{ \mathfrak{F}}\,ds \\& \qquad {}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}L_{2} \bigl\Vert w_{s}-w^{*}_{s} \bigr\Vert _{ \mathfrak{F}}\,ds \\& \qquad {}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}L_{1} \bigl\Vert w_{s}-w^{*}_{s} \bigr\Vert _{ \mathfrak{F}}\,ds \\& \qquad {}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}L_{2} \bigl\Vert w_{s}-w^{*}_{s} \bigr\Vert _{ \mathfrak{F}}\,ds+ \int _{0}^{t}L_{1} \bigl\Vert w_{s}-w^{*}_{s} \bigr\Vert _{ \mathfrak{F}}\,ds \Biggr) \\& \quad \le \int _{0}^{t}L_{1}\eta _{a} \sup_{s\in [0,a]} \bigl\vert w(s)-w^{*}(s) \bigr\vert \,ds+ \frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1}L_{2} \eta _{a} \sup_{s\in [0,a]} \bigl\vert w(s)-w^{*}(s) \bigr\vert \,ds \\& \qquad {}+\frac {t}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{ \mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}L_{2} \eta _{a}\sup_{s\in [0,a]} \bigl\vert w(s)-w^{*}(s) \bigr\vert \,ds \\& \qquad {}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}L_{1} \eta _{a}\sup_{s \in [0,a]} \bigl\vert w(s)-w^{*}(s) \bigr\vert \,ds \\& \qquad {}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}L_{2}\eta _{a} \sup_{s\in [0,a]} \bigl\vert w(s)-w^{*}(s) \bigr\vert \,ds+ \int _{0}^{a}L_{1} \eta _{a} \sup_{s\in [0,a]} \bigl\vert w(s)-w^{*}(s) \bigr\vert \,ds \Biggr) \\& \quad \le \int _{0}^{t}L_{1}\eta _{a} \bigl\Vert w-w^{*} \bigr\Vert _{ \mathfrak{F'}_{a}}\,ds+ \frac{\eta _{a}}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{ \delta -1}L_{2} \bigl\Vert w-w^{*} \bigr\Vert _{\mathfrak{F'}_{a}}\,ds \\& \qquad {}+\frac {a \eta _{a}}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \lambda _{i} \int _{0}^{\mu _{i}} \frac {(\mu _{i}-s)^{\delta -\gamma -1}}{\Gamma (\delta -\gamma )}L_{2} \bigl\Vert w-w^{*} \bigr\Vert _{ \mathfrak{F'}_{a}}\,ds \\& \qquad {}+\sum_{i=1}^{m}\lambda _{i} \int _{0}^{\mu _{i}} \frac{(\mu _{i}-s)^{-\gamma}}{\Gamma (1-\gamma )}L_{1} \bigl\Vert w-w^{*} \bigr\Vert _{ \mathfrak{F'}_{a}}\,ds \\& \qquad {}+ \int _{0}^{a}\frac {(a-s)^{\delta -1}}{\Gamma (\delta )}L_{2} \bigl\Vert w-w^{*} \bigr\Vert _{ \mathfrak{F'}_{a}}\,ds+ \int _{0}^{t}L_{1} \bigl\Vert w-w^{*} \bigr\Vert _{ \mathfrak{F'}_{a}}\,ds \Biggr) \\& \quad \le \eta _{a} \Biggl[L_{2} \Biggl( \frac{a^{\delta}}{\Gamma (\delta +1)}+ \frac{a}{ \vert \Lambda _{1} \vert } \Biggl(\sum_{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{\delta -\gamma}}{\Gamma (\delta -\gamma +1)}+ \frac{a^{\delta}}{\Gamma (\delta +1)} \Biggr) \Biggr) \\& \qquad {}+L_{1} \Biggl(a+\frac {a}{ \vert \Lambda _{1} \vert } \Biggl(\sum _{i=1}^{m} \frac{\lambda _{i}\mu _{i}^{1-\gamma}}{\Gamma (2-\gamma )}+a \Biggr) \Biggr) \Biggr] \bigl\Vert w-w^{*} \bigr\Vert _{\mathfrak{F'}_{a}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \bigl\Vert \mathcal{P}w-\mathcal{P}w^{*} \bigr\Vert _{\mathfrak{F'}_{a}} = \sup_{t\in [0,a]} \bigl\vert \mathcal{P}w(t)- \mathcal{P}w^{*}(t) \bigr\vert \le & \eta _{a} (L_{1} \Lambda _{3}+L_{2}\Lambda _{2} ) \bigl\Vert w-w^{*} \bigr\Vert _{\mathfrak{F'}_{a}}, \end{aligned}$$

and hence \(\mathcal{P}\) is a contraction. Consequently, by the contraction mapping principle, \(\mathcal{P}\) has a unique fixed point, which is indeed the unique solution to problem (1.1) on \((-\infty ,a]\). □

Remark 3.1

It should be noted that we have needed to assume stronger criteria for the uniqueness result, Theorem 3.3, than the conditions for the existence result, Theorem 3.1. So, in addition to imposing f to satisfy the Lipschitz condition, condition (3.8) has an extra term on the left-hand side of the inequality compared with condition (3.7), and it still has to be less than 1.

3.1 Examples

Let us consider the following problem:

$$ \textstyle\begin{cases} {}^{C}D_{0^{+}}^{3/2}[u(t)- \int _{0}^{t}h(s,u_{s})\,ds]=f(t,u_{t}),\quad t\in \Omega :=[0,2], \\ u(t)=\theta (t), \quad t\in (-\infty ,0], \\ u(2)=\frac{1}{2}{}^{C}D_{0^{+}}^{1/2}u(5/4)+{}^{C}D_{0^{+}}^{1/2}u(5/3)+2, \end{cases} $$
(3.9)

where \(\delta =3/2\), \(\gamma =1/2\), \(m=2\), \(t\in [0,2]\), \(\mu _{1}=5/4\), \(\mu _{2}=5/3\), \(\lambda _{1}=1/2\), \(\lambda _{2}=1\), \(\zeta =2\), and \(h(t,u_{t})\), \(f(t,u_{t})\), \(\theta (t)\) will be fixed later.

Using the given data, we find that \(\Lambda _{1}=-0.087514371\), \(\Lambda _{2}=103.1250204\), and \(\Lambda _{3}=95.41355769\), where \(\Lambda _{1}\), \(\Lambda _{2}\), and \(\Lambda _{3}\) are respectively given by (2.2), (3.5), and (3.6).

For a continuous function \(g:(-\infty ,0]\to [0,\infty )\) satisfying \(l=\int _{-\infty}^{0}g(s)\,ds<\infty \), define the space \(\mathfrak{F}_{g}=\{u\in C((-\infty ,0],\mathbb{R}): \int _{-\infty}^{0}g(s)\|u\|_{[s,0]}\,ds<\infty \}\), where \(\|u\|_{[s,0]}=\sup_{t\in [s,0]}|u(t)|\). Choose \(g(s)=e^{3s}\) such that \(\int _{-\infty}^{0}e^{3s}\,ds=\frac{1}{3}\), and supplement this space with the norm \(\|u\|_{\mathfrak{F}_{g}}= \int _{-\infty}^{0}g(s)\|u\|_{[s,0]}\,ds\). Then the space \((\mathfrak{F}_{g},\|.\|_{\mathfrak{F}_{g}})\) satisfies the phase space’s axioms with \(\eta (t)=\frac{1}{3}\), \(\rho (t)=1\), \(A=3\) as the following:

Let \(u:(-\infty ,a]\to \mathbb{R}\) be such that \(u_{0}\in \mathfrak{F}_{g}\). Then

$$\begin{aligned} \int _{-\infty}^{0}e^{3s}\|u_{t} \|_{[s,0]}\,ds =& \int _{- \infty}^{0}e^{3s}\sup _{w\in [s,0]}\big|u(t+w)\big|\,ds \\ =& \int _{-\infty}^{0}e^{3s} \sup _{v\in [s+t,t]}\big|u(v)\big|\,ds \\ =& \int _{-\infty}^{-t}e^{3(s-t)}\sup _{v \in [s,0]}\big|u(v)\big|\,ds \\ \leq& \int _{-\infty}^{0}e^{3(s-t)}\sup _{v\in [s,0]}\big|u(v)\big|\,ds \\ =& e^{-3t} \int _{-\infty}^{0}e^{3s}\|u_{0} \|_{[s,0]}\,ds< \infty , \quad \text{which implies }u_{t}\in \mathfrak{F}_{g}. \end{aligned}$$

Next, to show that

$$ \Vert u_{t} \Vert _{\mathfrak{F}_{g}}\leq \frac{1}{3}\sup \bigl\{ \bigl\vert u(\tau ) \bigr\vert : 0\leq \tau \leq t \bigr\} + \Vert u_{0} \Vert _{\mathfrak{F}_{g}}, $$

we have, for \(-\infty < s\leq 0 \), the following cases:

For \(s\leq t+w\leq 0\), we find

$$ \bigl\vert u_{t}(w) \bigr\vert = \bigl\vert u(t+w) \bigr\vert \le \sup_{\tau \in [s,0]} \bigl\vert u(\tau ) \bigr\vert . $$

If \(t+w\geq 0\), \(w\leq 0\), then we have

$$ \bigl\vert u_{t}(w) \bigr\vert = \bigl\vert u(t+w) \bigr\vert \le \sup_{\tau \in [0,t]} \bigl\vert u(\tau ) \bigr\vert . $$

Thus, for \(t\in [0,a]\), we have \(|u_{t}(w)|\le \sup_{\tau \in [s,0]}|u(\tau )|+\sup_{\tau \in [0,t]}|u( \tau )|\).

Consequently, for \(t\in [0,a]\), we have

$$\begin{aligned} \Vert u_{t} \Vert _{\mathfrak{F}_{g}} =& \int _{-\infty}^{0}e^{3s}\sup _{w\in [s,0]} \bigl\vert u_{t}(w) \bigr\vert \,ds \\ \leq & \int _{-\infty}^{0}e^{3s}\sup _{\tau \in [0,t]} \bigl\vert u(\tau ) \bigr\vert \,ds+ \int _{-\infty}^{0}e^{3s}\sup _{\tau \in [s,0]} \bigl\vert u(\tau ) \bigr\vert \,ds \\ =& \int _{-\infty}^{0}e^{3s}\,ds \sup _{\tau \in [0,t]} \bigl\vert u(\tau ) \bigr\vert + \int _{-\infty}^{0}e^{3s} \Vert u_{0} \Vert _{[s,0]}\,ds \\ =& \frac{1}{3}\sup \bigl\{ \bigl\vert u(\tau ) \bigr\vert : 0\leq \tau \leq t \bigr\} + \Vert u_{0} \Vert _{ \mathfrak{F}_{g}}. \end{aligned}$$

Finally, we find

$$ \bigl\vert u(t) \bigr\vert \leq \sup_{w\in [s,0]} \bigl\vert u(t+w) \bigr\vert \leq 3 \int _{- \infty}^{0}e^{3s} \Vert u_{t} \Vert _{[s,0]}\,ds=3 \Vert u_{t} \Vert _{\mathfrak{F}_{g}}. $$

Now, we choose \(\theta (t)\) to be \(\theta (t)= e^{t}-e^{2t}\), which is a continuous function and satisfies \(\theta (0)=0\). Also, it is easy to show that \(\theta \in \mathfrak{F}_{g}\), that is, \(\int _{-\infty}^{0}e^{3s}\|\theta \|_{[s,0]}\,ds<\infty \).

To illustrate Theorem 3.1, we choose

$$ f(t,u_{t})=\frac{(1+t)}{120} \biggl( \int _{-\infty}^{0}e^{3s}\tan ^{-1}u_{t}\,ds+\frac{e^{t}}{8} \biggr) $$
(3.10)

and

$$ h(t,u_{t})=\frac{1 }{4\sqrt{400+t}} \biggl(t \int _{-\infty}^{0}e^{3s} \frac{ \vert u_{t} \vert }{ \vert u_{t} \vert +1} \,ds +\sin t \biggr). $$
(3.11)

Obviously, f and h are continuous functions, and conditions \((H_{1})\) and \((H_{2})\) are satisfied with \(L_{1}=1/40\), \(\kappa _{1}(t)=\frac{(1+t)}{120}(\frac{1}{3}+\frac{e^{t}}{8})\) and \(\kappa _{2}(t)=\frac{(\frac{t}{3}+\sin t)}{4\sqrt{400+t}}\). Moreover,

$$\begin{aligned} L_{1}\eta _{a}\Lambda _{3}\approx 0.7951129808< 1. \end{aligned}$$

Thus, all the hypotheses of Theorem 3.1 are satisfied, and consequently, problem (3.9) has at least one solution on \((-\infty ,2]\), with \(f(t,u_{t})\) and \(h(t,u_{t})\) given by (3.10) and (3.11), respectively.

Next, to demonstrate the application of Theorem 3.2, we take

$$ f(t,u_{t})=\frac{e^{t}}{(255+t)^{2}} \biggl( \int _{-\infty}^{0}e^{3s} \sin u_{t} \,ds+\cos t \biggr) $$
(3.12)

and

$$ h(t,u_{t})=\frac{1}{90(2+t^{2})}\sin t \int _{-\infty}^{0}e^{3s}u_{t}\,ds+ \frac{t}{255}. $$
(3.13)

Clearly, conditions \((A_{1})\) and \((A_{2})\) hold true with \(C_{1}=\frac{1}{180}\), \(C_{2}=\frac {2}{255}\), \(\alpha (t)= \frac{e^{t}}{(255+t)^{2}}\), and \(\vartheta (\|u\|_{\mathfrak{F}_{g}})=\|u\|_{ \mathfrak{F}_{g}}+1\). Also, by condition \((A_{3})\), we have \(\mathcal{W}>56.758894\) such that

$$ \frac{(1-\eta _{a}C_{1}\Lambda _{3})\mathcal{W} }{ (C_{2}+C_{1}\rho _{a} \Vert \theta \Vert _{\mathfrak{F}})\Lambda _{3}+\vartheta (\eta _{a}\mathcal{W}+\rho _{a} \Vert \theta \Vert _{\mathfrak{F}}) \alpha ^{*} \Lambda _{2}+\frac {a}{ \vert \Lambda _{1} \vert } \vert \zeta \vert }>1. $$

As all the assumptions of Theorem 3.2 hold true, its conclusion applies to problem (3.9) on \((-\infty ,2]\) with \(f(t,u_{t})\) and \(h(t,u_{t})\) given by (3.12) and (3.13), respectively.

Finally, Theorem 3.3 can be illustrated by taking

$$ f(t,u_{t})=\frac{e^{t} }{(t+25)^{2}} \biggl( \int _{-\infty}^{0}e^{3s} \tan ^{-1} u_{t}\,ds+1/16 \biggr) $$
(3.14)

and

$$ h(t,u_{t})=\frac{t}{6\sqrt{900+t}} \biggl( \int _{-\infty}^{0}e^{3s} \frac{ \vert u_{t} \vert }{ \vert u_{t} \vert +1} \,ds+\tan ^{-1} t \biggr). $$
(3.15)

Notice that conditions \((H_{1})\) and \((H_{3})\) are satisfied with \(L_{1}=1/90\) and \(L_{2}=e^{2}/625\). In addition, \(\eta _{a} (L_{1}\Lambda _{3}+L_{2}\Lambda _{2})\approx 0.7597817128<1\). So, all the conditions of Theorem 3.3 hold true, and as a result, problem (3.9) with \(f(t,u_{t})\) given by (3.14) and (3.15) has a unique solution on \((-\infty ,2]\).

4 Conclusions

In this article, we have investigated the existence of solutions to a new class of neutral boundary value problems with infinite delay. By imposing an arbitrary phase space that satisfies the fundamental axioms given by Hale and Kato [9] and applying Krasnoselskii’s fixed point theorem, the Leray–Schauder type nonlinear alternative theorem, and the Banach fixed point theorem, we have presented three results related to our problem. Also, we have illustrated our results by giving three examples defined on a specific state space. Our results are a new contribution that enriches the literature on delayed fractional order boundary value problems, whereas most of the previous studies on this topic were devoted to differential equations of fractional order between 0 and 1, and to the best of our knowledge, no work has been done on boundary value problems with infinite delay and boundary conditions that involve Caputo fractional derivative; see, for example, [1619, 2328].

Availability of data and materials

No applicable.

References

  1. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, vol. 191. Academic Press, Boston (1993)

    MATH  Google Scholar 

  2. Burić, N., Todorović, D.: Dynamics of delay-differential equations modelling immunology of tumor growth. Chaos Solitons Fractals 13(4), 645–655 (2002)

    Article  MATH  Google Scholar 

  3. Carvalho, A., Pinto, C.M.A.: A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Control 5(1), 168–186 (2017)

    Article  MathSciNet  Google Scholar 

  4. Pati, S., Graef, J.R., Padhi, S.: Positive periodic solutions to a system of nonlinear differential equations with applications to Lotka-Volterra-type ecological models with discrete and distributed delays. J. Fixed Point Theory Appl. 21(3), 80 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, D.: Applications of Delay Differential Equations in Physiology and Epidemiology. Thesis (Ph. D.), University of Surrey (United Kingdom). ProQuest LLC, Ann Arbor, MI (2005)

  6. Rajavel, S., Samidurai, R., Cao, J., Alsaedi, A., Ahmad, B.: Finite-time non-fragile passivity control for neural networks with time-varying delay. Appl. Math. Comput. 297(15), 145–158 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Xu, W., Zhu, S., Fang, X., Wang, W.: Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays. Physica A 535, 122427 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, R., Cao, J., Alsaedi, A., Ahmad, B.: Passivity analysis of delayed reaction-diffusion Cohen-Grossberg neural networks via Hardy-Poincaré inequality. J. Franklin Inst. 354(7), 3021–3038 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hale, J.K., Kato, J.: Phase space for retarded equations with infinite delay. Funkc. Ekvacioj 21(1), 11–41 (1978)

    MathSciNet  MATH  Google Scholar 

  10. Kappel, F., Schappacher, W.: Some considerations to the fundamental theory of infinite delay equations. J. Differ. Equ. 37(2), 141–183 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schumacher, K.: Existence and continuous dependence for functional-differential equations with unbounded delay. Arch. Ration. Mech. Anal. 67(4), 315–335 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Corduneanu, C., Lakshmikantham, V.: Equations with unbounded delay: a survey. Nonlinear Anal. 4(5), 831–877 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hino, Y., Murakami, S., Naito, T.: Functional-Differential Equations with Infinite Delay. Lecture Notes in Mathematics, vol. 1473. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  14. Hale, J.K.: Functional differential equations with infinite delays. J. Math. Anal. Appl. 48, 276–283 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lakshmikantham, V., Wen, L.Z., Zhang, B.G.: Theory of Differential Equations with Unbounded Delay. Mathematics and Its Applications, vol. 298. Kluwer Academic, Dordrecht (1994)

    Book  MATH  Google Scholar 

  16. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nouri, K., Nazari, M., Keramati, B.: Existence results of solutions for some fractional neutral functional integro-differential equations with infinite delay (2017) https://doi.org/10.20944/preprints201706.0090.v1

  18. Ahmad, B., Alghanmi, M., Alsaedi, A., Agarwal, R.P.: Nonlinear impulsive multiorder Caputo tgype generalized fractional differential equations with infinite delay. Mathematics 7(11), 1108 (2019)

    Article  Google Scholar 

  19. Chen, C., Dong, O.: Existence and Hyers–Ulam stability for a multi-term fractional differential equation with infinite delay. Mathematics 10(7), 1013 (2022)

    Article  Google Scholar 

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  21. Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  22. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

  23. Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Anal. 71(7–8), 3249–3256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Agarwal, R.P., Zhou, Y., He, Y.: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59(3), 1095–1100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chauhan, A., Dabas, J., Kumar, M.: Integral boundary-value problem for impulsive fractional functional differential equations with infinite delay. Electron. J. Differ. Equ. 2012, 229 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Dabas, J., Chauhan, A.: Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay. Math. Comput. Model. 57(3–4), 754–763 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bao, H., Cao, J.: Existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay. Adv. Differ. Equ. 2017, 66 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhao, K., Ma, Y.: Study on the existence of solutions for a class of nonlinear neutral Hadamard-type fractional integro-differential equation with infinite delay. Fractal Fract. 5(2), 52 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the referees for their useful comments on their paper.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors, MA and SHA, contributed equally to each part of this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Madeaha Alghanmi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghanmi, M., Alqurayqiri, S. Existence results for fractional neutral functional differential equations with infinite delay and nonlocal boundary conditions. Adv Cont Discr Mod 2023, 36 (2023). https://doi.org/10.1186/s13662-023-03782-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-023-03782-4

Mathematics Subject Classification

Keywords