Skip to main content

On the existence of mild solutions for nonlocal differential equations of the second order with conformable fractional derivative

Abstract

In the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019), the authors have used the Krasnoselskii fixed point theorem for showing the existence of mild solutions of an abstract class of conformable fractional differential equations of the form: \(\frac{d^{\alpha }}{dt^{\alpha }}[\frac{d^{\alpha }x(t)}{dt^{\alpha }}]=Ax(t)+f(t,x(t))\), \(t\in [0,\tau ]\) subject to the nonlocal conditions \(x(0)=x_{0}+g(x)\) and \(\frac{d^{\alpha }x(0)}{dt^{\alpha }}=x_{1}+h(x)\), where \(\frac{d^{\alpha }(\cdot)}{dt^{\alpha }}\) is the conformable fractional derivative of order \(\alpha \in\, ]0,1]\) and A is the infinitesimal generator of a cosine family \((\{C(t),S(t)\})_{t\in \mathbb{R}}\) on a Banach space X. The elements \(x_{0}\) and \(x_{1}\) are two fixed vectors in X, and f, g, h are given functions. The present paper is a continuation of the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019) in order to use the Darbo–Sadovskii fixed point theorem for proving the same existence result given in (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019) [Theorem 3.1] without assuming the compactness of the family \((S(t))_{t>0}\) and any Lipschitz conditions on the functions g and h.

Introduction

Classical derivatives appear in several mathematical models in various areas of science such as physics, engineering, biology, finance, and so on. However, there are many phenomena that may not depend only on the time moment but also on the former time history, which cannot be modeled utilizing the classical derivatives. For this reason, many authors try to replace the classical derivatives with the so-called fractional derivatives in numerous contributions [217], because it has been proven that this last kind of derivatives is a very good way to describe processes with memory. According to the literature of fractional calculus, it is remarkable that there are many approaches to defining fractional derivatives, and each definition has advantages compared to others [1822]. In consequence, many researchers have paid attention to propose new fractional derivatives in order to deal better with modeling of evolutionary phenomena [23, 24]. In the work [23], the authors proposed the so-called fractional conformable derivative, which quickly became the subject of many research papers [1, 2554]. For example, in [1] the authors proved the existence of mild solutions for the following nonlocal conformable fractional Cauchy problem:

$$ \textstyle\begin{cases} \frac{d^{\alpha }}{dt^{\alpha }}[\frac{d^{\alpha }x(t)}{dt^{\alpha }}]=Ax(t)+f(t,x(t)),\quad t\in [0,\tau ], \\ x(0)=x_{0}+g(x), \\ \frac{d^{\alpha }x(0)}{dt^{\alpha }}=x_{1}+h(x), \end{cases} $$
(1.1)

which is a natural extension of the works [55, 56] in the frame of the conformable fractional derivative, where A is the infinitesimal generator of a cosine family \(\{C(t),S(t)\}_{t\in \mathbb{R}}\) on a Banach space \((X,\|\cdot\| )\) and \(\frac{d^{\alpha }(\cdot)}{dt^{\alpha }}\) presents the conformable fractional derivative of order \(\alpha \in\, ]0,1]\). The elements \(x_{0}\) and \(x_{1}\) are two fixed vectors in X, and \(f:[0,\tau ]\times X\longrightarrow X\), \(g:\mathcal{C}\longrightarrow X\), \(h:\mathcal{C}\longrightarrow X\) are given functions, where \((\mathcal{C},|\cdot| _{c})\) is the space of continuous functions from \([0,\tau ]\) into X with \(|\cdot| _{c}\) being the uniform norm topology in \(\mathcal{C}\). The expressions \(x(0)=x_{0}+g(x)\) and \(\frac{d^{\alpha }x(0)}{dt^{\alpha }}=x_{1}+h(x)\) mean the nonlocal conditions, which can be applied in physics with better effects than the classical initial conditions [5759]. We note that the existence result given in [1, Theorem 3.1] for Cauchy problem (1.1) has been proved by using the Krasnoselskii fixed point theorem, under the following assumptions:

\((A_{1})\):

There exists a constant \(L_{1}\) such that \(\| g(y)- g(x)\| \leq L_{1}| y-x| _{c}\) for all \(y, x\in \mathcal{C}\).

\((A_{2})\):

There exists a constant \(L_{2}\) such that \(\| h(y)- h(x)\| \leq L_{2}| y-x| _{c}\) for all \(y, x\in \mathcal{C}\).

\((A_{3})\):

The family \((S(t))_{t\in \mathbb{R}}\) is compact for all \(t>0\).

However, there are many concrete applications in which the above assumptions are difficult to realize. Indeed, for \(X=L^{2}(\Omega , \mathbb{R})\) with Ω is a bounded domain in \(\mathbb{R}^{n}\) (\(n\geq 1\)), many authors [6062] have considered the following nonlocal condition:

$$ g(x)= \int _{\Omega } \int _{0}^{T}K\bigl(t,\cdot ,\sigma ,x(t)(\sigma) \bigr)\,dt\,d\sigma , $$
(1.2)

which does not satisfy Lipschitz condition \((A_{1})\), where K is a kernel with the following conditions:

\((C_{1})\):

\(K(t,\xi ,\sigma ,\cdot)\) is a continuous function for almost every \((t,\xi ,\sigma )\in [0,T]\times \Omega \times \Omega \).

\((C_{2})\):

\(K(\cdot,\cdot ,\cdot ,r)\) is a measurable function for each fixed \(r\in \mathbb{R}\).

\((C_{3})\):

\(| K(t,\xi _{1},\sigma ,r)-K(t,\xi _{2},\sigma ,r)|\leq m_{k}(t,\xi _{1}, \xi _{2},\sigma )\) for all \((t,\xi _{1},\sigma ,r), (t,\xi _{2},\sigma ,r) \in [0,T]\times \Omega \times \Omega \times \mathbb{R}\) with \(|r|\leq k\), where \(m_{k}\in L^{1}([0,T]\times \Omega \times \Omega \times \mathbb{R}, \mathbb{R}^{+})\) and \({\displaystyle{\lim_{\xi _{1}\longrightarrow \xi _{2}}}}\int _{\Omega } \int _{0}^{T}m_{k}(t,\xi _{1},\xi _{2},\sigma )\,dt\,d\sigma =0\), uniformly in \(\xi _{2}\in \Omega \).

\((C_{4})\):

\(|K(t,\xi ,\sigma ,r)|\leq \frac{\delta }{Tm(\Omega )}|r|+\eta (t,\xi , \sigma )\) for all \(r\in \mathbb{R}\) and \(\delta >0\), where \(\eta \in L^{2}([0,T]\times \Omega \times \Omega , \mathbb{R}^{+})\).

Motivated by this discussion, in the present work we use the Darbo–Sadovskii fixed point theorem in order to prove the existence of mild solutions for Cauchy problem (1.1) without assuming the Lipschitz conditions imposed in \((A_{1})\), \((A_{2})\) and the compactness of the family \((S(t))_{t>0}\).

The rest of this paper is organized as follows. In Sect. 2, we briefly recall some tools related to the conformable fractional calculus, the cosine family of linear operators, and the Hausdorff measure of noncompactness. Section 3 is devoted to proving the main result.

Preliminaries

We recall some preliminary facts on the conformable fractional calculus.

Definition 2.1

([23])

For \(\alpha \in\, ]0,1]\), the conformable fractional derivative of order α of a function \(x(\cdot): [0,+\infty [\,\longrightarrow \mathbb{R}\) is defined as

$$ \frac{d^{\alpha }x(t)}{dt^{\alpha }}= {\lim_{\varepsilon \longrightarrow 0} \frac{x(t+\varepsilon t^{1-\alpha })-x(t)}{\varepsilon }} \quad \text{for } t>0 \quad \text{and}\quad \frac{d^{\alpha }x(0)}{d t^{\alpha }}= {\lim _{t \longrightarrow 0^{+}}\frac{d^{\alpha }x(t)}{dt^{\alpha }}}, $$

provided that the limits exist.

The conformable fractional integral \(I^{\alpha }(\cdot)\) of a function \(x(\cdot)\) is defined by

$$ I^{\alpha }(x) (t)= \int _{0}^{t}s^{\alpha -1}x(s)\,ds \quad \text{for } t>0. $$

Theorem 2.1

([23])

If \(x(\cdot)\) is a continuous function in the domain of \(I^{\alpha }(\cdot)\), then we have

$$ \frac{d^{\alpha }(I^{\alpha }(x)(t))}{dt^{\alpha }}=x(t). $$

Theorem 2.2

([25])

If \(x(\cdot)\) is a differentiable function, then we have

$$ I^{\alpha }\biggl(\frac{d^{\alpha } x(\cdot)}{dt^{\alpha }}\biggr) (t)=x(t)-x(0). $$

Now, we present some definitions concerning the cosine family of linear operators.

Definition 2.2

([55])

A one parameter family \((C(t))_{t\in \mathbb{R}}\) of bounded linear operators on a Banach space X is called a strongly continuous cosine family if and only if:

  1. 1.

    \(C(0)=I\), where I is the identity operator in the space X.

  2. 2.

    \(C(s+t)+C(s-t)=2C(s)C(t)\) for all \(t,s\in \mathbb{R}\).

  3. 3.

    The function \(t\longmapsto C(t)x\) is strongly continuous for each \(x\in X\).

We also define the sine family \((S(t))_{t\in \mathbb{R}}\) associated with the cosine family \((C(t))_{t\in \mathbb{R}}\) as follows:

$$ S(t)x= \int _{0}^{t}C(s)x\,ds, \quad x\in X. $$

The infinitesimal generator A of a strongly continuous cosine family \(((C(t)),(S(t)))_{t\in \mathbb{R}}\) on X is defined by

$$ D(A)=\bigl\{ x\in X, t\longmapsto C(t)x \text{ is a twice continuously differentiable function} \bigr\} $$

and

$$ Ax=\frac{d^{2}C(0)x}{dt^{2}},\quad x\in D(A). $$

We end these preliminaries by some concepts on the Hausdorff measure of noncompactness.

Definition 2.3

([63, 64])

The Hausdorff measure of noncompactness σ of a bounded set B in a Banach space X is defined as follows:

$$ \sigma (B) = \inf \Biggl\{ \varepsilon > 0: B= {\bigcup _{i=1}^{n}}B_{i}, \text{with } \operatorname{diam}(B_{i})\leq \varepsilon \text{ for } i=1, \ldots,n\Biggr\} . $$

The following lemma presents some basic properties of the Hausdorff measure of noncompactness.

Lemma 2.1

([63, 64])

Let X be a Banach space and \(B, C\subseteq X\) be bounded sets. Then the following properties hold:

  1. (1)

    B is pre-compact if and only if \(\sigma (B) = 0\).

  2. (2)

    \(\sigma (B)=\sigma (\overline{B})=\sigma (\operatorname{conv}(B))\), where and \(\operatorname{conv}(B)\) mean the closure and convex hull of B, respectively.

  3. (3)

    \(\sigma (B)\leq \sigma (C)\), where \(B\subseteq C\).

  4. (4)

    \(\sigma (B+C)\leq \sigma (B)+\sigma (C)\), where \(B+C =\{x+y: x \in B, y \in C\}\).

  5. (5)

    \(\sigma (B\cup C)\leq \max \{\sigma (B), \sigma (C) \}\).

  6. (6)

    \(\sigma (\lambda B)=|\lambda |\sigma (B)\) for any \(\lambda \in \mathbb{R}\), when X is a real Banach space.

  7. (7)

    If the operator \(Q: D(Q)\subseteq X\longrightarrow Y\) is Lipschitz continuous with constant k, then we have \(\rho (Q(B)) \leq k\sigma (B)\) for any bounded subset \(B\subseteq D(Q)\), where Y is another Banach space and ρ represents the Hausdorff measure of noncompactness in Y.

Definition 2.4

([64])

The operator \(Q: D(Q)\subseteq X\longrightarrow X\) is said to be an σ-contraction if there exists a positive constant \(k<1\) such that \(\sigma (Q(B)) \leq k\sigma (B)\) for any bounded closed subset \(B\subseteq D(Q)\).

Lemma 2.2

(Darbo–Sadovskii theorem, [63, 64])

Let \(B\subset X\) be a bounded, closed, and convex set. If \(Q: B\longrightarrow B\) is a continuous and σ-contraction operator, then Q has at least one fixed point in B.

Lemma 2.3

([65, 66])

Let \(D\subset X\) be a bounded set, then there exists a countable set \(D_{0}\subset D\) such that \(\sigma (D)\leq 2 \sigma (D_{0})\).

In the sequel, we denote by \(\sigma _{c}\) the Hausdorff measure of noncompactness in the space \(\mathcal{C}\) of continuous functions \(x(\cdot)\) defined from \([0,\tau ]\) into X equipped with the norm \(| x| _{c}={\displaystyle{\sup_{t\in [0,\tau ]}}\| x(t) \| }\). It is well known that the space \((\mathcal{C},|\cdot| _{c})\) is a Banach space.

Lemma 2.4

([67])

Let \(D_{0}:=\{x_{n}\}\subset \mathcal{C}\) be a countable set, then we have

  1. (1)

    \(\sigma (D_{0}(t)):=\sigma (\{x_{n}(t)\})\) is Lebesgue integrable on \([0,\tau ]\).

  2. (2)

    \(\sigma (\int _{0}^{\tau }D_{0}(s)\,ds)\leq 2\int _{0}^{\tau }\sigma (D_{0}(s))\,ds\), where \(\sigma (\int _{0}^{\tau }D_{0}(s)\,ds):=\sigma (\{\int _{0}^{\tau }x_{n}(s)\,ds \})\).

Lemma 2.5

([63])

Let \(D\subset \mathcal{C}\) be bounded and equicontinuous, then we have

  1. (1)

    \(\sigma (D(t))\) is continuous on \([0,\tau ]\).

  2. (2)

    \(\sigma _{c}(D)={\displaystyle{\max_{t\in [0,\tau ]}}}(\sigma (D(t)))\).

Main result

According to [1], we have the following definition.

Definition 3.1

A function \(x\in \mathcal{C}\) is called a mild solution of Cauchy problem (1.1) if

$$ x(t) =C\biggl(\frac{t^{\alpha }}{\alpha }\biggr)\bigl[x_{0}+g(x) \bigr]+S\biggl( \frac{t^{\alpha }}{\alpha }\biggr)\bigl[x_{1}+h(x)\bigr]+ \int _{0}^{t}s^{\alpha -1} S\biggl( \frac{t^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,x(s)\bigr)\,ds. $$

To obtain the existence of mild solutions, we will need the following assumptions:

\((H_{1})\):

The function \(f(t,\cdot): X\longrightarrow X\) is continuous, and for all \(r>0\), there exists a function \(\varphi _{r}\in L^{\infty }([0,\tau ],\mathbb{R}^{+})\) such that \({\displaystyle{\sup_{\| x\| \leq r}}}\| f(t,x) \| \leq \varphi _{r}(t)\) for all \(t\in [0,\tau ]\).

\((H_{2})\):

The function \(f(\cdot,x):[0,\tau ] \longrightarrow X\) is continuous for all \(x\in X\).

\((H_{3})\):

The function \(g:\mathcal{C} \longrightarrow X\) is continuous and compact.

\((H_{4})\):

The function \(h:\mathcal{C} \longrightarrow X\) is continuous and compact.

\((H_{5})\):

There exist positive constants a and b such that \(\| g(x)\| \leq a| x| _{c}+b\) for all \(x\in \mathcal{C}\).

\((H_{6})\):

There exist positive constants c and d such that \(\| h(x)\| \leq c| x| _{c}+d\) for all \(x\in \mathcal{C}\).

\((H_{7})\):

There exists a positive constant L such that \(\sigma (f(t,D_{0}))\leq L\sigma (D_{0})\) for any countable set \(D_{0}\subset X\) and \(t\in [0,\tau ]\).

\((H_{8})\):

The family \((C(t))_{t\in \mathbb{R}}\) is uniformly continuous, that is, \({\displaystyle{\lim_{t\longrightarrow s}}}|C(s)-C(t)|=0\), where \(|\cdot|\) represents the norm in the space of bounded operators defined from X into itself.

Remark 3.1

The nonlocal condition given in (1.2) satisfies assumption \((H_{3})\).

Indeed, the continuity and compactness of the function g are guaranteed by using [68, Theorem 4.2] in view of conditions \((C_{1})-(C_{4})\) assumed for the kernel K. Moreover, by using condition \((C_{4})\), we get \(a=\frac{\delta }{\sqrt{m(\Omega )}}\) and \(b=\sqrt{Tm(\Omega )}\| \eta \| _{L^{2}([0,T] \times \Omega \times \Omega , \mathbb{R}^{+})}\).

Theorem 3.1

Assume that \((H_{1})\)\((H_{8})\) hold, then Cauchy problem (1.1) has at least one mild solution provided that

$$ \max \biggl(a {\sup_{t\in [0,\tau ]}} \biggl\vert C\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert +c {\sup_{t\in [0,\tau ]}} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert , \frac{4L\tau ^{\alpha }}{\alpha } {\sup_{t\in [0,\tau ]}} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \biggr)< 1. $$

Proof

In order to use the Darbo–Sadovskii fixed point theorem, we define the operator \(\Gamma :\mathcal{C}\longrightarrow \mathcal{C}\) by

$$ \Gamma (x) (t) =C\biggl(\frac{t^{\alpha }}{\alpha }\biggr) \bigl[x_{0}+g(x)\bigr]+S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \bigl[x_{1}+h(x)\bigr]+ \int _{0}^{t}s^{\alpha -1} S\biggl( \frac{t^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,x(s)\bigr)\,ds. $$

We also consider the ball \(B_{r}:=\{x\in \mathcal{C}, | x | _{c}\leq r\}\), where

$$ r\geq \frac{ {\displaystyle{\sup_{t\in [0,\tau ]}}} \vert C(\frac{t^{\alpha }}{\alpha }) \vert [ \Vert x_{0} \Vert +b]+ {\displaystyle{\sup_{t\in [0,\tau ]}}} \vert S(\frac{t^{\alpha }}{\alpha }) \vert [ \Vert x_{1} \Vert +d+\frac{\tau ^{\alpha }}{\alpha } \vert \varphi _{r} \vert _{L^{\infty }([0,\tau ],\mathbb{R}^{+})}]}{1-a {\displaystyle{\sup_{t\in [0,\tau ]}}} \vert C(\frac{t^{\alpha }}{\alpha }) \vert -c {\displaystyle{\sup_{t\in [0,\tau ]}}} \vert S(\frac{t^{\alpha }}{\alpha }) \vert }. $$

The proof will be given in four steps.

Step 1: Prove that \(\Gamma (B_{r})\subset B_{r}\).

For \(x\in \mathcal{C}\), we have

$$\begin{aligned} \bigl\Vert \Gamma (x) (t) \bigr\Vert \leq &\biggl\Vert C\biggl( \frac{t^{\alpha }}{\alpha }\biggr)\bigl[x_{0}+g(x)\bigr] \biggr\Vert + \biggl\Vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr)\bigl[x_{1}+h(x) \bigr] \biggr\Vert \\ &{}+ \int _{0}^{t}s^{ \alpha -1} \biggl\Vert S \biggl(\frac{t^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,x(s)\bigr) \biggr\Vert \,ds. \end{aligned}$$

Using assumptions \((H_{1})\), \((H_{5})\), and \((H_{6})\), we get

$$\begin{aligned} \bigl\Vert \Gamma (x) (t) \bigr\Vert \leq& \sup _{t\in [0,\tau ]} \biggl\vert C\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \bigl[ \Vert x_{0} \Vert + a \vert x \vert _{c}+b\bigr] \\ &{}+ \sup_{t\in [0,\tau ]} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \biggl[ \Vert x_{1} \Vert +c \vert x \vert _{c}+d+\frac{\tau ^{\alpha }}{\alpha } \vert \varphi _{r} \vert _{L^{\infty }([0,\tau ],\mathbb{R}^{+})}\biggr] \\ \leq& \sup_{t\in [0,\tau ]} \biggl\vert C\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \bigl[ \Vert x_{0} \Vert + ar+b\bigr] \\ &{}+\sup_{t\in [0,\tau ]} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \biggl[ \Vert x_{1} \Vert +cr+d+ \frac{\tau ^{\alpha }}{\alpha } \vert \varphi _{r} \vert _{L^{\infty }([0, \tau ],\mathbb{R}^{+})}\biggr] \\ \leq& r. \end{aligned}$$

Taking the supremum, we obtain \(| \Gamma (x)| _{c}\leq r\), and this shows that \(\Gamma (B_{r})\subset B_{r}\).

Step 2: Prove that \(\Gamma :B_{r}\longrightarrow B_{r}\) is continuous.

Let \((x_{n})\subset B_{r}\) such that \(x_{n}\longrightarrow x\) in \(B_{r}\). We have

$$\begin{aligned} \Gamma (x_{n}) (t)-\Gamma (x) (t) =&C\biggl( \frac{t^{\alpha }}{\alpha }\biggr)\bigl[g(x_{n})-g(x)\bigr]+S\biggl( \frac{t^{\alpha }}{\alpha }\biggr)\bigl[h(x_{n})-h(x)\bigr] \\ &{} + \int _{0}^{t}s^{\alpha -1}S\biggl( \frac{t^{\alpha }-s^{\alpha }}{\alpha }\biggr)\bigl[f\bigl(s,x_{n}(s)\bigr)-f \bigl(s,x(s)\bigr)\bigr]\,ds. \end{aligned}$$

Using a simple computation, we obtain

$$\begin{aligned} \bigl\vert \Gamma (x_{n})-\Gamma (x) \bigr\vert _{c} \leq& \sup_{t\in [0,\tau ]} \biggl\vert C\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \bigl\Vert g(x_{n})-g(x) \bigr\Vert +\sup_{t \in [0,\tau ]} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \bigl\Vert h(x_{n})-h(x) \bigr\Vert \\ &{}+\sup_{t\in [0,\tau ]} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \int _{0}^{ \tau }s^{\alpha -1} \bigl\Vert f \bigl(s,x_{n}(s)\bigr)-f\bigl(s,x(s)\bigr) \bigr\Vert \,ds. \end{aligned}$$

In view of assumption \((H_{1})\), we get \(\| s^{\alpha -1}[f(s,x_{n}(s))-f(s,x(s))]\| \leq 2s^{ \alpha -1}\varphi _{r}(s)\) and \(f(s, x_{n}(s))\longrightarrow f(s,x(s))\) as \(n\longrightarrow +\infty \). Then the Lebesgue dominated convergence theorem proves that

$$ \int _{0}^{\tau }s^{\alpha -1} \bigl\Vert f \bigl(s,x_{n}(s)\bigr)-f\bigl(s,x(s)\bigr) \bigr\Vert \,ds \longrightarrow 0\quad \text{as } n\longrightarrow +\infty . $$

By using the continuity of the functions g and h, we deduce that \({\displaystyle{\lim_{n\longrightarrow +\infty }}}\| g(x_{n})-g(x) \| =0\) and \({\displaystyle{\lim_{n\longrightarrow +\infty }}}\| h(x_{n})-h(x) \| =0\). Hence the operator Γ is continuous.

Step 3: Prove that \(\Gamma (B_{r})\) is equicontinuous.

For \(x\in B_{r}\) and \(\mu , \nu \in [0,\tau ]\) such that \(\mu <\nu \), we have

$$\begin{aligned} \Gamma (x) (\nu )-\Gamma (x) (\mu ) =&\biggl[C\biggl( \frac{\nu ^{\alpha }}{\alpha }\biggr)-C\biggl( \frac{\mu ^{\alpha }}{\alpha }\biggr)\biggr] \bigl(x_{0}+g(x)\bigr) \\ &{}+ \biggl[S\biggl( \frac{\nu ^{\alpha }}{\alpha } \biggr)-S\biggl(\frac{\mu ^{\alpha }}{\alpha }\biggr)\biggr]\bigl(x_{1}+h(x) \bigr) \\ &{} + \int _{0}^{\mu }s^{\alpha -1}\biggl[S\biggl( \frac{\nu ^{\alpha }-s^{\alpha }}{\alpha }\biggr)-S\biggl( \frac{\mu ^{\alpha }-s^{\alpha }}{\alpha }\biggr)\biggr]f \bigl(s,x(s)\bigr)\,ds \\ &{} + \int _{\mu }^{\nu }s^{\alpha -1}S\biggl( \frac{\nu ^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,x(s)\bigr)\,ds. \end{aligned}$$

Since \(S(t)={\int _{0}^{t}}C(\theta )\,d\theta \), then the above equation can be rewritten as follows:

$$\begin{aligned} \Gamma (x) (\nu )-\Gamma (x) (\mu )&=\biggl[C\biggl( \frac{\nu ^{\alpha }}{\alpha }\biggr)-C\biggl( \frac{\mu ^{\alpha }}{\alpha }\biggr)\biggr] \bigl(x_{0}+g(x)\bigr)+ \biggl[ \int _{ \frac{\mu ^{\alpha }}{\alpha }}^{\frac{\nu ^{\alpha }}{\alpha }}C(\theta ) \bigl(x_{1}+h(x) \bigr)\,d\theta \biggr] \\ &+ \int _{0}^{\mu }s^{\alpha -1}\biggl[ \int _{ \frac{\mu ^{\alpha }-s^{\alpha }}{\alpha }}^{ \frac{\nu ^{\alpha }-s^{\alpha }}{\alpha }}C(\theta )f\bigl(s,x(s)\bigr)\,d\theta \biggr]\,ds \\ &+ \int _{\mu }^{\nu }s^{\alpha -1}S\biggl( \frac{\nu ^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,x(s)\bigr)\,ds. \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} \bigl\Vert \Gamma (x) (\nu )-\Gamma (x) (\mu ) \bigr\Vert \leq& \biggl\vert C\biggl( \frac{\nu ^{\alpha }}{\alpha }\biggr)-C\biggl(\frac{\mu ^{\alpha }}{\alpha } \biggr) \biggr\vert \bigl\Vert x_{0}+g(x) \bigr\Vert \\ &{}+\sup _{t\in [0, \frac{\tau ^{\alpha }}{\alpha }]} \bigl\vert C(t) \bigr\vert \biggl[ \int _{ \frac{\mu ^{\alpha }}{\alpha }}^{\frac{\nu ^{\alpha }}{\alpha }} \bigl\Vert x_{1}+h(x) \bigr\Vert \,d\theta \biggr] \\ &{} +\sup_{t\in [0,\frac{\tau ^{\alpha }}{\alpha }]} \bigl\vert C(t) \bigr\vert \int _{0}^{\mu }s^{ \alpha -1}\biggl[ \int _{\frac{\mu ^{\alpha }-s^{\alpha }}{\alpha }}^{ \frac{\nu ^{\alpha }-s^{\alpha }}{\alpha }} \bigl\Vert f\bigl(s,x(s)\bigr) \bigr\Vert \,d\theta \biggr]\,ds \\ &{} +\sup_{t\in [0,\tau ]} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \int _{\mu }^{ \nu }s^{\alpha -1} \bigl\Vert f \bigl(s,x(s)\bigr) \bigr\Vert \,ds. \end{aligned}$$

By using assumptions \((H_{1})\), \((H_{5})\), and \((H_{6})\), we get

$$\begin{aligned} \bigl\Vert \Gamma (x) (\nu )-\Gamma (x) (\mu ) \bigr\Vert \leq& \biggl\vert C\biggl( \frac{\nu ^{\alpha }}{\alpha }\biggr)-C\biggl(\frac{\mu ^{\alpha }}{\alpha } \biggr) \biggr\vert \bigl( \Vert x_{0} \Vert +a \vert x \vert _{c}+b\bigr) \\ &{} +\sup_{t\in [0,\frac{\tau ^{\alpha }}{\alpha }]} \bigl\vert C(t) \bigr\vert \bigl( \Vert x_{1} \Vert +c \vert x \vert _{c}+d\bigr) \biggl[ \int _{\frac{\mu ^{\alpha }}{\alpha }}^{ \frac{\nu ^{\alpha }}{\alpha }}1\,d\theta \biggr] \\ &{} +\sup_{t\in [0,\frac{\tau ^{\alpha }}{\alpha }]} \bigl\vert C(t) \bigr\vert \vert \varphi _{r} \vert _{L^{\infty }([0,\tau ],\mathbb{R}^{+})} \int _{0}^{\mu }s^{\alpha -1}\biggl[ \int _{\frac{\mu ^{\alpha }-s^{\alpha }}{\alpha }}^{\frac{\nu ^{\alpha }-s^{\alpha }}{\alpha }}1\,d\theta \biggr] \,ds \\ &{} +\sup_{t\in [0,\tau ]} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \vert \varphi _{r} \vert _{L^{\infty }([0,\tau ],\mathbb{R}^{+})} \int _{\mu }^{\nu }s^{ \alpha -1}\,ds. \end{aligned}$$

An easy computation now shows that

$$\begin{aligned} \bigl\Vert \Gamma (x) (\nu )-\Gamma (x) (\mu ) \bigr\Vert \leq& \bigl( \Vert x_{0} \Vert +ar+b\bigr) \biggl\vert C\biggl( \frac{\nu ^{\alpha }}{\alpha }\biggr)-C\biggl( \frac{\mu ^{\alpha }}{\alpha }\biggr) \biggr\vert \\ &{}+\sup_{t\in [0,\frac{\tau ^{\alpha }}{\alpha }]} \bigl\vert C(t) \bigr\vert \bigl( \Vert x_{1} \Vert +cr+d\bigr)\biggl[\frac{\nu ^{\alpha }-\mu ^{\alpha }}{\alpha }\biggr] \\ &{}+\sup_{t\in [0,\frac{\tau ^{\alpha }}{\alpha }]} \bigl\vert C(t) \bigr\vert \vert \varphi _{r} \vert _{L^{\infty }([0,\tau ],\mathbb{R}^{+})} \biggl[ \frac{\tau ^{\alpha }}{\alpha }\biggr] \biggl[ \frac{\nu ^{\alpha }-\mu ^{\alpha }}{\alpha }\biggr] \\ &{}+\sup_{t\in [0,\tau ]} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \vert \varphi _{r} \vert _{L^{\infty }([0,\tau ],\mathbb{R}^{+})} \biggl[ \frac{\nu ^{\alpha }-\mu ^{\alpha }}{\alpha }\biggr]. \end{aligned}$$

The above inequality combined with assumption \((H_{8})\) shows that \(\Gamma (B_{r})\) is equicontinuous on \([0,\tau ]\).

Step 4: Prove that \(\Gamma :B_{r}\longrightarrow B_{r}\) is a \(\sigma _{c}\)-contraction operator.

Let \(D\subset B_{r}\), then by Lemma 2.3, there exists a countable set \(D_{0}\) such that \(D_{0}=\{x_{n}\}\subset D\). Hence, \(\Gamma (D_{0})\) becomes a countable subset of \(\Gamma (D)\). Thus, Lemma 2.3 proves that \(\sigma _{c}(\Gamma (D))\leq 2\sigma _{c}(\Gamma (D_{0}))\). Since \(\Gamma (D_{0})\) is bounded and equicontinuous, then by using the second point of Lemma 2.5, we obtain

$$ \sigma _{c}\bigl(\Gamma (D_{0})\bigr)= {\max _{t\in [0,\tau ]}}\bigl( \sigma \bigl(\Gamma (D_{0}) (t) \bigr)\bigr). $$

Accordingly, we deduce that

$$\begin{aligned} \sigma _{c}\bigl(\Gamma (D)\bigr) \leq& 2\sigma _{c}\bigl(\Gamma (D_{0})\bigr) \\ =&2\max_{t\in [0,\tau ]}\bigl(\sigma \bigl(\Gamma (D_{0}) (t)\bigr)\bigr) \\ =&2\max_{t\in [0,\tau ]} \biggl(\sigma \biggl(C\biggl( \frac{t^{\alpha }}{\alpha }\biggr)\bigl[x_{0}+g(D_{0})\bigr]+S \biggl( \frac{t^{\alpha }}{\alpha }\biggr)\bigl[x_{1}+h(D_{0}) \bigr] \\ &{}+ \int _{0}^{t}s^{\alpha -1} S\biggl( \frac{t^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,D_{0}(s)\bigr)\,ds\biggr) \biggr). \end{aligned}$$

By using point (4) of Lemma 2.1, we get

$$\begin{aligned} \sigma _{c}\bigl(\Gamma (D)\bigr) \leq& 2\max _{t\in [0,\tau ]} \biggl(\sigma \biggl(C\biggl( \frac{t^{\alpha }}{\alpha } \biggr)\bigl[x_{0}+g(D_{0})\bigr]\biggr) \\ &{}+\sigma \biggl(S\biggl( \frac{t^{\alpha }}{\alpha }\biggr)\bigl[x_{1}+h(D_{0}) \bigr]\biggr) +\sigma \biggl( \int _{0}^{t}s^{ \alpha -1}S\biggl( \frac{t^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,D_{0}(s)\bigr)\,ds\biggr) \biggr). \end{aligned}$$

Since g and h are compact, then the sets \(C(\frac{t^{\alpha }}{\alpha })[x_{0}+g(D_{0})]\) and \(S(\frac{t^{\alpha }}{\alpha })[x_{1}+h(D_{0})]\) are relatively compact. According to the above equation and the first point of Lemma 2.1, we obtain

$$ \sigma _{c}\bigl(\Gamma (D)\bigr)\leq 2\max _{t\in [0,\tau ]} \biggl(\sigma \biggl( \int _{0}^{t}s^{\alpha -1} S\biggl( \frac{t^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,D_{0}(s)\bigr)\,ds\biggr) \biggr). $$

In view of Lemma 2.4, we get

$$ \sigma _{c}\bigl(\Gamma (D)\bigr)\leq 4\max _{t\in [0,\tau ]} \biggl( \int _{0}^{t}s^{ \alpha -1}\sigma \biggl( S \biggl(\frac{t^{\alpha }-s^{\alpha }}{\alpha }\biggr)f\bigl(s,D_{0}(s)\bigr)\,ds\biggr) \biggr). $$

Next, point (7) of Lemma 2.1 shows that

$$ \sigma _{c}\bigl(\Gamma (D)\bigr)\leq 4 {\sup _{t\in [0,\tau ]}} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \max_{t\in [0,\tau ]} \biggl( \int _{0}^{t}s^{ \alpha -1}\sigma \bigl( f \bigl(s,D_{0}(s)\bigr)\bigr)\,ds \biggr). $$

According to assumption \((H_{7})\), we get

$$ \sigma _{c}\bigl(\Gamma (D)\bigr)\leq 4L {\sup _{t\in [0,\tau ]}} \biggl( \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha } \biggr) \biggr\vert \biggr)\max_{t\in [0,\tau ]} \biggl( \int _{0}^{t}s^{ \alpha -1}\sigma \bigl(D_{0}(s)\bigr)\,ds \biggr). $$

Hence, by using a simple computation combined with point \((2)\) of Lemma 2.5, we obtain

$$\begin{aligned} \sigma _{c}\bigl(\Gamma (D)\bigr)&\leq 4L {\sup _{t\in [0,\tau ]}} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \sigma _{c}(D) \int _{0}^{\tau }s^{\alpha -1}\,ds \\ &=4L {\sup_{t\in [0,\tau ]}} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \sigma _{c}(D) \frac{\tau ^{\alpha }}{\alpha }. \end{aligned}$$

Then, we have

$$ \sigma _{c}\bigl(\Gamma (D)\bigr)\leq \frac{4L\tau ^{\alpha }}{\alpha } {\sup_{t\in [0,\tau ]}} \biggl\vert S\biggl( \frac{t^{\alpha }}{\alpha }\biggr) \biggr\vert \sigma _{c}(D). $$

Since \(\frac{4L\tau ^{\alpha }}{\alpha }{\displaystyle{\sup_{t\in [0,\tau ]}}}|S( \frac{t^{\alpha }}{\alpha })|<1\), then Γ is a \(\sigma _{c}\)-contraction operator.

In conclusion, Lemma 2.2 shows that the operator Γ has at least one fixed point, which is a mild solution of Cauchy problem (1.1). □

Conclusion

Without assuming the Lipschitz condition on the nonlocal conditions and the compactness of the cosine family generated by the linear part, we have proved the existence of mild solutions for a class of nonlocal differential equations of the second order with conformable fractional derivative. The main result is obtained by means of the Darbo–Sadovskii fixed point theorem combined with theory of cosine family of linear operators. The equation studied in the present work can be viewed as an abstract version of the nonlocal conformable fractional telegraph equation considered in the work [31]. As a future work, we will be interested in studying Cauchy problem (1.1) with the non-sequential operator \(\frac{d^{2\alpha }x(t)}{dt^{2\alpha }}\) instead of the sequential one \(\frac{d^{\alpha }}{dt^{\alpha }}[\frac{d^{\alpha }x(t)}{dt^{\alpha }}]\). This purpose is not easy! Indeed, in this case the cosine family \(((C(t)),(S(t)))_{t\in \mathbb{R}}\) must be extended to the complex space \(\mathbb{C}\), for more details about this point we refer to the work [1].

Availability of data and materials

No data were used to support this study.

References

  1. 1.

    Bouaouid, M., Hilal, K., Melliani, S.: Sequential evolution conformable differential equations of second order with nonlocal condition. Adv. Differ. Equ. 2019, 21 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Liu, J.G., Yang, X.J., Feng, Y.Y., Cui, P.: On group analysis of the time fractional extended \((2+1)\)-dimensional Zakharov–Kuznetsov equation in quantum magneto-plasmas. Math. Comput. Simul. 178, 407–421 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Liu, J.G., Yang, X.J., Feng, Y.Y., Cui, P., Geng, L.L.: On integrability of the higher dimensional time fractional KdV-type equation. J. Geom. Phys. 160, 104000 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Liu, J.G., Yang, X.J., Feng, Y.Y., Geng, L.L.: Fundamental results to the weighted Caputo-type differential operator. Appl. Math. Lett. 121, 107421 (2021)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Liu, J.G., Yang, X.J., Feng, Y.Y., Iqbal, M.: Group analysis to the time fractional nonlinear wave equation. Int. J. Math. 31, 2050029 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Liu, J.G., Yang, X.J., Feng, Y.Y., Zhang, H.Y.: Analysis of the time fractional nonlinear diffusion equation from diffusion process. J. Appl. Anal. Comput. 10, 1060–1072 (2020)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Liu, J.G., Yang, X.J., Feng, Y.Y.: Analytical solutions of some integral fractional differential-difference equations. Mod. Phys. Lett. B 34, 2050009 (2020)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Liang, X., Gao, F., Zhou, C.B., Wang, Z., Yang, X.J.: An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Adv. Differ. Equ. 2018, 25 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Phuong, N.D., Hoan, L.V.C., Karapinar, E., Singh, J., Binh, H.D., Can, N.H.: Fractional order continuity of a time semi-linear fractional diffusion-wave system. Alex. Eng. J. 59, 4959–4968 (2020)

    Article  Google Scholar 

  10. 10.

    Phuong, N.D., Tuan, N.A., Kumar, D., Tuan, N.H.: Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations. Math. Model. Nat. Phenom. 16, 27 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Rashid, S., Chu, Y.M., Singh, J., Kumar, D.: A unifying computational framework for novel estimates involving discrete fractional calculus approaches. Alex. Eng. J. 60, 2677–2685 (2021)

    Article  Google Scholar 

  12. 12.

    Can, N.H., Kumar, D., Vo Viet, T., Nguyen, A.T.: On time fractional pseudo-parabolic equations with non-local in time condition. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7196

    Article  Google Scholar 

  13. 13.

    Singh, J., Kumar, D., Baleanu, D.: On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018, 231 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Agarwal, R.P., Alsaedi, A., Alghamdi, N., Ntouyas, S.K., Ahmad, B.: Existence results for multi-term fractional differential equations with nonlocal multi-point and multi-strip boundary conditions. Adv. Differ. Equ. 2018, 342 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, 247 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Samadi, A., Ntouyas, S.K., Tariboon, J.: Nonlocal fractional hybrid boundary value problems involving mixed fractional derivatives and integrals via a generalization of Darbo’s theorem. J. Math. 2021, Article ID 6690049 (2021)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Sweilam, N.H., Al-Mekhlafi, S.M., Assiri, T., Atangana, A.: Optimal control for cancer treatment mathematical model using Atangana–Baleanu–Caputo fractional derivative. Adv. Differ. Equ. 2020, 334 (2020)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  19. 19.

    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  20. 20.

    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon & Breach, Amsterdam (1993)

    MATH  Google Scholar 

  21. 21.

    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  22. 22.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amesterdam (2006)

    MATH  Google Scholar 

  23. 23.

    Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. (2016). https://doi.org/10.2298/TSCI160111018A

    Article  Google Scholar 

  25. 25.

    Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Chung, W.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Martínez, L., Rosales, J.J., Carreño, C.A., Lozano, J.M.: Electrical circuits described by fractional conformable derivative. Int. J. Circuit Theory Appl. 46, 1091–1100 (2018)

    Article  Google Scholar 

  28. 28.

    Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Bouaouid, M., Atraoui, M., Hilal, K., Melliani, S.: Fractional differential equations with nonlocal-delay condition. J. Adv. Math. Stud. 11, 214–225 (2018)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Bouaouid, M., Hilal, K., Melliani, S.: Nonlocal telegraph equation in frame of the conformable time-fractional derivative. Adv. Math. Phys. 2019, Article ID 7528937 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Bouaouid, M., Hilal, K., Melliani, S.: Nonlocal conformable fractional Cauchy problem with sectorial operator. Indian J. Pure Appl. Math. 50, 999–1010 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Bouaouid, M., Hannabou, M., Hilal, K.: Nonlocal conformable-fractional differential equations with a measure of noncompactness in Banach spaces. J. Math. 2020, Article ID 5615080 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Bouaouid, M., Hilal, K., Melliani, S.: Existence of mild solutions for conformable-fractional differential equations with non local conditions. Rocky Mt. J. Math. 50, 871–879 (2020)

    MATH  Article  Google Scholar 

  35. 35.

    Bouaouid, M., Hilal, K., Hannabou, M.: Existence and uniqueness of integral solutions to impulsive conformable-fractional differential equations with nonlocal condition. J. Appl. Anal. 27 (2021)

  36. 36.

    Bouaouid, M.: Integral solution of a conformable fractional integro-differential equation with nonlocal condition. Mathematica (2021, to appear)

  37. 37.

    Yang, S., Wang, L., Zhan, S.: Conformable derivative: application to non-Darcian flow in low-permeability porous media. Appl. Math. Lett. 79, 105–110 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Balci, E., Öztürk, I., Kartal, S.: Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos Solitons Fractals 123, 43–51 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Tarasov, V.E.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Al-Refai, M., Abdeljawad, T.: Fundamental results of conformable Sturm–Liouville eigenvalue problems. Complexity 2017, Article ID 3720471 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Lazo, M.J., Torres, D.F.: Variational calculus with conformable fractional derivatives. IEEE/CAA J. Autom. Sin. 4, 340–352 (2017)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Ortigueira, M.D., Tenreiro Machado, J.A.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Katugampola, U.N.: Correction to “What is a fractional derivative?” by Ortigueira and Machado [Journal of Computational Physics, Volume 293, 15 July 2015, pages 4–13. Special issue on Fractional PDEs]. J. Comput. Phys. 321, 1255–1257 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Abdelhakim, A.A., Tenreiro Machado, J.A.: A critical analysis of the conformable derivative. Nonlinear Dyn. 95, 3063–3073 (2019)

    MATH  Article  Google Scholar 

  45. 45.

    Abdelhakim, A.A.: The flaw in the conformable calculus: it is conformable because it is not fractional. Fract. Calc. Appl. Anal. 22, 242–254 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Tuan, N.H., Thach, T.N., Can, N.H., O’Regan, D.: Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data. Math. Methods Appl. Sci. 44, 2879–2891 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Bhanotar, S.A., Kaabar, M.K.: Analytical solutions for the nonlinear partial differential equations using the conformable triple Laplace transform decomposition method. Int. J. Differ. Equ. 2021, Article ID 9988160 (2021)

    MathSciNet  Google Scholar 

  48. 48.

    Abbas, M.I.: Existence results and the Ulam stability for fractional differential equations with hybrid proportional-Caputo derivatives. J. Nonlinear Funct. Anal. 2020, Article ID 48 (2020)

    Google Scholar 

  49. 49.

    Abbas, M.I.: Ulam stability and existence results for fractional differential equations with hybrid proportional-Caputo derivatives. J. Interdiscip. Math. (2021). https://doi.org/10.1080/09720502.2021.1889156

    Article  Google Scholar 

  50. 50.

    Gao, F., Chi, C.: Improvement on conformable fractional derivative and its applications in fractional differential equations. J. Funct. Spaces 2020, Article ID 5852414 (2020)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Van Au, V., Zhou, Y., Can, N.H., Tuan, N.T.: Regularization of a terminal value nonlinear diffusion equation with conformable time derivative. J. Integral Equ. Appl. 32, 397–416 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Meléndez-Vázquez, F., Fernández-Anaya, G., Hernández-Martínez, E.G.: General conformable estimators with finite-time stability. Adv. Differ. Equ. 2020, 551 (2020)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Au, V.V., Baleanu, D., Zhou, Y., Can, N.H.: On a problem for the nonlinear diffusion equation with conformable time derivative. Appl. Anal. 100, 1–25 (2021)

    MathSciNet  Article  Google Scholar 

  54. 54.

    Eltayeb, H., Bachar, I., Gad-Allah, M.: Solution of singular one-dimensional Boussinesq equation by using double conformable Laplace decomposition method. Adv. Differ. Equ. 2019, 293 (2019)

    MathSciNet  Article  Google Scholar 

  55. 55.

    Travis, C.C., Webb, G.F.: Cosine family and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32, 75–96 (1978)

    MATH  Article  Google Scholar 

  56. 56.

    Hernández, E.M.: Existence of solutions to a second order partial differential equation with nonlocal conditions. Electron. J. Differ. Equ. 2003, 51 (2003)

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, 630–637 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    Olmstead, W.E., Roberts, C.A.: The one-dimensional heat equation with a nonlocal initial condition. Appl. Math. Lett. 10, 89–94 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Zhu, L., Li, G.: Existence results of semilinear differential equations with nonlocal initial conditions in Banach spaces. Nonlinear Anal. 74, 5133–5140 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  61. 61.

    Aizicovici, S., McKibben, M.: Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear Anal. 39, 649–668 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  62. 62.

    Xue, X.: Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces. Nonlinear Anal. 70, 2593–2601 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Banas̀, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics. Dekker, New York (1980)

    Google Scholar 

  64. 64.

    Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    MATH  Book  Google Scholar 

  65. 65.

    Chen, P., Li, Y.: Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. Results Math. 63, 731–744 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  66. 66.

    Li, Y.: Existence of solutions of initial value problems for abstract semilinear evolution equations. Acta Math. Sinica (Chin. Ser.) 48, 1089–1094 (2005)

    MathSciNet  MATH  Google Scholar 

  67. 67.

    Heinz, H.P.: On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7, 1351–1371 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Martin, R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York (1976)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for several valuable and insightful suggestions which improved the quality of this paper. The authors are very grateful to the whole team of the Journal of Advances in Difference Equations for their excellent efforts, and they wish them very great success.

Funding

This research work was not funded by any financial support organization.

Author information

Affiliations

Authors

Contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mustapha Atraoui.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atraoui, M., Bouaouid, M. On the existence of mild solutions for nonlocal differential equations of the second order with conformable fractional derivative. Adv Differ Equ 2021, 447 (2021). https://doi.org/10.1186/s13662-021-03593-5

Download citation

MSC

  • 34A08
  • 47D09

Keywords

  • Fractional differential equations
  • Cosine family of linear operators
  • Conformable fractional derivative
  • Nonlocal conditions
  • Measure of noncompactness