Skip to main content

Theory and Modern Applications

An oscillation criterion of linear delay differential equations

Abstract

In this paper, we present a new sufficient condition for the oscillation of all solutions of linear delay differential equations. The obtained result improves known conditions in the literature. We also give an example to illustrate the applicability and strength of the obtained condition over known ones.

1 Introduction

This paper is devoted to studying the oscillation of the first-order delay differential equation of the form

$$ x'(t)+p(t)x\bigl(t-r(t)\bigr)=0,\quad t\ge T_{0}, $$
(1)

where \(T_{0}\in \mathbb{R}_{+}, p, r\in C([T_{0},\infty ),(0,\infty ))\), and \(0< r(t)< t\), and \(\lim_{t\to \infty }(t-r(t))=\infty \).

The problem of the oscillatory properties of the solutions of delay differential equations has been recently investigated by many authors. See, for example [111] and the references therein. We mention some results for the purpose of this paper.

Chatzarakis and Li [5] studied the oscillation of delay differential equations with nonmonotone arguments. The results reported in this paper (regarding the oscillation of first-order delay differential equations) have numerous applications (e.g., comparison principles) in the study of oscillation and asymptotic behavior of higher-order differential equations; see, for instance, [1, 6, 10, 11] for more detail.

In 1972, Ladas, Lakshmikantham, and Papadakis [9] proved that if

$$ \limsup_{t\rightarrow \infty } \int _{t-r(t)}^{t}p(s)\,ds>1, $$
(2)

then all solutions of (1) are oscillatory.

Ladas [8] in 1979, and Koplatadze and Chanturiya [7] in 1982 improved (2) to

$$ \liminf_{t\rightarrow \infty } \int _{t-r(t)}^{t}p(s)\,ds> \frac{1}{e}. $$
(3)

Concerning the constant \(\frac{1}{e}\) in (3), it is to be pointed out that if the inequality

$$ \int _{t-r(t)}^{t}p(s)\,ds\leq \frac{1}{e} $$

eventually holds, then, according to a result in [4], (1) has a nonoscillatory solution.

In the recent paper [3] the authors established the following oscillation criterion for (1) when \(r(t)=\tau, \tau >0\).

Theorem 1.1

([3])

Let \(p:[T_{0},\infty )\to \mathbb{R}_{+}\) be a nonnegative, bounded, and uniformly continuous function such that

$$ \liminf_{t\to \infty } \int _{t-\tau }^{t} p(s) \,ds>0. $$

Moreover, suppose that the function

$$ A(t)= \int _{t-\tau }^{t} p(s) \,ds,\quad t\ge T_{0}+\tau, $$

is slowly varying at infinity. Then

$$ \limsup_{t\to \infty } \int _{t-\tau }^{t} p(s) \,ds>\frac{1}{e} $$

implies that all solutions of (1) are oscillatory.

Our aim is establishing a new condition for the oscillation of all solutions of (1), including the cases where conditions (2)–(3) and Theorem 1.1 cannot be applied. We also give an example illustrating the applicability and strength of the obtained condition over the known ones.

2 Main result

The proof of our main result is essentially based on the following lemmas.

Lemma 2.1

Let x be an eventually positive solution of (1). Then for sufficiently large \(t_{0}>T_{0}\),

$$ \ln \frac{x(t-\tau )}{x(t)}= \int _{t-\tau }^{t} p(s) \frac{x(s-r(s))}{x(s)} \,ds,\quad t\ge t_{0}+\tau. $$

Proof

Let x be an eventually positive solution of (1). Then \(x(t-r(t))>0\) for \(t\ge t_{0}+\tau \), where \(t_{0}>T_{0}\) is sufficiently large. From (1), for \(t\ge t_{0}+\tau \), we obtain

$$ \frac{x'(t)}{x(t)}+p(t)\frac{x(t-r(t))}{x(t)}=0, $$

or

$$ \int _{t-\tau }^{t}\frac{x'(s)}{x(s)} \,ds+ \int _{t-\tau }^{t} p(s) \frac{x(s-r(s))}{x(s)} \,ds=0, $$

that is,

$$ \ln \frac{x(t-\tau )}{x(t)}= \int _{t-\tau }^{t} p(s) \frac{x(s-r(s))}{x(s)} \,ds,\quad t\ge t_{0}+\tau. $$

The proof of the lemma is complete. □

Lemma 2.2

Let x be an eventually positive solution of (1). Then

$$\begin{aligned} \ln \frac{x(t-\tau )}{x(t)}={}&p(t) \int _{t-\tau }^{t} \frac{x(s-r(s))}{x(s)} \,ds \\ &{}+\bigl[p(t)-p(t-\tau )\bigr] \int _{t_{0}}^{t-\tau }\frac{x(s-r(s))}{x(s)} \,ds \\ &{}- \int _{t-\tau }^{t} p'(s) \int _{t_{0}}^{s}\frac{x(u-r(u))}{x(u)} \,du \,ds,\quad t\ge t_{0}+\tau. \end{aligned}$$
(4)

Proof

It is obvious that

$$\begin{aligned} & \int _{t-\tau }^{t} p(s)\frac{x(s-r(s))}{x(s)} \,ds\\ &\quad=p(t) \int _{t-\tau }^{t} \frac{x(s-r(s))}{x(s)} \,ds \\ &\qquad{}+\bigl[p(t)-p(t-\tau )\bigr] \int _{t_{0}}^{t-\tau }\frac{x(s-r(s))}{x(s)} \,ds - \int _{t-\tau }^{t} p'(s) \int _{t_{0}}^{s}\frac{x(u-r(u))}{x(u)} \,du \,ds, \end{aligned}$$

or

$$\begin{aligned} \ln \frac{x(t-\tau )}{x(t)}={}&p(t) \int _{t-\tau }^{t} \frac{x(s-r(s))}{x(s)} \,ds \\ &{}+\bigl[p(t)-p(t-\tau )\bigr] \int _{t_{0}}^{t-\tau }\frac{x(s-r(s))}{x(s)} \,ds \\ &{}- \int _{t-\tau }^{t} p'(s) \int _{t_{0}}^{s}\frac{x(u-r(u))}{x(u)} \,du \,ds,\quad t\ge t_{0}+\tau. \end{aligned}$$

The proof of the lemma is complete. □

Now we focus on the function

$$ R(t)=- \int _{t-\tau }^{t} p'(s) \int _{t_{0}}^{s}\frac{x(u-r(u))}{x(u)} \,du \,ds,\quad t\ge t_{0}+\tau. $$

Lemma 2.3

Let x be an eventually positive solution of (1). Assume that:

\((H_{1})\):

the function \(p\in C^{1}([T_{0},\infty ),(0,\infty ))\);

\((H_{2})\):

\(p((2n+1)\tau )-p(2n\tau )=0, n\in \mathbb{N}\);

\((H_{3})\):

there exists \(T_{n}\in (2n\tau,(2n+1)\tau )\) such that \(p'(t)>0\) for \(t\in (T_{n}-\tau,T_{n})\) and \(p'(t)<0\) for \(t\in (T_{n},(2n+1)\tau ], n\in \mathbb{N}\);

\((H_{4})\):

\(\inf \{-\int _{T_{n}}^{(2n+1)\tau }(t-T_{n})p'(t) \,dt, n\in \mathbb{N} \}>0\).

Then

$$ \inf \bigl\{ R\bigl((2n+1)\tau \bigr), n\in \mathbb{N}\bigr\} >0. $$

Proof

We easily see that

$$\begin{aligned} &R\bigl((2n+1)\tau \bigr)\\ &\quad=- \int _{2n\tau }^{(2n+1)\tau } p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad=- \int _{2n\tau }^{T_{n}}p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt- \int _{T_{n}}^{(2n+1)\tau } p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad\ge - \int _{2n\tau }^{T_{n}}p'(t) \,dt \int _{t_{0}}^{T_{n}} \frac{x(s-r(s))}{x(s)} \,ds - \int _{T_{n}}^{(2n+1)\tau }p'(t) \,dt \int _{t_{0}}^{T_{n}} \frac{x(s-r(s))}{x(s)} \,ds \\ &\qquad{}- \int _{T_{n}}^{(2n+1)\tau }p'(t) \int _{T_{n}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad= \biggl(- \int _{2n\tau }^{T_{n}}p'(t) \,dt- \int _{T_{n}}^{(2n+1)\tau }p'(t) \,dt \biggr) \int _{t_{0}}^{T_{n}}\frac{x(s-r(s))}{x(s)} \,ds \\ &\qquad{}- \int _{T_{n}}^{(2n+1)\tau }p'(t) \int _{T_{n}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad=\bigl[p(2n \tau )-p\bigl((2n+1)\tau \bigr)\bigr] \int _{t_{0}}^{T_{n}} \frac{x(s-r(s))}{x(s)} \,ds - \int _{T_{n}}^{(2n+1)\tau }p'(t) \int _{T_{n}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad=- \int _{T_{n}}^{(2n+1)\tau }p'(t) \int _{T_{n}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt. \end{aligned}$$

Since \(x(t)\) is decreasing, \(x(t-r(t))\ge x(t), t\ge t_{0}+\tau \). Thus

$$\begin{aligned} R\bigl((2n+1)\tau \bigr)&\ge - \int _{T_{n}}^{(2n+1)\tau }p'(t) \int _{T_{n}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\ge - \int _{T_{n}}^{(2n+1)\tau }(t-T_{n})p'(t) \,dt,\quad n\in \mathbb{N}. \end{aligned}$$

In view of \((H_{4})\), we get \(\inf \{R((2n+1)\tau ), n\in \mathbb{N}\}>0\).

The proof of the lemma is complete. □

Theorem 2.1

Suppose that \((H_{1})\)\((H_{4})\) hold, \(r(t)\geq \tau, p(t)\) is periodic with period 2τ, and

$$\begin{aligned} & p'(t-\tau )-p'(t)>0, \quad t\in \bigl(T_{n},(2n+1)\tau \bigr), n\in \mathbb{N}, \end{aligned}$$
(5)
$$\begin{aligned} & \liminf_{t\to \infty } \int _{t-r(t)}^{t} p(s) \,ds>0. \end{aligned}$$
(6)

Then all solutions of (1) are oscillatory.

Proof

Assume that (1) has a positive solution x. The derivative of the function \(R(t)\) is

$$\begin{aligned} R'(t)={}&{-}p'(t) \int _{t_{0}}^{t}\frac{x(s-r(s))}{x(s)} \,ds+p'(t- \tau ) \int _{t_{0}}^{t-\tau } \frac{x(s-r(s))}{x(s)} \,ds \\ ={}&{-}p'(t) \int _{t-\tau }^{t}\frac{x(s-r(s))}{x(s)} \,ds-p'(t) \int _{t_{0}}^{t- \tau } \frac{x(s-r(s))}{x(s)} \,ds \\ &{}+ p'(t-\tau ) \int _{t_{0}}^{t-\tau }\frac{x(s-r(s))}{x(s)} \,ds\\ ={}&{-}p'(t) \int _{t-\tau }^{t} \frac{x(s-r(s))}{x(s)} \,ds \\ &{}+\bigl[p'(t-\tau )-p'(t)\bigr] \int _{t_{0}}^{t-\tau }\frac{x(s-r(s))}{x(s)} \,ds,\quad t\ge t_{0}+\tau. \end{aligned}$$

Condition (5) implies that \(R'(t)>0\) for \(t\in (T_{n},(2n+1)\tau )\). Thus the function \(R(t)\) is increasing on \((T_{n},(2n+1)\tau ), n\in \mathbb{N}\). Since \(R(T_{n})<0, n\in \mathbb{N}\), by Lemma 2.3 there exist \(t_{n}\in (T_{n},(2n+1)\tau )\) such that \(R(t_{n})=0, n\in \mathbb{N}\). Condition \((H_{4})\) implies that \(\inf \{(2n+1)\tau -T_{n}, n\in \mathbb{N}\}>0\). Put

$$ H(t)=p(t)-p(t-\tau ),\quad t\in \bigl(T_{n},(2n+1)\tau \bigr], n\in \mathbb{N}. $$

According to (5) and \((H_{2})\), we have

$$ H'(t)=p'(t)-p'(t-\tau )< 0,\quad t\in \bigl(T_{n},(2n+1)\tau \bigr), $$

and \(H((2n+1)\tau )=0, n\in \mathbb{N}\). Then

$$ H(t)=p(t)-p(t-\tau )>0 \quad\text{for } t\in \bigl(T_{n},(2n+1)\tau \bigr), n \in \mathbb{N}. $$
(7)

Now assume that

$$ t_{n}\le b_{n}=(2n+1)\tau -\varepsilon,\quad n\in \mathbb{N}, $$

where \(0<\varepsilon <\inf \{(2n+1)\tau -T_{n}, n\in \mathbb{N}\}\). In view of (4), we get

$$\begin{aligned} &\ln \frac{x(b_{n}-\tau )}{x(b_{n})}\\ &\quad=p(b_{n}) \int _{b_{n}-\tau }^{b_{n}} \frac{x(s-\tau )}{x(s)} \,ds \\ &\qquad{}+\bigl[p(b_{n})-p(b_{n}-\tau )\bigr] \int _{t_{0}}^{b_{n}-\tau } \frac{x(s-\tau )}{x(s)} \,ds+R(b_{n}),\quad b_{n}\ge t_{0}+\tau, n \in \mathbb{N}. \end{aligned}$$

Condition (6) implies that \(x(t-r(t))/x(t)\) is bounded [7]. Since \(x(t-r(t))/x(t)\ge x(t-\tau )/x(t)\), it is obvious that there exists a constant \(K>0\) such that \(x(t-\tau )/x(t)\le K, t\ge T\ge t_{0}+\tau \), where T is sufficiently large. Thus

$$\begin{aligned} \ln K\ge{} & p(b_{n}) \int _{b_{n}-\tau }^{b_{n}}\frac{x(s-r(s))}{x(s)} \,ds \\ &{}+\bigl[p(b_{n})-p(b_{n}-\tau )\bigr] \int _{t_{0}}^{b_{n}-\tau } \frac{x(s-r(s))}{x(s)} \,ds+R(b_{n}),\quad b_{n}\ge T. \end{aligned}$$
(8)

Otherwise, for sufficiently large \(b_{n}\ge T\), by (7) and the periodicity of \(p(t)\), we get

$$ \bigl[p(b_{n})-p(b_{n}-\tau )\bigr] \int _{t_{0}}^{b_{n}-\tau } \frac{x(s-r(s))}{x(s)} \,ds>\ln K, $$

which contradicts (8).

Now assume that there exists a sequence \(\{t_{n}\}\) such that

$$ t_{n}\to (2n+1)\tau \quad\text{as } n\to \infty,\qquad R(t_{n})=0,\quad t_{n} \in \bigl(T_{n},(2n+1)\tau \bigr), n\in \mathbb{N}. $$

Then

$$\begin{aligned} &R\bigl((2n+1)\tau \bigr)\\ &\quad=- \int _{2n\tau }^{(2n+1)\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad=- \int _{2n\tau }^{T_{n}}p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt - \int _{T_{n}}^{(2n+1)\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad=- \int _{t_{n}-\tau }^{T_{n}}p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt + \int _{t_{n}-\tau }^{2n\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\qquad{} - \int _{T_{n}}^{t_{n}}p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt - \int _{t_{n}}^{(2n+1)\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad=- \int _{t_{n}-\tau }^{t_{n}}p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt + \int _{t_{n}-\tau }^{2n\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\qquad{} - \int _{t_{n}}^{(2n+1)\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt\\ &\quad=R(t_{n})+ \int _{t_{n}-\tau }^{2n\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt - \int _{t_{n}}^{(2n+1)\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\quad= \int _{t_{n}-\tau }^{2n\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt \\ &\qquad{}- \int _{t_{n}}^{(2n+1)\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt,\quad n\in \mathbb{N}. \end{aligned}$$

Since \(t_{n}\to (2n+1)\tau \quad\text{as } n\to \infty \), clearly,

$$ \int _{t_{n}-\tau }^{2n\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt\to 0 $$

and

$$ - \int _{t_{n}}^{(2n+1)\tau }p'(t) \int _{t_{0}}^{t} \frac{x(s-r(s))}{x(s)} \,ds \,dt\to 0. $$

Thus

$$ R\bigl((2n+1)\tau \bigr)\to 0 \quad\text{as } t_{n}\to (2n+1)\tau \text{ and } n \to \infty. $$

This contradicts \(\inf \{R((2n+1)\tau ), n\in \mathbb{N}\}>0\).

The proof of the theorem is complete. □

Example

Consider the delay differential equation

$$ x'(t)+ \biggl(\frac{a}{\pi e}+\delta \sin at \biggr)x \biggl(t-\frac{\pi }{a} \biggr)=0,\quad t\ge 0, $$
(9)

where \(a>0, \delta \in (0,\frac{a}{\pi e} )\).

Equation (9) is a particular case of (1) when \(r(t)=\tau =\frac{\pi }{a}, T_{0}=0\), and

$$ p(t)=\frac{a}{\pi e}+\delta \sin at. $$

It is easy to see that \((H_{1})\) is satisfied. For condition \((H_{2})\), we have

$$\begin{aligned} &p\bigl((2n+1)\tau \bigr)-p(2n\tau )\\ &\quad=\frac{a}{\pi e}+\delta \sin a(2n+1) \frac{\pi }{a}-\frac{a}{\pi e} -\delta \sin a2n\frac{\pi }{a} \\ &\quad=\delta \bigl[\sin (2n+1)\pi -\sin 2n\pi \bigr]=0,\quad n\in \mathbb{N}. \end{aligned}$$

In condition \((H_{3}), T_{n}=(2n+0.5)\frac{\pi }{a}\), and

$$\begin{aligned} &p'(t)=a\delta \cos at>0 \quad\text{for } t\in \biggl((2n-0.5) \frac{\pi }{a},(2n+0.5)\frac{\pi }{a} \biggr), \\ &p'(t)< 0 \quad\text{for } t\in \biggl((2n+0.5)\frac{\pi }{a},(2n+1) \frac{\pi }{a} \biggr], n\in \mathbb{N}. \end{aligned}$$

For condition \((H_{4})\), we get

$$\begin{aligned} &-a\delta \int _{(2n+0.5)\frac{\pi }{a}}^{(2n+1)\frac{\pi }{a}} \biggl(t-(2n+0.5) \frac{\pi }{a} \biggr) \cos at \,dt \\ &\quad=a\delta (2n+0.5)\frac{\pi }{a} \int _{(2n+0.5)\frac{\pi }{a}}^{(2n+1) \frac{\pi }{a}}\cos at \,dt -a\delta \int _{(2n+0.5)\frac{\pi }{a}}^{(2n+1) \frac{\pi }{a}}t\cos at \,dt \\ &\quad=\delta (2n+0.5)\frac{\pi }{a}\bigl[\sin (2n+1)\pi -\sin (2n+0.5)\pi \bigr] -a \delta \biggl[\frac{1}{a^{2}}\cos (2n+1)\pi \\ &\qquad{}+\frac{1}{a}(2n+1)\frac{\pi }{a}\sin (2n+1)\pi -\frac{1}{a^{2}} \cos (2n+0.5) \pi -\frac{1}{a}(2n+0.5)\frac{\pi }{a}\sin (2n+0.5)\pi \biggr]\\ &\quad=-\delta (2n+0.5) \frac{\pi }{a} -a\delta \biggl[-\frac{1}{a^{2}} -\frac{1}{a}(2n+0.5)\frac{\pi }{a} \biggr]\\ &\quad=-\delta (2n+0.5) \frac{\pi }{a} -\delta \biggl[-\frac{1}{a}-(2n+0.5)\frac{\pi }{a} \biggr]= \frac{\delta }{a}. \end{aligned}$$

Thus

$$\begin{aligned} &\inf \biggl\{ - \int _{T_{n}}^{(2n+1)\tau }(t-T_{n})p'(t) \,dt, n\in \mathbb{N} \biggr\} \\ &\quad=\inf \biggl\{ -a\delta \int _{(2n+0.5)\frac{\pi }{a}}^{(2n+1) \frac{\pi }{a}} \biggl(t-(2n+0.5)\frac{\pi }{a} \biggr)\cos at \,dt, n\in \mathbb{N} \biggr\} =\frac{\delta }{a}>0. \end{aligned}$$

In addition, we have

$$\begin{aligned} p'(t-\tau )-p'(t)&=p' \biggl(t- \frac{\pi }{a} \biggr)-p'(t)=a\delta \cos a \biggl(t- \frac{\pi }{a} \biggr) -a\delta \cos at \\ &=a\delta \bigl[\cos (at-\pi )-\cos at\bigr]=a\delta (-\cos at-\cos at) \\ &=-2a\delta \cos at>0 \quad \text{for } t\in \biggl((2n+0.5) \frac{\pi }{a},(2n+1)\frac{\pi }{a} \biggr),\quad n\in \mathbb{N}, \end{aligned}$$

that is, condition (5) is satisfied. Also,

$$\begin{aligned} & \int _{t-\frac{\pi }{a}}^{t} \biggl(\frac{a}{\pi e}+\delta \sin as \biggr) \,ds\\ &\quad=\frac{a}{\pi e}t -\frac{\delta }{a}\cos at-\frac{a}{\pi e} \biggl(t- \frac{\pi }{a} \biggr) +\frac{\delta }{a}\cos a \biggl(t- \frac{\pi }{a} \biggr) \\ &\quad=-\frac{\delta }{a}\cos at+\frac{1}{e}+\frac{\delta }{a}\cos (at-\pi )= \frac{1}{e} -\frac{\delta }{a}\cos at-\frac{\delta }{a}\cos at \\ &\quad=\frac{1}{e}-\frac{2\delta }{a}\cos at. \end{aligned}$$

Therefore

$$\begin{aligned} \liminf_{t\to \infty } \int _{t-\frac{\pi }{a}}^{t} p(s) \,ds&=\liminf _{t \to \infty } \int _{t-\frac{\pi }{a}}^{t} \biggl(\frac{a}{\pi e}+\delta \sin as \biggr) \,ds \\ &=\frac{1}{e}-\frac{2\delta }{a}>0,\quad \delta \in \biggl(0, \frac{a}{\pi e} \biggr), \end{aligned}$$

so that all conditions of Theorem 2.1 are satisfied, which means that all solutions of (9) are oscillatory.

Observe, however, that

$$ \limsup_{t\rightarrow \infty } \int _{t- \frac{\pi }{a}}^{t}p(s)\,ds=\frac{1}{e}+ \frac{2\delta }{a}< \frac{\pi +2}{\pi e}< 1,\quad \delta \in \biggl( 0,\frac{a}{\pi e} \biggr) $$

and

$$ \liminf_{t\rightarrow \infty } \int _{t-\frac{\pi }{a}}^{t}p(s)\,ds=\frac{1}{e}- \frac{2\delta }{a}< \frac{1}{e},\quad\delta \in \biggl( 0,\frac{a}{\pi e} \biggr), $$

which means that conditions (2) and (3) are not satisfied.

Moreover, the function \(f(t)\) is not slowly varying at infinity. Indeed,

$$ f(t)= \int _{t-\frac{\pi }{a}}^{t} p(s) \,ds=\frac{1}{e}- \frac{2\delta }{a}\cos at, \quad\delta \in \biggl(0,\frac{a}{\pi e} \biggr), $$

and

$$\begin{aligned} f(t+s)-f(t)&=-\frac{2\delta }{a}\cos a(t+s)+\frac{2\delta }{a}\cos at \\ &=\frac{2\delta }{a}\bigl[\cos at-\cos a(t+s)\bigr],\quad s\in \mathbb{R}. \end{aligned}$$

For \(s=\pi /a\), we get

$$\begin{aligned} f \biggl(t+\frac{\pi }{a} \biggr)-f(t)&=\frac{2\delta }{a} \biggl[\cos at - \cos a \biggl(t+\frac{\pi }{a} \biggr) \biggr] \\ &=\frac{2\delta }{a}[\cos at+\cos at]=\frac{4\delta }{a}\cos at \not \to 0 \quad\text{as } t\to \infty, \delta \in \biggl(0, \frac{a}{\pi e} \biggr). \end{aligned}$$

Thus Theorem 1.1 cannot be applied. Recall (see, e.g., [3, 12]) that a function \(f: [t_{0},\infty )\to \mathbb{R}\) is slowly varying at infinity if for every \(s\in \mathbb{R}\),

$$ f(t+s)-f(t)\to 0 \quad\text{as } t\to \infty. $$

Availability of data and materials

Data sharing is not applicable to this paper as no datasets were generated or analyzed during the current study.

References

  1. Džurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293(5), 910–922 (2020)

    Article  Google Scholar 

  2. Erbe, L.H., Kong, Q., Zhang, B.G.: Oscillation Theory for Functional Differential Equations. Dekker, New York (1995)

    MATH  Google Scholar 

  3. Garab, A., Pituk, M., Stavroulakis, I.P.: A sharp oscillation criterion for a linear delay differential equation. Appl. Math. Lett. 93, 58–65 (2019)

    Article  MathSciNet  Google Scholar 

  4. Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Oxford University Press, New York (1991)

    MATH  Google Scholar 

  5. Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018, 8237634 (2018)

    Article  Google Scholar 

  6. Chatzarakis, G.E., Grace, S.R., Jadlovská, I., Li, T., Tunç, E.: Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, 5691758 (2019)

    Article  Google Scholar 

  7. Koplatadze, R.G., Chanturija, T.A.: On the oscillatory and monotonic solutions of first order differential equations with deviating arguments. Differ. Uravn. 18, 1463–1465 (1982)

    Google Scholar 

  8. Ladas, G.: Sharp conditions for oscillations caused by delays. Appl. Anal. 9(2), 93–98 (1979)

    Article  MathSciNet  Google Scholar 

  9. Ladas, G., Lakshmikantham, V., Papadakis, L.S.: Oscillations of higher-order retarded differential equations generated by the retarded arguments. In: Schmitt, K. (ed.) Delay and Functional Differential Equations and Their Applications, pp. 219–231. Academic Press, New York (1972)

    Chapter  Google Scholar 

  10. Li, T., Rogovchenko, Y.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 105(106293), 1–7 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Li, T., Rogovchenko, Y.V.: Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 61, 35–41 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ash, J.M., Erdös, P., Rubel, L.A.: Very slowly varying functions. Aequ. Math. 10, 1–9 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their help to improve the manuscript.

Funding

The first author was supported by the Special Account for Research of ASPETE through the funding program Strengthening research of ASPETE faculty members.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have read and approved the final manuscript.

Corresponding author

Correspondence to George E. Chatzarakis.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzarakis, G.E., Dorociaková, B. & Olach, R. An oscillation criterion of linear delay differential equations. Adv Differ Equ 2021, 85 (2021). https://doi.org/10.1186/s13662-021-03246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03246-7

MSC

Keywords