Skip to main content

Some analytical and numerical results for a fractional q-differential inclusion problem with double integral boundary conditions

Abstract

In this work, we study a q-differential inclusion with doubled integral boundary conditions under the Caputo derivative. To achieve the desired result, we use the endpoint property introduced by Amini-Harandi and quantum calculus. Integral boundary conditions were considered on time scale \(\mathcal{T}_{t_{0}}=\{t_{0},t_{0}q,t_{0}q^{2}, \ldots\}\cup \{0\}\). To better evaluate the validity of our results, we provided an example, some graphs, and tables.

Introduction

It is clear to everyone that fractional calculus has been one of the most important and popular topics for researchers in the last decade [15]. Perhaps the reason for this popularity can be traced to the high efficiency of this type of calculations in modeling of various natural phenomena, engineering, and biological mathematics [612]. During the research on this subject, various types of fractional derivative operators such as Riemann–Liouville, Caputo, Caputo–Fabrizio, Caputo–Hadamard have been introduced and studied by some researchers [1327]. On the other hand, in 1910, with the research work of Frank Hilton Jackson, the exciting world of quantum computing emerged [28, 29]. Quantum calculus is a generalization of the ordinary calculus in which the limit is omitted. Two types of quantum calculus have been developed more than the others, namely q-calculus and h-calculus. It did not take long for a combination of advances in these two important areas to do much in the fields of physics, thermodynamics, and differential equations. In recent years, many researchers have addressed differential inclusion as a tool with high potential for modeling [19, 3049].

In 2014, Ghorbanian et al. investigated the existence of solution for the fractional inclusion problem

$$ ^{c}\mathcal{D}^{\pounds }l(t) \in \mathcal{F} \bigl(t,l(t),l'(t),l''(t)\bigr) $$

with considering the boundary conditions that follow.

$$ \textstyle\begin{cases} l(0)+l(\nu )+l(1)=\int _{0}^{1}g_{0}(s,l(s))\,ds, \\ ^{c}\mathcal{D}^{\lambda }l(0)+^{c}\mathcal{D}^{\lambda }l(\nu )+^{c} \mathcal{D}^{\lambda }l(1)=\int _{0}^{1}g_{1}(s,l(s))\,ds, \\ ^{c}\mathcal{D}^{\jmath }l(0)+^{c}\mathcal{D}^{\jmath }l(\nu )+^{c} \mathcal{D}^{\jmath }l(1)=\int _{0}^{1}g_{2}(s,l(s))\,ds, \end{cases} $$

where \(t \in J=[0,1]\), \(\pounds \in (2,3)\), \(\lambda ,\nu \in (0,1)\), \(\jmath \in (1,2)\), and \(\mathcal{F}:J \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathcal{P}_{cp}(\mathbb{R})\) is a multifunction, \(g_{1},g_{2},g_{3}\in C(J \times \mathbb{R},\mathbb{R})\), \(^{c}\mathcal{D}^{\pounds }\) represents the fractional Caputo derivative, and \(\mathcal{P}_{cp}(\mathbb{R})\) is the set of all compact subsets of \(\mathbb{R}\) [50]. After that in 2017, Rezapour et al. perused the existence of solution for the fractional inclusion problem for convex and nonconvex compact multifunction

$$ ^{c}\mathcal{D}^{\pounds }l(t) \in \mathcal{F} \bigl(t,l(t),^{c}\mathcal{D}^{ \jmath }l(t),l'(t) \bigr) $$

for almost all \(t \in J=[0,1]\), with the following conditions:

$$ \textstyle\begin{cases} l(0)+l'(0)+^{c}\mathcal{D}^{\jmath }l(t)=\int _{0}^{\nu }l(s)\,ds, \\ l(1)+l'(1)+^{c}\mathcal{D}^{\jmath }l(t)=\int _{0}^{\lambda }l(s)\,ds, \end{cases} $$

where \(\mathcal{F}:J \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to 2^{\mathbb{R}}\) is a compact-valued multifunction [51].

By combining the ideas mentioned above, we now intend to examine the following q-inclusion:

$$ ^{c}\mathcal{D}_{q}^{\pounds }l(t) \in \mathcal{F}\bigl(t,l(t),l'(t),l''(t),^{c} \mathcal{D}_{q}^{\hbar _{1}}l(t),^{c} \mathcal{D}_{q}^{\hbar _{2}}l(t)\bigr) $$
(1)

with introducing new integral boundary conditions:

$$ \textstyle\begin{cases} l(0)+{\boldsymbol{S}}l'(0)=0, \\ al(\eth )+b\int _{0}^{1}l(t)\,dt =0, \\ {\boldsymbol{P}}l''(1)+c\int _{0}^{1}l(t)\,dt =0, \end{cases} $$
(2)

for all \(t \in \mathfrak{J}=[0,1]\), and \(\eth \in (0,1)\), \({\boldsymbol{S}}=\sum_{j=0}^{j=k}u_{j}\), \({\boldsymbol{P}}=\prod_{j=0}^{j=k}w_{j}\) with \(u_{j}, w_{j} \in \mathbb{R}\), and \(^{c}\mathcal{D}_{q}^{\pounds }\) denotes Caputo quantum fractional derivative of order \(\pounds \in (2,3]\), also \(\hbar _{1}, \hbar _{2} \in (1,2]\), where \(\mathcal{F}:\mathfrak{J} \times \mathbb{R}^{5}\to \mathcal{P}( \mathbb{R})\) is a compact-valued multifunction such that \(\mathcal{P}(\mathbb{R})\) is a set of all subsets of \(\mathbb{R}\).

Preliminaries

In this section, we summarize what we need from quantum calculus to examine the subject of this research. Throughout this work we always apply quantum calculations to the time scale \(\mathcal{T}_{t_{0}}=\{t_{0},t_{0}q,t_{0}q^{2}, \ldots\}\cup \{0\}\) such that \(t_{0} \in \mathbb{R}\) and \(0< q<1\) [28].

Definition 2.1

([28])

For every real number y, we define the q-analogue of y as

$$ [y]_{q}=\frac{1-q^{y}}{1-q}=1 + q + \cdots + q^{y -1}. $$

Also, for the power function \((w - s)_{q}^{n}\), its q-analogue for \(n\in \mathbb{N}_{0}\) is expressed as

$$ {\textstyle\begin{cases} (w-s)_{q}^{(n)} = \prod_{i=0}^{ n-1}(w - s q^{i}) \quad \text{for } n \ge 1, \\ (w-s)_{q}^{(0)}=1, \end{cases}\displaystyle } $$
(3)

such that \(w,s \in \mathbb{R}\) and \(\mathbb{N}_{0}=\mathbb{N} \cup \{0\}\). The (3) can be expressed for any real number β as follows:

$$ (w-s)_{q}^{(\beta )}= w^{\beta } \prod _{n=0}^{\infty } \frac{1 - (\frac{s}{w})q^{n}}{1- (\frac{s}{w}) q^{\beta + n}}, \quad w \ne 0. $$

If \(s=0\), it is clear that \(w^{(\beta )}=w^{\beta }\) [52].

Definition 2.2

([29])

The q-gamma function for \(w \in \mathbb{R}-\{0,-1,-2, \dots \}\) is calculated using the following equation:

$$ \Gamma _{q}(w) = \frac{ (1-q)^{ (w -1)}}{ (1-q)^{w - 1}}, $$
(4)

it is worth noting that \(\Gamma _{q}(w +1)=[w]_{q} \Gamma _{q} (w)\) is valid.

Here we present Algorithm 1 for calculating different values of the q-gamma function; also in Table 1 some numerical results for \(q=\frac{1}{5}\), \(q=\frac{1}{2}\), \(q=\frac{8}{9}\) are provided.

Algorithm 1
figurea

The proposed procedure to calculate \(\Gamma _{q} (w)\)

Table 1 Numerical result for \(\Gamma _{q}(w)\)

Definition 2.3

([53])

Suppose that \(\hbar (w)\) is a continuous function, then the q-derivative of this function is defined as

$$ ( \mathcal{D}_{q} \hbar ) (w)= \frac{\hbar (w) - \hbar (qw)}{ (1-q)w}, $$

as well as, \((\mathcal{D}_{q} \hbar )(0) = \lim_{w\to 0}(\mathcal{D}_{q} \hbar )(w)\). Moreover, we can extend the q-derivative of this function to any arbitrary order by means of \((\mathcal{D}_{q}^{n} \hbar )(w)= \mathcal{D}_{q} (\mathcal{D}_{q}^{n -1} \hbar )(w)\), such that \(n \in \mathbb{N}\), and \((\mathcal{D}_{q}^{n} \hbar )(w)=\hbar (w)\).

Definition 2.4

([53])

Let ħ be a continuous map defined on \([0,\mathfrak{b}]\), then the q-antiderivative of ħ is called the Jackson integral of ħ and is illustrated as follows:

$$ \mathcal{I}_{q}\hbar (w)= \int _{0}^{w}\hbar (s)\,d_{q}s=w(1-q) \sum_{j=0}^{ \infty }q^{j}\hbar \bigl(q^{j}w\bigr), \quad \bigl(w \in [0,\mathfrak{b}]\bigr) $$

that the right-hand side absolutely converges. The q-antiderivative of ħ can be extended to any arbitrary order by means of \(\mathcal{I}^{n}_{q}\hbar (w)=\mathcal{I}(\mathcal{I}^{n-1}_{q} \hbar (w))\).

Remark 2.1

([53])

Let the function ħ be continuous at \(w=0\), then we have

$$ \textstyle\begin{cases} \mathcal{I}_{q}(\mathcal{D}_{q}\hbar (w))=\hbar (w)-\hbar (0), \\ \mathcal{D}_{q}(\mathcal{I}_{q}\hbar (w))=\hbar (w) \quad \text{for all } w. \end{cases} $$

Remark 2.2

([53])

According to the following relations, we can replace the order of double q-integral:

$$ \int _{0}^{w} \int _{0}^{u}\hbar (s)\,d_{q}s\,d_{q}u= \int _{0}^{w} \int _{qs}^{w} \hbar (u)\,d_{q}u\,d_{q}s $$

since

$$\begin{aligned} \int _{0}^{w} \int _{qs}^{w}\hbar (u)\,d_{q}u\,d_{q}s &= \int _{0}^{w}(w-qs)^{ \kappa -1}\hbar (s)\,d_{q}s \\ &=w(1-q)\sum_{j=0}^{\infty }q^{j} \hbar \bigl(q^{j}w\bigr) \bigl(w-q^{j+1}w\bigr) \\ &=w^{2}(1-q)^{2}\sum_{j=0}^{\infty }q^{j} \hbar \bigl(q^{j}w\bigr)\Biggl[\sum_{j=0}^{ \infty }q^{j} \Biggr]. \end{aligned}$$

Moreover, it can be written for the left

$$\begin{aligned} \int _{0}^{w} \int _{0}^{u}\hbar (s)\,d_{q}s\,d_{q}u &= w(1-q)\sum_{j=0}^{ \infty }q^{j} \int _{0}^{wq^{j}}\hbar (u)\,d_{q}u \\ &= w^{2}(1-q)^{2}\sum_{j=0}^{\infty } \sum_{k=0}^{\infty }q^{j+2k} \hbar \bigl(q^{j+k}w\bigr). \end{aligned}$$

Definition 2.5

([54])

The fractional Riemann–Liouville quantum integral of order £ for a continuous function \(l(w):[0,\infty ]\to \mathbb{R}\) is defined by

$$ \mathcal{I}^{\pounds }_{q}l(w)= \frac{1}{\Gamma _{q}(\pounds )} \int _{0}^{w}(w-qs)^{ \pounds -1}l(s)\,d_{q}s. $$
(5)

Definition 2.6

([54])

The fractional Caputo quantum derivative of order £ for a continuous function \(l(w):[0,\infty ]\to \mathbb{R}\) is defined by

$$ ^{c}\mathcal{D}^{\pounds }l(w)= \frac{1}{\Gamma _{q}(n-\pounds )} \int _{0}^{w}(w-qs)^{n- \pounds -1} \mathcal{D}_{q}^{n}l(s)\,d_{q}s, \quad n=[ \pounds ]+1. $$
(6)

Lemma 2.7

([55])

Let \(n=[\pounds ]+1\), then

$$ \bigl({}^{C}\mathcal{I}_{q}^{\pounds }\, {}^{C}\mathcal{D}_{q}^{\pounds }l\bigr) (w)= l(w) - \sum_{k=0}^{n-1} \frac{w^{k}}{\Gamma _{q} ( k + 1 ) } \bigl( \mathcal{D}_{q}^{k} l\bigr) (0). $$

Indeed, the general solution for \({}^{C}\mathcal{D}_{q}^{ \pounds }l(w) =0\) is \(l(w) = \mathfrak{y}_{0} + \mathfrak{y}_{1} w + \mathfrak{y}_{2} w^{2} + \cdots + \mathfrak{y}_{n-1} w^{n-1}\) such that \(\mathfrak{y}_{0}, \dots , \mathfrak{y}_{n-1}\in \mathbb{R}\).

Here, to help visualize fractional calculations, we present graphs of two functions in Figs. 1 and 2.

Figure 1
figure1

The graph of \(\mathcal{I}^{\pounds }e^{x^{2}}\), where \(\mathcal{I}^{\pounds }\) is the Riemann–Liouville fractional integral

Figure 2
figure2

The graph of \(\mathcal{D}^{\alpha }\sin (x)\), where \(\mathcal{D}^{\alpha }\) is the Riemann–Liouville fractional derivative

Notation 2.8

Assume that \((\mathcal{K},\mathfrak{d})\) is a metric space. We denote the set of all subsets of \(\mathcal{K}\) and the set of all nonempty subsets of \(\mathcal{K}\) by \(\mathcal{P}(\mathcal{K})\) and \(2^{\mathcal{K}}\), respectively. Also assume that the symbols \(\mathcal{P}_{{b}d}(\mathcal{K})\), \(\mathcal{P}_{cl}(\mathcal{K})\), \(\mathcal{P}_{cp}(\mathcal{K})\), and \(\mathcal{P}_{cv}(\mathcal{K})\) represent the class of all bounded, closed, compact, and convex subsets of \(\mathcal{K}\), respectively.

Definition 2.9

([56])

Let \(\mathcal{F}:\mathcal{K} \to 2^{\mathcal{K}}\) be a mapping. It is called a multifunction on \(\mathcal{K}\), also an element \(p \in \mathcal{K}\) is a fixed point of \(\mathcal{F}\) whenever \(p \in \mathcal{F}(p)\). Moreover, for multifunction \(\mathcal{F}\), an element \(p \in \mathcal{K}\) is called an endpoint of \(\mathcal{F}\) whenever \(\mathcal{F}(p)=\{p\}\). Also, we say that \(\mathcal{F}\) has an approximate property whenever \(\inf_{p \in \mathcal{K}}\sup_{r\in \mathcal{F}(p)}\mathfrak{d}(p,r)=0\).

Suppose that \(\mathcal{F}:\mathcal{K} \to \mathcal{P}_{cl}(\mathcal{K})\) is a multifunction and A is an open set in \(\mathcal{K}\), then we say that \(\mathcal{F}\) is lower semi-continuous(lsm) if the set \(\mathcal{F}^{-1}(A):=\{r \in \mathcal{K}:\mathcal{F}(r)\cap A \ne \phi \}\) is open [57]. Also it is called upper semi-continuous(usm) if the set \(\{r \in \mathcal{K}:\mathcal{F}(r) \subset A \}\) is open. A multifunction \(\mathcal{F}:\mathcal{K} \to \mathcal{P}_{cp}(\mathcal{K})\) is called compact if \(\overline{\mathcal{F}(B)}\) is a compact set of \(\mathcal{K}\) for any bounded subset B of \(\mathcal{K}\). Let \(\mathcal{I}=[0,1]\), and the multifunction \(\mathcal{F}:\mathcal{I} \to \mathcal{P}_{cl}(\mathbb{R})\) is called measurable if the function \(f \mapsto \mathfrak{d}(r,\mathcal{F}(f))=\inf \{\vert r-y\vert : y \in \mathcal{F}(f)\}\) is measurable for all \(r \in \mathbb{R}\) [57].

Definition 2.10

([57])

Let \((\mathcal{K},\mathfrak{d})\) be a metric space, we define the well-known Pompeiu–Hausdorff metric \(\mathcal{H}_{\mathfrak{d}}:2^{\mathcal{K}}\times 2^{\mathcal{K}}\to [0, \infty ]\) by

$$ \mathcal{H}_{\mathfrak{d}}(U,V)=\Bigl\{ \sup_{u\in U} \mathfrak{d}(u,V),\sup_{v \in V}\mathfrak{d}(U,v)\Bigr\} , $$

where \(\mathfrak{d}(U,v)=\inf_{u\in U}\mathfrak{d}(u,v)\). Then \((\mathcal{P}_{bd,cl}(\mathcal{K}),\mathcal{H}_{\mathfrak{d}})\) is a metric space and \((\mathcal{P}_{cl}(\mathcal{K}),\mathcal{H}_{\mathfrak{d}})\) is a generalized metric space.

A multifunction \(\mathcal{F}:\mathcal{K} \to \mathcal{P}_{cl}(\mathcal{K})\) is called an α-contraction if \(\exists \alpha \in (0,1)\) whenever \(\mathcal{H}_{\mathfrak{d}}(\mathcal{F}(p_{1}),\mathcal{F}(p_{2})) \le \alpha \mathfrak{d}(p_{1},p_{2})\) for all \(p_{1},p_{2} \in \mathcal{K}\). Nadler’s fixed point theorem states that: if \(\mathcal{F}\) is a closed-valued contractive set-valued map on a complete metric space, then \(\mathcal{F}\) has a fixed point [58].

Definition 2.11

Let \(\mathfrak{A}=C(\mathfrak{J},\mathbb{R})\), we define the following spaces:

$$ \mathcal{Z}_{i}=\bigl\{ l(t):l(t),l'(t),l''(t),^{c} \mathcal{D}_{q}^{\hbar _{i}}l(t) \in \mathfrak{A} \bigr\} $$

endowed with the norm

$$ \Vert l \Vert _{i}=\sup_{t \in \mathfrak{J}} \bigl\vert l(t) \bigr\vert +\sup_{t \in \mathfrak{J}} \bigl\vert l'(t) \bigr\vert +\sup_{t \in \mathfrak{J}} \bigl\vert l''(t) \bigr\vert +\sup_{t \in \mathfrak{J}} \bigl\vert ^{c}\mathcal{D}_{q}^{\hbar _{i}}l(t) \bigr\vert . $$

Now, regard the space \(\mathcal{K}=\mathcal{Z}_{1}\times \mathcal{Z}_{2}\) endowed with the norm \(\Vert (l_{1},l_{2})\Vert =\Vert l_{1}\Vert +\Vert l_{2}\Vert \), then \((\mathcal{K},\Vert . \Vert )\) is a Banach space [58].

Definition 2.12

For \(l=(l_{1},l_{2}) \in \mathcal{K}\), we define

$$ \mathcal{S}^{*}_{\mathcal{F},l}=\bigl\{ \mathfrak{f} \in L^{1}(\mathfrak{J}): \mathfrak{f}(t) \in \mathcal{F} \bigl(t,l(t),l'(t),l''(t),^{c} \mathcal{D}_{q}^{ \hbar _{1}}l(t),^{c} \mathcal{D}_{q}^{\hbar _{2}}l(t)\bigr) \text{ for all } t \in \mathfrak{J} \bigr\} $$

that is called the set of selection of \(\mathcal{S}^{*}\). If \(\operatorname{dim} \mathcal{K}< \infty \), then \(\mathcal{S}^{*}_{\mathcal{F},l}\ne \phi \) for all \(l\in \mathcal{K}\) [58].

To prove our main result, we use the endpoint technique presented in 2010 by Amini-Harandi [56].

Lemma 2.13

([56])

Let \((\mathcal{K},\mathfrak{d})\) be a complete metric space, and regard:

  1. 1

    A map \(\psi : [0, \infty ) \to [0, \infty )\) that is (usm) where \(\psi (w) < w\) and \(\liminf_{\substack{w\to \infty }}(w - \psi (w))>0\) for all \(w>0\);

  2. 2

    A multifunction map \(\mathcal{F}:\mathcal{K}\to \mathcal{P}_{cl,bd}(\mathcal{K})\) with \(\mathcal{H}_{\mathfrak{d}}(\mathcal{F}(p),\mathcal{F}(r))\le \psi ( \mathfrak{d}(p,r))\) for any \(p,r \in \mathcal{K}\).

Then \(\mathcal{F}\) has a unique endpoint iff \(\mathcal{F}\) has an approximate endpoint property.

Main results

Now, after stating the above preparations, we can get our main results. First we start with a lemma.

Lemma 3.1

Let \(\pounds \in (2,3]\) and \(v(t) \in \mathfrak{A}\). Then the quantum fractional problem \(^{c}\mathcal{D}_{q}^{\pounds }l(t)=v(t)\) with boundary condition (2) has a unique solution which is obtained by

$$ l(t)=\mathcal{I}^{\pounds }_{q}v(t)+\theta \mathfrak{B}_{1}(t) \mathcal{I}^{\pounds }_{q}v(\eth )+\theta \mathfrak{B}_{2}(t) \mathcal{I}^{\pounds }_{q} \bigl[\mathfrak{I}^{\pounds }_{q}v(r)\bigr](1)+\theta \mathfrak{B}_{3}(t)\mathcal{I}^{\pounds -2}_{q}v(1){} $$
(7)

such that

$$ \theta = \biggl[\biggl(2{\boldsymbol{P}}+\frac{c}{3}\biggr) \biggl(a \eth +\frac{b}{2}-{\boldsymbol{S}}(a+b)\biggr)-c\biggl(a\eth ^{2}+ \frac{b}{3}\biggr) \biggl(\frac{1}{2}-{ \boldsymbol{S}}\biggr)\biggr]^{-1}\ne 0 $$
(8)

and

$$\begin{aligned}& \mathfrak{B}_{1}(t)=a\biggl(2{\boldsymbol{P}}+\frac{c}{3} \biggr) ({ \boldsymbol{S}}-t)+ac\biggl(\frac{1}{2}-{\boldsymbol{S}} \biggr)t^{2}, \\& \begin{aligned} \mathfrak{B}_{2}(t)={}& \biggl[c\biggl(a\eth ^{2}+ \frac{b}{3}\biggr)-(a+b) \biggl(2{ \boldsymbol{P}}+\frac{c}{3} \biggr)\biggr](t-{\boldsymbol{S}})\\ &{}+c\biggl[b\biggl({ \boldsymbol{S}}+ \frac{1}{2}\biggr)+{\boldsymbol{S}}(a+b)-a \eth -\frac{b}{2} \biggr]t^{2}, \end{aligned} \\& \mathfrak{B}_{3}(t)={\boldsymbol{P}}\biggl(a\eth ^{2}+ \frac{b}{3}\biggr) (t-{\boldsymbol{S}})+{\boldsymbol{P}}\biggl({ \boldsymbol{S}}(a+b)-a\eth -\frac{b}{2}\biggr)t^{2}. \end{aligned}$$

Proof

With regard to Lemma 2.7 the solution of \(^{c}\mathcal{D}_{q}^{\pounds }l(t)=v(t)\) is

$$ l(t)=\mathcal{I}^{\pounds }_{q}v(t)+ \mathfrak{y}_{0} + \mathfrak{y}_{1} t + \mathfrak{y}_{2} t^{2} $$
(9)

such that \(\mathfrak{y}_{0}, \mathfrak{y}_{1} \text{and} \mathfrak{y}_{2} \in \mathbb{R}\). Now, by taking derivative from \(l(t)\), we have

$$ \textstyle\begin{cases} l'(t)=\mathfrak{y}_{1}+2\mathfrak{y}_{2} t+\mathcal{I}^{\pounds -1}_{q}v(t), \\ l''(t)=2\mathfrak{y}_{2}+ \mathcal{I}^{\pounds -2}_{q}v(t), \end{cases} $$
(10)

and by exerting the boundary conditions (2) to (10) we have

$$ \textstyle\begin{cases} \mathfrak{y}_{0}+{\boldsymbol{S}}\mathfrak{y}_{1}=0, \\ (a+b)\mathfrak{y}_{0}+(a\eth +\frac{b}{2})\mathfrak{y}_{1} +(a\eth ^{2}+ \frac{b}{3})\mathfrak{y}_{2}=-a\mathcal{I}^{\pounds }_{q}v(\eth )-b \mathcal{I}^{\pounds }_{q}[\mathfrak{I}^{\pounds }_{q}v(r)]_{ (1)}, \\ c\mathfrak{y}_{0}+\frac{c}{2}\mathfrak{y}_{1}+({\boldsymbol{P}}+\frac{c}{3})\mathfrak{y}_{2}=-{\boldsymbol{P}}\mathcal{I}^{\pounds -2}_{q}v(1)-c\mathcal{I}^{\pounds }_{q}[ \mathfrak{I}^{\pounds }_{q}v(r)]_{(1)}. \end{cases} $$

Now we can compute \(\mathfrak{y}_{0}\), \(\mathfrak{y}_{1}\), \(\mathfrak{y}_{2}\) as follows:

$$ \textstyle\begin{cases} \mathfrak{y}_{0}={\boldsymbol{S}}\theta [a(2{ \boldsymbol{P}}+\frac{c}{3})\mathcal{I}^{\pounds }_{q}v( \eth )- [c(a\eth ^{2}+\frac{b}{3}) \\ \hphantom{\mathfrak{y}_{0}=}{}-(a+b)(2{\boldsymbol{P}}+\frac{c}{3}) ]\mathcal{I}^{ \pounds }_{q}[\mathfrak{I}^{\pounds }_{q}v(r)]_{(1)}-{ \boldsymbol{P}}(a\eth ^{2}+\frac{b}{3})\mathcal{I}^{ \pounds -2}_{q}v(1) ], \\ \mathfrak{y}_{1}=\theta [ [c(a\eth ^{2}+\frac{b}{3})-(a+b)(2{ \boldsymbol{P}}+\frac{c}{3}) ]\mathcal{I}^{\pounds }_{q}[ \mathfrak{I}^{\pounds }_{q}v(r)]_{(1)} \\ \hphantom{\mathfrak{y}_{1}=}{}-a(2{\boldsymbol{P}}+\frac{c}{3})\mathcal{I}^{\pounds }_{q}v( \eth )+{\boldsymbol{P}}(a\eth ^{2}+\frac{b}{3})\mathcal{I}^{ \pounds -2}_{q}v(1) ], \\ \mathfrak{y}_{2}=\theta [ac(\frac{1}{2}-{\boldsymbol{S}})\mathcal{I}^{\pounds }_{q}v(\eth )+ [c (b({ \boldsymbol{S}}+\frac{1}{2})+{\boldsymbol{S}}(a+b)-a \eth -\frac{b}{2} ) ]\mathcal{I}^{\pounds }_{q}[\mathfrak{I}^{ \pounds }_{q}v(r)]_{(1)} \\ \hphantom{\mathfrak{y}_{2}=}{} +{\boldsymbol{P}}({\boldsymbol{S}}(a+b)-a \eth -\frac{b}{2})\mathcal{I}^{\pounds -2}_{q}v(1) ]. \end{cases} $$

Now, by replacing \(\mathfrak{y}_{0}\), \(\mathfrak{y}_{1}\), \(\mathfrak{y}_{2}\) in (9), we obtain (7). □

Notation 3.2

To continue the work and for ease of understanding of the calculations performed, we introduce some symbols here. According to the definition of \(\mathfrak{B}_{1}(t)\), \(\mathfrak{B}_{2}(t)\), \(\mathfrak{B}_{3}(t)\), we have

$$\begin{aligned}& \bigl\vert \mathfrak{B}_{1}(t) \bigr\vert \le \vert a \vert \biggl(2 \vert { \boldsymbol{P}} \vert +\frac{ \vert c \vert }{3} \biggr) \vert { \boldsymbol{S}}+1 \vert + \vert c \vert \biggl\vert \frac{1}{2}+ \biggr\vert {\boldsymbol{S}} \vert \vert := \mathfrak{B}^{*}_{1}, \\& \begin{aligned} \bigl\vert \mathfrak{B}_{2}(t) \bigr\vert \le{}& \vert c \vert \biggl( \vert a \vert \eth ^{2}+\frac{ \vert b \vert }{3} \biggr)+ \vert a+b \vert \biggl(2 \vert { \boldsymbol{P}} \vert + \frac{ \vert c \vert }{3} \biggr) \bigl(1+ \vert { \boldsymbol{S}} \vert \bigr)\\ &{}+ \vert c \vert \biggl( \vert b \vert \biggl( \vert {\boldsymbol{S}} \vert +\frac{1}{2}\biggr)+ \vert {\boldsymbol{S}} \vert \vert a+b \vert + \vert a \vert \eth + \frac{ \vert b \vert }{2} \biggr):= \mathfrak{B}^{*}_{2}, \end{aligned} \\& \bigl\vert \mathfrak{B}_{3}(t) \bigr\vert \le \vert { \boldsymbol{P}} \vert \biggl( \vert a \vert \eth ^{2}+ \frac{ \vert b \vert }{3} \biggr) \bigl(1+ \vert { \boldsymbol{S}} \vert \bigr)+ \vert {\boldsymbol{P}} \vert \biggl( \vert {\boldsymbol{S}} \vert \vert a+b \vert + \vert a \vert \eth +\frac{ \vert b \vert }{2} \biggr):= \mathfrak{B}^{*}_{3}; \end{aligned}$$

moreover

$$\begin{aligned}& \bigl\vert \mathfrak{B}'_{1}(t) \bigr\vert \le \vert a \vert \biggl(2 \vert { \boldsymbol{P}} \vert + \frac{ \vert c \vert }{3} \biggr)+ \vert a \vert \vert c \vert \biggl\vert \frac{1}{2}+ \biggr\vert {\boldsymbol{S}} \vert \vert := \mathfrak{B}^{*'}_{1}, \\& \begin{aligned} \bigl\vert \mathfrak{B}'_{2}(t) \bigr\vert \le{}& \vert c \vert \biggl( \vert a \vert \eth ^{2}+ \frac{ \vert b \vert }{3} \biggr)+ \vert a+b \vert \biggl(2 \vert { \boldsymbol{P}} \vert +\frac{ \vert c \vert }{3} \biggr)\\ &{}+2 \vert c \vert \biggl( \vert b \vert \biggl( \vert {\boldsymbol{S}} \vert + \frac{1}{2}\biggr)+ \vert {\boldsymbol{S}} \vert \vert a+b \vert + \vert a \vert \eth +\frac{ \vert b \vert }{2} \biggr):=\mathfrak{B}^{*'}_{2}, \end{aligned} \\& \bigl\vert \mathfrak{B}'_{3}(t) \bigr\vert \le \vert {\boldsymbol{P}} \vert \biggl( \vert a \vert \eth ^{2}+ \frac{ \vert b \vert }{3} \biggr)+2 \vert { \boldsymbol{P}} \vert \biggl( \vert {\boldsymbol{S}} \vert \vert a+b \vert + \vert a \vert \eth + \frac{ \vert b \vert }{2} \biggr):= \mathfrak{B}^{*'}_{3}, \end{aligned}$$

also

$$\begin{aligned}& \bigl\vert \mathfrak{B}''_{1}(t) \bigr\vert \le \vert a \vert \vert c \vert \biggl\vert \frac{1}{2}+ \biggr\vert {\boldsymbol{S}} \vert \vert := \mathfrak{B}^{*''}_{1}, \\& \bigl\vert \mathfrak{B}''_{2}(t) \bigr\vert \le 2 \vert c \vert \biggl( \vert b \vert \biggl( \vert { \boldsymbol{S}} \vert +\frac{1}{2}\biggr)+ \vert {\boldsymbol{S}} \vert \vert a+b \vert + \vert a \vert \eth + \frac{ \vert b \vert }{2} \biggr):=\mathfrak{B}^{*''}_{2}, \\& \bigl\vert \mathfrak{B}''_{3}(t) \bigr\vert \le 2 \vert {\boldsymbol{P}} \vert \biggl( \vert { \boldsymbol{S}} \vert \vert a+b \vert + \vert a \vert \eth + \frac{ \vert b \vert }{2} \biggr):=\mathfrak{B}^{*''}_{3}{ .} \end{aligned}$$

Now, by applying quantum Caputo fractional derivative from order \(\hslash _{i} \in (1,2]\), \(i=1, 2\) on \(\mathfrak{B}_{1}(t)\), \(\mathfrak{B}_{2}(t)\), \(\mathfrak{B}_{3}(t)\), we get

$$\begin{aligned}& ^{c}\mathcal{D}_{q}^{\hbar _{i}} \mathfrak{B}_{1}(t)=a\biggl(2{\boldsymbol{P}}+\frac{c}{3} \biggr) \biggl[- \frac{1}{\Gamma _{q}(2-\hslash _{i})}t^{(1-\hslash _{i})} \biggr]+ac\biggl( \frac{1}{2}-{\boldsymbol{S}}\biggr) \biggl[ \frac{2}{\Gamma _{q}(3-\hslash _{i})}t^{(2-\hslash _{i})} \biggr]{ ,} \\& \begin{aligned} ^{c}\mathcal{D}_{q}^{\hbar _{i}} \mathfrak{B}_{2}(t) ={}& \biggl(c\biggl(a\eth ^{2}+ \frac{b}{3}\biggr)-(a+b) \biggl(2{\boldsymbol{P}}+\frac{c}{3} \biggr) \biggr) \biggl[\frac{1}{\Gamma _{q}(2-\hslash _{i})}t^{(1-\hslash _{i})} \biggr] \\ &{}+ c \biggl(b\biggl({\boldsymbol{S}}+\frac{1}{2}\biggr)+{ \boldsymbol{S}}(a+b)-a\eth -\frac{b}{2} \biggr) \biggl[ \frac{2}{\Gamma _{q}(3-\hslash _{i})}t^{(2-\hslash _{i})} \biggr]{ ,} \end{aligned} \\& \begin{aligned} ^{c}\mathcal{D}_{q}^{\hbar _{i}} \mathfrak{B}_{3}(t)={}&{\boldsymbol{P}}\biggl(a\eth ^{2}+ \frac{b}{3}\biggr) \biggl[ \frac{1}{\Gamma _{q}(2-\hslash _{i})}t^{(1-\hslash _{i})} \biggr]\\ &{}+{ \boldsymbol{P}} \biggl({\boldsymbol{S}}(a+b)-a \eth - \frac{b}{2} \biggr) \biggl[\frac{2}{\Gamma _{q}(3-\hslash _{i})}t^{(2- \hslash _{i})} \biggr], \end{aligned} \end{aligned}$$

from which it can be concluded

$$\begin{aligned}& \bigl\vert ^{c}\mathcal{D}_{q}^{\hbar _{i}} \mathfrak{B}_{1}(t) \bigr\vert \le \vert a \vert \biggl(2 \vert {\boldsymbol{P}} \vert + \frac{ \vert c \vert }{3} \biggr) \biggl[ \frac{1}{\Gamma _{q}(2-\hslash _{i})} \biggr]+ \vert a \vert \vert c \vert \biggl\vert \frac{1}{2}+ \biggr\vert {\boldsymbol{S}} \vert \vert \biggl[ \frac{2}{\Gamma _{q}(3-\hslash _{i})} \biggr]:=\mathfrak{B}^{**}_{1}{ ,} \\& \begin{aligned} \bigl\vert ^{c} \mathcal{D}_{q}^{\hbar _{i}}\mathfrak{B}_{2}(t) \bigr\vert \le{}& \vert c \vert \biggl( \vert a \vert \eth ^{2}+ \frac{ \vert b \vert }{3} \biggr)+ \vert a+b \vert \biggl(2 \vert { \boldsymbol{P}} \vert + \frac{ \vert c \vert }{3} \biggr) \biggl[ \frac{1}{\Gamma _{q}(2-\hslash _{i})} \biggr] \\ &{}+ \vert c \vert \biggl( \vert b \vert \biggl( \vert { \boldsymbol{S}} \vert +\frac{1}{2}\biggr)+ \vert {\boldsymbol{S}} \vert \vert a+b \vert + \vert a \vert \eth +\frac{ \vert b \vert }{2} \biggr) \biggl[ \frac{2}{\Gamma _{q}(3-\hslash _{i})} \biggr]:=\mathfrak{B}^{**}_{2}{ ,} \end{aligned} \\& \begin{aligned} \bigl\vert ^{c}\mathcal{D}_{q}^{\hbar _{i}} \mathfrak{B}_{3}(t) \bigr\vert \le {}&\vert {\boldsymbol{P}} \vert \biggl( \vert a \vert \eth ^{2}+ \frac{ \vert b \vert }{3} \biggr) \biggl[ \frac{1}{\Gamma _{q}(2-\hslash _{i})} \biggr]\\ &{}+ \vert {\boldsymbol{P}} \vert \biggl( \vert {\boldsymbol{S}} \vert \vert a+b \vert + \vert a \vert \eth + \frac{ \vert b \vert }{2} \biggr) \biggl[ \frac{2}{\Gamma _{q}(3-\hslash _{i})} \biggr]:= \mathfrak{B}^{**}_{3}. \end{aligned} \end{aligned}$$

The following conditions must be met to prove our main theorem.

(\(\mathfrak{C}_{1}\)) Given the multivalued map \(\mathcal{F}:\mathfrak{J}\times \mathbb{R}^{5}\to \mathcal{P}_{cp}( \mathbb{R})\) is integrable bounded, so that \(\mathcal{F}(\cdot,v,u,x,y,z):[0. 1]\to \mathcal{P}_{cp}(\mathbb{R})\) is measurable.

(\(\mathfrak{C}_{2}\)) For the nondecreasing (usc) map \(\psi :[0,\infty )\to [0,\infty )\), we have \(\liminf_{w \to \infty }(w - \psi (w))>0\) and \(\psi (w) < w\) for any \(w>0\).

(\(\mathfrak{C}_{3}\)) There exists \(\mho \in C(\mathfrak{J},[0,\infty ))\) such that

$$ \begin{aligned} &\mathcal{H}_{\mathfrak{d}} \bigl(\mathcal{F}(t,u_{1},u_{2},u_{3},u_{4},u_{5}), \mathcal{F}(t,v_{1},v_{2},v_{3},v_{4},v_{5}) \bigr)\\ &\quad \le \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \mho (t)\psi \Biggl(\sum _{i=1}^{5} \vert u_{k}-v_{k} \vert \Biggr) \end{aligned} $$

for all \(t\in \mathfrak{J}\) and \(u_{k},v_{k} \in \mathbb{R}\), \(k=1, \dots ,5\), where

$$\begin{aligned}& \boldsymbol{\Im _{1}}= \Vert \mho \Vert \biggl[ \frac{1}{\Gamma _{q}(\pounds +1)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*}_{1}}{\Gamma _{q}(\pounds +1)} \eth ^{\pounds }+ \frac{ \vert \theta \vert \mathfrak{B}^{*}_{2}}{\Gamma _{q}(\pounds +2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*}_{3}}{\Gamma _{q}(\pounds -1)} \biggr], \\& \boldsymbol{\Im _{2}}= \Vert \mho \Vert \biggl[ \frac{1}{\Gamma _{q}(\pounds -1)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*'}_{1}}{\Gamma _{q}(\pounds +1)} \eth ^{\pounds }+ \frac{ \vert \theta \vert \mathfrak{B}^{*'}_{2}}{\Gamma _{q}(\pounds +2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*'}_{3}}{\Gamma _{q}(\pounds -1)} \biggr], \\& \boldsymbol{\Im _{3}}= \Vert \mho \Vert \biggl[ \frac{1}{\Gamma _{q}(\pounds -2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*''}_{1}}{\Gamma _{q}(\pounds +1)} \eth ^{\pounds }+ \frac{ \vert \theta \vert \mathfrak{B}^{*''}_{2}}{\Gamma _{q}(\pounds +2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*''}_{3}}{\Gamma _{q}(\pounds -1)} \biggr], \end{aligned}$$

and for \(i=1,2\),

$$ \boldsymbol{\Im _{4_{i}}}= \Vert \mho \Vert \biggl[ \frac{1}{\Gamma _{q}(\pounds -\hslash _{i}+1)}+ \frac{ \vert \theta \vert \mathfrak{B}^{**}_{1}}{\Gamma _{q}(\pounds +1)} \eth ^{\pounds }+ \frac{ \vert \theta \vert \mathfrak{B}^{**}_{2}}{\Gamma _{q}(\pounds +2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{**}_{3}}{\Gamma _{q}(\pounds -1)} \biggr]. $$

(\(\mathfrak{C}_{4}\)) Let \(\boldsymbol{\mathfrak{M}}:\mathcal{K}\to 2^{\mathcal{K}}\) be given as follows:

$$ \boldsymbol{\mathfrak{M}}(\boldsymbol{k})=\bigl\{ \mathfrak{p} \in \mathcal{K}: \boldsymbol{\exists } \mathfrak{f}\in \mathcal{S}^{*}_{ \mathcal{F},l} \mathfrak{p}(t)=\ell (t), \forall t \in \mathfrak{J} \bigr\} $$

such that

$$ \ell (t)=\mathcal{I}^{\pounds }_{q}\mathfrak{f}(t)+\theta \mathfrak{B}_{1}(t) \mathcal{I}^{\pounds }_{q} \mathfrak{f}(\eth )+\theta \mathfrak{B}_{2}(t) \mathcal{I}^{\pounds }_{q} \bigl[\mathfrak{I}^{\pounds }_{q}\mathfrak{f}(r)\bigr](1)+ \theta \mathfrak{B}_{3}(t)\mathcal{I}^{\pounds -2}_{q} \mathfrak{f}(1). $$

Theorem 3.3

Suppose that conditions (\(\mathfrak{C}_{1})-(\mathfrak{C}_{4}\)) are satisfied. If \(\boldsymbol{\mathfrak{M}}:\mathcal{K}\to 2^{\mathcal{K}}\) has the approximate endpoint property, then quantum problem (1)(2) has a solution.

Proof

We prove that the endpoint of \(\boldsymbol{\mathfrak{M}}:\mathcal{K}\to 2^{\mathcal{K}}\) is the solution to inclusion (1)–(2). For this, we first show that \(\boldsymbol{\mathfrak{M}}(\boldsymbol{k})\) is a closed subset of \(\mathcal{K}\) for all \(\boldsymbol{k} \in \mathcal{K}\).

For \(\forall \boldsymbol{k} \in \mathcal{K}\), the map \(t \mapsto \mathcal{F}(t,l(t),l'(t),l''(t),^{c}\mathcal{D}_{q}^{ \hbar _{1}}l(t),^{c}\mathcal{D}_{q}^{\hbar _{2}}l(t))\) is measurable and closed value. So, it has measurable selection, and hence \(\mathfrak{f}\in \mathcal{S}^{*}_{\mathcal{F},l}\ne \phi \) for all \(l \in \mathcal{K}\).

Let \(\boldsymbol{k} \in \mathcal{K}\), and \(\{\mathfrak{x}_{n} \}_{n\ge 1}\) be a sequence in \(\boldsymbol{\mathfrak{M}}( \boldsymbol{k})\) such that \(\mathfrak{x}_{n} \to \mathfrak{x}\). \(\forall n \in \mathbb{N}\), choose \(\mathfrak{f}_{n} \in \mathcal{S}^{*}_{\mathcal{F},l}\), where

$$ \mathfrak{x}_{n}=\mathcal{I}^{\pounds }_{q} \mathfrak{f}_{n}(t)+\theta \mathfrak{B}_{1}(t) \mathcal{I}^{\pounds }_{q}\mathfrak{f}_{n}(\eth )+ \theta \mathfrak{B}_{2}(t)\mathcal{I}^{\pounds }_{q} \bigl[\mathfrak{I}^{ \pounds }_{q}\mathfrak{f}_{n}(r) \bigr](1)+\theta \mathfrak{B}_{3}(t) \mathcal{I}^{\pounds -2}_{q} \mathfrak{f}_{n}(1){} $$

for all \(t\in \mathfrak{J}\).

As we know, \(\mathcal{F}\) has compact values, then the sequence \(\mathfrak{f}_{n}\) has a subsequence that converges to some \(\mathfrak{f} \in L^{1}[0,1]\). We show this again with \(\mathfrak{f}_{n}\).

It is easy to check that \(\mathfrak{f} \in \mathcal{S}^{*}_{\mathcal{F},l}\) and

$$ \mathfrak{x}_{n}(t) \to \mathfrak{x}(t)=\mathcal{I}^{\pounds }_{q} \mathfrak{f}(t)+\theta \mathfrak{B}_{1}(t)\mathcal{I}^{\pounds }_{q} \mathfrak{f}(\eth )+\theta \mathfrak{B}_{2}(t)\mathcal{I}^{\pounds }_{q} \bigl[ \mathfrak{I}^{\pounds }_{q}\mathfrak{f}(r)\bigr](1)+ \theta \mathfrak{B}_{3}(t) \mathcal{I}^{\pounds -2}_{q} \mathfrak{f}(1) $$

for all \(t\in \mathfrak{J}\). Indeed, this gives that \(\mathfrak{x} \in \boldsymbol{\mathfrak{M}}(\boldsymbol{k})\), therefore \(\mathcal{K}\) has closed values. Moreover, since \(\mathcal{F}\) has compact values, then \(\boldsymbol{\mathfrak{M}}(\boldsymbol{k})\) for all \(\boldsymbol{k} \in \mathcal{K}\) is a bounded set.

Finally, we shall show that \(\mathcal{H}_{\mathfrak{d}} (\boldsymbol{\mathfrak{M}}(u), \boldsymbol{\mathfrak{M}}(v) )\le \psi (\Vert u-v\Vert )\). Let \(u,v \in \mathcal{K}\) and \(\mathfrak{p}_{1} \in \boldsymbol{\mathfrak{M}}(v)\). Choose \(\mathfrak{f}_{1}\in \mathcal{S}^{*}_{\mathcal{F},l}\) such that

$$ \mathfrak{p}_{1}(t)=\mathcal{I}^{\pounds }_{q} \mathfrak{f}_{1}(t)+ \theta \mathfrak{B}_{1}(t) \mathcal{I}^{\pounds }_{q}\mathfrak{f}_{1}( \eth )+ \theta \mathfrak{B}_{2}(t)\mathcal{I}^{\pounds }_{q} \bigl[ \mathfrak{I}^{\pounds }_{q}\mathfrak{f}_{1}(r) \bigr](1)+\theta \mathfrak{B}_{3}(t) \mathcal{I}^{\pounds -2}_{q} \mathfrak{f}_{1}(1){} $$

for almost all \(t\in \mathfrak{J}\).

But since

$$\begin{aligned}& \mathcal{H}_{\mathfrak{d}} \bigl(\mathcal{F}(t,u_{1},u_{2},u_{3},u_{4},u_{5}), \mathcal{F}(t,v_{1},v_{2},v_{3},v_{4},v_{5}) \bigr)\\& \quad \le \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \mho (t)\psi \Biggl(\sum _{i=1}^{5} \vert u_{k}-v_{k} \vert \Biggr){ ,} \end{aligned}$$

thus \(\exists w \in \mathcal{F}(t,l(t),l'(t),l''(t),^{c}\mathcal{D}_{q}^{ \hbar _{1}}l(t),^{c}\mathcal{D}_{q}^{\hbar _{2}}l(t))\) such that \(\forall t\in \mathfrak{J}\):

$$ \bigl\vert \mathfrak{f}_{1}(t)-w \bigr\vert \le \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \mho (t)\psi \Biggl(\sum_{i=1}^{5} \vert u_{k}-v_{k} \vert \Biggr). $$

Regard the set-valued map \(\boldsymbol{\mathfrak{N}}:\mathfrak{J}\to \mathcal{P}(\mathbb{R})\) by

$$ \boldsymbol{\mathfrak{N}}(t)=\Biggl\{ w\in \mathbb{R}: \bigl\vert \mathfrak{f}_{1}(t)-w \bigr\vert \le \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \mho (t) \psi \Biggl(\sum_{i=1}^{5} \vert u_{k}-v_{k} \vert \Biggr)\Biggr\} . $$

Since \(\frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \mho (t)\psi (\sum_{i=1}^{5}\vert u_{k}-v_{k}\vert )\) and \(\mathfrak{f}_{1}\) are measurable, hence the set-valued map \(\boldsymbol{\mathfrak{N}}(\cdot)\cap \mathcal{F}(\cdot,l(\cdot),l'(\cdot),l''(\cdot),^{c} \mathcal{D}_{q}^{\hbar _{1}}l(\cdot),^{c}\mathcal{D}_{q}^{\hbar _{2}}l(\cdot))\) is measurable.

Choose \(\mathfrak{f}_{2}(t) \in \mathcal{F}(t,l(t),l'(t),l''(t),^{c} \mathcal{D}_{q}^{\hbar _{1}}l(t),^{c}\mathcal{D}_{q}^{\hbar _{2}}l(t))\) such that \(\forall t\in \mathfrak{J}\)

$$ \bigl\vert \mathfrak{f}_{1}(t)-\mathfrak{f}_{2}(t) \bigr\vert \le \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \mho (t)\psi \Biggl(\sum _{i=1}^{5} \vert u_{k}-v_{k} \vert \Biggr). $$

Now, for all \(t\in \mathfrak{J}\), let \(\mathfrak{p}_{2}\in \boldsymbol{\mathfrak{M}}(\boldsymbol{k})\) by

$$ \mathfrak{p}_{2}=\mathcal{I}^{\pounds }_{q} \mathfrak{f}_{2}(t)+\theta \mathfrak{B}_{1}(t) \mathcal{I}^{\pounds }_{q}\mathfrak{f}_{2}(\eth )+ \theta \mathfrak{B}_{2}(t)\mathcal{I}^{\pounds }_{q} \bigl[\mathfrak{I}^{ \pounds }_{q}\mathfrak{f}_{2}(r) \bigr](1)+\theta \mathfrak{B}_{3}(t) \mathcal{I}^{\pounds -2}_{q} \mathfrak{f}_{2}(1). $$

Afterwards, let \(\sup_{t \in \mathfrak{J}}\vert \mho (t)\vert =\Vert \mho \Vert \), so

$$\begin{aligned} \bigl\vert \mathfrak{p}_{1}(t)-\mathfrak{p}_{2}(t) \bigr\vert \le{} & \mathcal{I}^{ \pounds }_{q}[ \mathfrak{f}_{1}-\mathfrak{f}_{2}](t)+\theta \mathfrak{B}_{1}(t)\mathcal{I}^{\pounds }_{q}[ \mathfrak{f}_{1}- \mathfrak{f}_{2}](\eth ) \\ &{}+\theta \mathfrak{B}_{2}(t)\mathcal{I}^{\pounds }_{q} \bigl[\mathfrak{I}^{ \pounds }_{q}[\mathfrak{f}_{1}- \mathfrak{f}_{2}](r)\bigr](1) + \theta \mathfrak{B}_{3}(t) \mathcal{I}^{\pounds -2}_{q}[\mathfrak{f}_{1}- \mathfrak{f}_{2}](1) \\ \le{}& \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \Vert \mho \Vert \psi \bigl( \Vert u-v \Vert \bigr) \biggl[ \frac{1}{\Gamma _{q}(\pounds +1)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*}_{1}}{\Gamma _{q}(\pounds +1)} \eth ^{\pounds } \\ &{}+ \frac{ \vert \theta \vert \mathfrak{B}^{*}_{2}}{\Gamma _{q}(\pounds +2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*}_{3}}{\Gamma _{q}(\pounds -1)} \biggr]= \frac{\boldsymbol{\Im _{1}}}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \psi \bigl( \Vert u-v \Vert \bigr). \end{aligned}$$

Also,

$$\begin{aligned} \bigl\vert \mathfrak{p'}_{1}(t)- \mathfrak{p'}_{2}(t) \bigr\vert \le{}& \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \Vert \mho \Vert \psi \bigl( \Vert u-v \Vert \bigr) \biggl[ \frac{1}{\Gamma _{q}(\pounds -1)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*'}_{1}}{\Gamma _{q}(\pounds +1)} \eth ^{\pounds } \\ &{}+ \frac{ \vert \theta \vert \mathfrak{B}^{*'}_{2}}{\Gamma _{q}(\pounds +2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*'}_{3}}{\Gamma _{q}(\pounds -1)} \biggr]= \frac{\boldsymbol{\Im _{2}}}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \psi \bigl( \Vert u-v \Vert \bigr), \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \bigl\vert \mathfrak{p''}_{1}(t)- \mathfrak{p''}_{2}(t) \bigr\vert \le{}& \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \Vert \mho \Vert \psi \bigl( \Vert u-v \Vert \bigr) \biggl[ \frac{1}{\Gamma _{q}(\pounds -2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*''}_{1}}{\Gamma _{q}(\pounds +1)} \eth ^{\pounds } \\ &{}+ \frac{ \vert \theta \vert \mathfrak{B}^{*''}_{2}}{\Gamma _{q}(\pounds +2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{*''}_{3}}{\Gamma _{q}(\pounds -1)} \biggr]= \frac{\boldsymbol{\Im _{3}}}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \psi \bigl( \Vert u-v \Vert \bigr){.} \end{aligned} \end{aligned}$$

Moreover, for \(i=1,2\), we have

$$\begin{aligned} &\bigl\vert ^{c}\mathcal{D}_{q}^{\hbar _{i}} \mathfrak{f}_{1}(t)-^{c} \mathcal{D}_{q}^{\hbar _{i}} \mathfrak{f}_{2}(t) \bigr\vert \\ &\quad \le \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \Vert \mho \Vert \psi \bigl( \Vert u-v \Vert \bigr) \biggl[ \frac{1}{\Gamma _{q}(\pounds -\hslash _{i}+1)}+ \frac{ \vert \theta \vert \mathfrak{B}^{**}_{1}}{\Gamma _{q}(\pounds +1)} \eth ^{\pounds } \\ &\qquad {}+ \frac{ \vert \theta \vert \mathfrak{B}^{**}_{2}}{\Gamma _{q}(\pounds +2)}+ \frac{ \vert \theta \vert \mathfrak{B}^{**}_{3}}{\Gamma _{q}(\pounds -1)} \biggr]= \frac{\boldsymbol{\Im _{4_{i}}}}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \psi \bigl( \Vert u-v \Vert \bigr). \end{aligned}$$

Finally, according to the above relations, it can be concluded that

$$\begin{aligned} \Vert \mathfrak{p}_{1}-\mathfrak{p}_{2} \Vert ={}& \sup_{t \in \mathfrak{J}} \bigl\vert \mathfrak{p}_{1}(t)- \mathfrak{p}_{2}(t) \bigr\vert + \sup_{t \in \mathfrak{J}} \bigl\vert \mathfrak{p'}_{1}(t)-\mathfrak{p'}_{2}(t) \bigr\vert +\sup_{t \in \mathfrak{J}} \bigl\vert \mathfrak{p''}_{1}(t)- \mathfrak{p''}_{2}(t) \bigr\vert \\ &{}+ \sup_{t \in \mathfrak{J}} \bigl\vert ^{c} \mathcal{D}_{q}^{\hbar _{1}} \mathfrak{f}_{1}(t)-^{c} \mathcal{D}_{q}^{\hbar _{1}}\mathfrak{f}_{2}(t) \bigr\vert +\sup_{t \in \mathfrak{J}} \bigl\vert ^{c} \mathcal{D}_{q}^{\hbar _{2}} \mathfrak{f}_{1}(t)-^{c} \mathcal{D}_{q}^{\hbar _{2}}\mathfrak{f}_{2}(t) \bigr\vert \\ \le{}& \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+\boldsymbol{\Im _{4_{2}}}} \psi \bigl( \Vert u-v \Vert \bigr) (\boldsymbol{ \Im _{1}}+\boldsymbol{\Im _{2}}+ \boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4_{1}}}+ \boldsymbol{\Im _{4_{2}}})\\ ={}&\psi \bigl( \Vert u-v \Vert \bigr), \end{aligned}$$

so \(\mathcal{H}_{\mathfrak{d}} (\boldsymbol{\mathfrak{M}}(u), \boldsymbol{\mathfrak{M}}(v) )\le \psi (\Vert u-v\Vert )\) for all \(u,v \in \mathcal{K}\).

Using Lemma 2.13 and the endpoint property of \(\boldsymbol{\mathfrak{M}}\), there exists \(u^{*} \in \mathcal{K}\) such that \(\boldsymbol{\mathfrak{M}}(u^{*})=\{u^{*}\}\). Thereupon, \(u^{*}\) is a solution for quantum inclusion problem (1)–(2). □

Illustrative examples

To better understand our main result, we give an example in this section.

Example 4.1

Consider the nonlinear second order differential equation:

$$ \textstyle\begin{cases} ^{c}\mathcal{D}_{q}^{\frac{5}{2}}l(t) \in \mathcal{F} [0, \frac{3t^{2}}{50(1+t^{2})}\sin l(t)+\frac{3}{50}\cos l'(t)+ \frac{3}{50}\frac{ \vert l''(t) \vert }{1+ \vert l''(t) \vert }+ \frac{3}{50} \frac{e^{ \vert ^{c}\mathcal{D}_{q}^{\frac{3}{2}}l(t) \vert }}{1+e^{ \vert ^{c}\mathcal{D}_{q}^{\frac{3}{2}}l(t) \vert }} ], \\ l(0)+2l'(0)=0, \\ \frac{11}{100}l(\frac{3}{50})+\frac{22}{100}\int _{0}^{1}l(t)\,dt =0, \\ \frac{1}{16}l''(1)+\frac{33}{100}\int _{0}^{1}l(t)\,dt =0, \end{cases} $$
(11)

such that \(t\in \mathfrak{J}=[0,1]\). Regard the multifunction \(\mathcal{F}:\mathfrak{J}\times \mathbb{R}^{4}\to \mathcal{P}_{cp}( \mathbb{R})\) as follows:

$$\begin{aligned}& \mathcal{F}(t,u_{1},u_{2},u_{3},u_{4})\\& \quad = \biggl[0, \frac{3t^{2}}{50(1+t^{2})}\sin u_{1}(t)+\frac{3}{50} \cos u_{2}(t)+ \frac{3}{50}\frac{ \vert u_{3}(t) \vert }{1+ \vert u_{3}(t) \vert }+ \frac{3}{50} \frac{e^{ \vert u_{4}(t) \vert }}{1+e^{ \vert u_{4}(t) \vert }} \biggr]. \end{aligned}$$

In this case it is clear that we set: \(\pounds =\frac{5}{2}\), \(\hslash _{1}=\frac{3}{2}\), \(a=\frac{11}{100}\), \(b=\frac{22}{100}\), \(c=\frac{33}{100}\), \(\eth =\frac{3}{50}\), \({\boldsymbol{S}}=\sum_{j=0}^{4}u_{j}=2\) by \(u_{j}=\frac{1}{2}\), \({\boldsymbol{P}}=\prod_{j=0}^{j=k}w_{j}=\frac{1}{16}\) by \(w_{j}=\frac{1}{2}\), and about functions , ψ, we have \(\mho :[0,1]\to [0,\infty )\) with \(\mho (t)=\frac{5}{70}t\), \(\Vert \mho \Vert =\frac{5}{70}\), and \(\psi (t)=\frac{t}{8}\). It is obvious that ψ is nondecreasing (usc) on \(\mathfrak{J}\). Hence, we have

$$\begin{aligned} \theta ={}& \biggl[\biggl(2{\boldsymbol{P}}+\frac{c}{3}\biggr) \biggl(a \eth + \frac{b}{2}-{\boldsymbol{S}}(a+b) \biggr)-c\biggl(a\eth ^{2}+ \frac{b}{3}\biggr) \biggl(\frac{1}{2}-{ \boldsymbol{S}}\biggr) \biggr]^{-1} \\ ={}& \biggl[\biggl(2\frac{1}{16}+\frac{11}{100}\biggr) \biggl( \frac{11}{100}\frac{3}{50}+ \frac{11}{100}-2\biggl( \frac{11}{100}+\frac{22}{100}\biggr) \biggr)\\ &{}-\frac{33}{100} \biggl( \frac{11}{100}\biggl(\frac{3}{50}\biggr)^{2}+ \frac{22}{300}\biggr) \biggl(\frac{1}{2}-2\biggr) \biggr]^{-1} \\ ={}& 4.21. \end{aligned}$$

In the same way, we can write

$$\begin{aligned} \mathfrak{B}^{*}_{1} &= \vert a \vert \biggl(2 \vert {\boldsymbol{P}} \vert +\frac{ \vert c \vert }{3} \biggr) \vert { \boldsymbol{S}}+1 \vert + \vert c \vert \biggl\vert \frac{1}{2}+ \vert { \boldsymbol{S}} \vert \biggr\vert \\ &= \frac{11}{100} \biggl(2\frac{1}{16}+\frac{11}{100} \biggr) (3)+ \frac{33}{100}\frac{5}{2}=0.9025. \end{aligned}$$

Also,

$$ \textstyle\begin{cases} \mathfrak{B}^{*}_{1}=0.9025,\qquad \mathfrak{B}^{*}_{2}=0.6947,\qquad \mathfrak{B}^{*}_{3}=0.0623, \\ \mathfrak{B}^{*'}_{1}=0.0968,\qquad \mathfrak{B}^{*'}_{2}=0.9774,\qquad \mathfrak{B}^{*'}_{3}=0.1016, \\ \mathfrak{B}^{*''}_{1}=0.9075, \qquad \mathfrak{B}^{*''}_{2}=0.8755,\qquad \mathfrak{B}^{*''}_{3}=0.0970. \end{cases} $$

By using Algorithm 1 and Table 1 for \(q=\frac{1}{5}\), we have

$$ \textstyle\begin{cases} \mathfrak{B}^{**}_{1}=0.0060 [\frac{1}{\Gamma _{q}(\frac{1}{2})} ]+0.1815 [\frac{1}{\Gamma _{q}(\frac{3}{2})} ]=0.2828, \\ \mathfrak{B}^{**}_{2}=0.1018 [\frac{1}{\Gamma _{q}(\frac{1}{2})} ]+0.8755 [\frac{1}{\Gamma _{q}(\frac{3}{2})} ]=0.7830, \\ \mathfrak{B}^{**}_{3}=0.0046 [\frac{1}{\Gamma _{q}(\frac{1}{2})} ]+0.0970 [\frac{1}{\Gamma _{q}(\frac{3}{2})} ]=0.0918. \end{cases} $$

In the same way, one can compute for \(q=\frac{1}{5}\) and get \(\boldsymbol{\Im _{1}}=0.1957\), \(\boldsymbol{\Im _{2}}=0.2678\), \(\boldsymbol{\Im _{3}}=0.2643\), \(\boldsymbol{\Im _{4}}=0.2377\). Then it is easy to review that

$$ \mathcal{H}_{\mathfrak{d}} \bigl(\mathcal{F}(t,u_{1},u_{2},u_{3},u_{4}), \mathcal{F}(t,v_{1},v_{2},v_{3},v_{4}) \bigr)\le \frac{1}{\boldsymbol{\Im _{1}}+\boldsymbol{\Im _{2}}+\boldsymbol{\Im _{3}}+\boldsymbol{\Im _{4}}} \mho (t)\psi \Biggl(\sum _{i=1}^{4} \vert u_{k}-v_{k} \vert \Biggr){ ,} $$

and \(\inf_{u\in \mathcal{K}} (\sup_{v \in \mathfrak{M}(u)}\Vert u-v \Vert )=0\). Hence, by the endpoint property and using Theorem 3.3, inclusion problem (11) has a solution. In Figs. 3 and 4 some of the functions in Example 4.1 are illustrated.

Figure 3
figure3

The graph of \(\mathcal{F}(t,l(t))\)

Figure 4
figure4

The graph of \(\mathcal{F}(l'(t),l''(t))\)

Conclusion

Understanding and interpreting physical phenomena have always been one of the topics of interest to researchers. Attempts to provide a better explanation of these phenomena have led to progress in various scientific fields and the connection between them. Quantum calculus, as an interdisciplinary subject in mathematics and physics, is one of the tools of modeling and approximation. In this paper, we investigated a quantum differential inclusion problem using the endpoint property technique with the new boundary conditions. One illustrative example and some numerical results have been provided to validate our results and to show their importance.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. 1.

    Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469

    Article  Google Scholar 

  2. 2.

    Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70

    MathSciNet  Article  Google Scholar 

  3. 3.

    Rezapour, S., Azzaoui, B., Tellab, B., Etemad, S., Masiha, H.P.: An analysis on the positivesSolutions for a fractional configuration of the Caputo multiterm semilinear differential equation. J. Funct. Spaces 2021, Article ID 6022941 (2021). https://doi.org/10.1155/2021/6022941

    Article  MATH  Google Scholar 

  4. 4.

    Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A.., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9

    MathSciNet  Article  Google Scholar 

  5. 5.

    Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 59(5), 3019–3027 (2020). https://doi.org/10.1016/j.aej.2020.04.053

    Article  Google Scholar 

  6. 6.

    Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705

    MathSciNet  Article  Google Scholar 

  7. 7.

    Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of \(cd4^{+}\) T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w

    MathSciNet  Article  Google Scholar 

  8. 8.

    Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for Covid-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 140, 110107 (2020). https://doi.org/10.1016/j.chaos.2020.110107

    MathSciNet  Article  Google Scholar 

  9. 9.

    Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668

    MathSciNet  Article  Google Scholar 

  10. 10.

    Nieto, J.J., Pimentel, J.: Positive solutions of a fractional thermostat model. Bound. Value Probl. 2013, 5 (2013). https://doi.org/10.1186/1687-2770-2013-5

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0

    MathSciNet  Article  Google Scholar 

  12. 12.

    Garai, H., Dey, L.K., Chanda, A.: Positive solutions to a fractional thermostat model in Banach spaces via fixed point results. J. Fixed Point Theory Appl. 20, 106 (2018). https://doi.org/10.1007/s11784-018-0584-8

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Sabetghadam, F., Masiha, H.P.: Fixed-point results for multi-valued operators in quasi-ordered metric spaces. Appl. Math. Lett. 25(11), 1856–1861 (2012). https://doi.org/10.1016/j.aml.2012.02.046

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Sabetghadam, F., Masiha, H.P., Altun, I.: Fixed-point theorems for integral-type contractions on partial metric spaces. Ukr. Math. J. 68, 940–949 (2016). https://doi.org/10.1007/s11253-016-1267-5

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Masiha, H.P., Sabetghadam, F., Shahzad, N.: Fixed point theorems in partial metric spaces with an application. Filomat 27(4), 617–624 (2013)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Afshari, H., Shojaat, H., Moradi, M.S.: Existence of the positive solutions for a tripled system of fractional differential equations via integral boundary conditions. Results Nonlinear Anal. 4(3), 186–193 (2021). https://doi.org/10.53006/rna.938851

    Article  Google Scholar 

  17. 17.

    Sahlan, M.N., Afshari, H.: Three new approaches for solving a class of strongly nonlinear two-point boundary value problems. Bound. Value Probl. 2021, 60 (2021). https://doi.org/10.1186/s13661-021-01536-3

    MathSciNet  Article  Google Scholar 

  18. 18.

    Afshari, H., Gholamyan, H., Zhai, C.B.: New applications of concave operators to existence and uniqueness of solutions for fractional differential equations. Math. Commun. 25(1), 157–169 (2020)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2021, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Hazarika, B., Karapinar, E., Arab, R., Rabbani, M.: Metric-like spaces to prove existence of solution for nonlinear quadratic integral equation and numerical method to solve it. J. Comput. Appl. Math. 328, 302–313 (2018). https://doi.org/10.1016/j.cam.2017.07.012

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Karapinar, E., Panda, S.K., Lateef, D.: A new approach to the solution of Fredholm integral equation via fixed point on extended b-metric spaces. Symmetry 10(10), 512 (2018). https://doi.org/10.3390/sym10100512

    Article  Google Scholar 

  22. 22.

    Karapinar, E., Atangana, A., Fulga, A.: Pata type contractions involving rational expressions with an application to integral equations. Discrete Contin. Dyn. Syst. 14(10), 3629–3640 (2021). https://doi.org/10.3934/dcdss.2020420

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652

    Article  MATH  Google Scholar 

  24. 24.

    Agarwal, R.P., Aksoy, U., Karapinar, E., Erhan, I.M.: F-contraction mappings on metric-like spaces in connection with integral equations on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 147 (2020). https://doi.org/10.1007/s13398-020-00877-5

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Aksoy, U., Karapinar, E., Erhan, I.M.: Fixed point theorems in complete modular metric spaces and an application to anti-periodic boundary value problems. Filomat 31(17), 5475–5488 (2017). https://doi.org/10.2298/FIL1717475A

    MathSciNet  Article  Google Scholar 

  26. 26.

    Aksoy, U., Karapinar, E., Erhan, I.M.: Fixed points of generalized α-admissible contractions on b-metric spaces with an application to boundary value problems. J. Nonlinear Convex Anal. 17(6), 1095–1108 (2016)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Panda, S.K., Karapinar, E., Atangana, A.: A numerical schemes and comparisons for fixed point results with applications to solutions of Volterra integral equations in dislocated extended b-metric space. Alex. Eng. J. 59(2), 815–827 (2020). https://doi.org/10.1016/j.aej.2020.02.007

    Article  Google Scholar 

  28. 28.

    Jackson, F.H.: q-difference equations. Am. J. Math. 32, 305–314 (1910). https://doi.org/10.2307/2370183

    Article  MATH  Google Scholar 

  29. 29.

    Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  30. 30.

    Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)

    Google Scholar 

  31. 31.

    Alqahtani, B., Aydi, H., Karapinar, E., Rakocevic, V.: A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 7(8), 694 (2019). https://doi.org/10.3390/math7080694

    Article  Google Scholar 

  32. 32.

    Bachir, F.S., Abbas, S., Benbachir, M., Benchohra, M.: Hilfer–Hadamard fractional differential equations; existence and attractivity. Adv. Theory Nonlinear Anal. Appl. 5, 49–57 (2021)

    MATH  Google Scholar 

  33. 33.

    Baitiche, Z., Derbazi, C., Benchohra, M.: ψ-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory. Results Nonlinear Anal. 3, 167–178 (2020)

    Google Scholar 

  34. 34.

    Baleanu, D., Rezapour, S., Saberpour, S.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0

    MathSciNet  Article  Google Scholar 

  35. 35.

    Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math7050444

    Article  Google Scholar 

  36. 36.

    Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Switzerland (2015). https://doi.org/10.1007/978-3-319-25562-0

    Book  MATH  Google Scholar 

  37. 37.

    Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59(107)(2), 119–134 (2016)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Samei, M.E., Rezapour, S.: On a system of fractional q-differential inclusions via sum of two multi-term functions on a time scale. Bound. Value Probl. 2020, 135 (2020). https://doi.org/10.1186/s13661-020-01433-1

    MathSciNet  Article  Google Scholar 

  39. 39.

    Abdeljawad, T., Baleanu, D.: Caputo q-fractional initial value problems and a q-analogue Mittag–Leffler function. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4682–4688 (2011). https://doi.org/10.1016/j.cnsns.2011.01.026

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Li, Y., Liu, J., O’Regan, D., Xu, J.: Nontrivial solutions for a system of fractional q-difference equations involving q-integral boundary conditions. Mathematics 8(5), 828 (2020). https://doi.org/10.3390/math8050828

    Article  Google Scholar 

  41. 41.

    Asawasamrit, S., Tariboon, J., Ntouyas, S.K.: Existence of solutions for fractional q-integro-difference equations with nonlocal fractional q-integral conditions. Abstr. Appl. Anal. 2014, Article ID 474138 (2014). https://doi.org/10.1155/2014/474138

    Article  MATH  Google Scholar 

  42. 42.

    Etemad, S., Ntouyas, S.K., Ahmad, B.: Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders. Mathematics 7(8), 659 (2016). https://doi.org/10.3390/math7080659

    Article  Google Scholar 

  43. 43.

    Sitthiwirattham, T.: On nonlocal fractional q-integral boundary value problems of fractional q-difference and fractional q-integro-difference equations involving different numbers of order and q. Bound. Value Probl. 2016, 12 (2016). https://doi.org/10.1186/s13661-016-0522-x

    Article  MATH  Google Scholar 

  44. 44.

    Sitho, S., Sudprasert, C., Ntouyas, S.K., Tariboon, J.: Noninstantaneous impulsive fractional quantum Hahn integro-difference boundary value problems. Mathematics 8(5), 671 (2020). https://doi.org/10.3390/math8050671

    Article  Google Scholar 

  45. 45.

    Zhao, Y., Chen, H., Zhang, Q.: Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions. Adv. Differ. Equ. 2013, 48 (2013). https://doi.org/10.1186/1687-1847-2013-48

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3

    MathSciNet  Article  Google Scholar 

  47. 47.

    Al-Salam, W.A.: q-analogues of Cauchy’s formula. Proc. Am. Math. Soc. 17(3), 182–184 (1952). https://doi.org/10.2307/2035378

    MathSciNet  Article  Google Scholar 

  48. 48.

    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  49. 49.

    Aubin, J., Cellna, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)

    Book  Google Scholar 

  50. 50.

    Ghorbanian, R., Hedayati, V., Postolache, M., Rezapour, S.: On a fractional differential inclusion via a new integral boundary condition. J. Inequal. Appl. 2014, Article ID 319 (2014). https://doi.org/10.1186/1029-242X-2014-319

    MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    Rezapour, S., Hedayati, V.: On a Caputo fractional differential inclusion with integral boundary condition for convex-compact and nonconvex-compact valued multifunctions. Kragujev. J. Math. 41(1), 143–158 (2017)

    Article  Google Scholar 

  52. 52.

    Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26, 283–312 (1924). https://doi.org/10.2307/1989141

    MathSciNet  Article  MATH  Google Scholar 

  54. 54.

    Graef, J.R., Kong, L.: Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 218(19), 9682–9689 (2012). https://doi.org/10.1016/j.amc.2012.03.006

    MathSciNet  Article  MATH  Google Scholar 

  55. 55.

    El-Shahed, M., Al-Askar, F.: Positive solutions for boundary value problem of nonlinear fractional q-difference equation. Int. Sch. Res. Not. 2011, 385459 (2011). https://doi.org/10.5402/2011/385459

    MathSciNet  Article  MATH  Google Scholar 

  56. 56.

    Amini-Harandi, A.: Endpoints of set-valued contractions in metric spaces. Nonlinear Anal., Theory Methods Appl. 72(1), 132–134 (2010). https://doi.org/10.1016/j.na.2009.06.074

    MathSciNet  Article  MATH  Google Scholar 

  57. 57.

    Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  58. 58.

    Covitz, H., Nadler, S.B.: Multivalued contraction mappings in generalized metric spaces. Isr. J. Math. 8, 5–11 (1970). https://doi.org/10.1007/BF02771543

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by Islamic Azad University, Mehran Branch. The second author would like to thank Bu-Ali Sina University. The third and fourth authors were supported by Azarbaijan Shahid Madani University. The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Esmael Samei or Shahram Rezapour.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shabibi, M., Samei, M.E., Ghaderi, M. et al. Some analytical and numerical results for a fractional q-differential inclusion problem with double integral boundary conditions. Adv Differ Equ 2021, 466 (2021). https://doi.org/10.1186/s13662-021-03623-2

Download citation

MSC

  • 34A08
  • 34A12

Keywords

  • q-differential inclusion problem
  • Fixed point
  • Numerical results
  • The Caputo derivative