Skip to main content

On fractional \((p,q)\)-calculus

Abstract

In this paper, the new concepts of \((p,q)\)-difference operators are introduced. The properties of fractional \((p,q)\)-calculus in the sense of a \((p,q)\)-difference operator are introduced and developed.

Introduction

The q-difference operator was first studied by Jackson [1] and was considered by many researchers (see more information in [25]. There are recent works related to q-calculus as seen in [68]. The knowledge of q-calculus and difference equations can be applied to physical problems such as molecular problems [9], elementary particle physics, and chemical physics [1013]. Then, the q-field theory was presented in 1995 [14]. In 1996, the q-Coulomb problem and q-hydrogen atom were investigated by [1518]. Moreover, Yang–Mills theories and Yang–Mills equation were presented as seen in [1921]. The theory of quantum group was applied to vibration and rotation molecules with q-algebra and q-Heisenberg algebra technique [2224]. In 1988, Siegel [25] presented the string theory involving q-calculus.

In the last three decades, applications of q-calculus have been studied and investigated intensively. Inspired and motivated by these applications, many researchers have developed the theory of quantum calculus based on two-parameter \((p, q)\)-integer which is used efficiently in many fields such as difference equations, Lie group, hypergeometric series, physical sciences, and so on. The \((p,q)\)-calculus was first studied in quantum algebras by Chakrabarti and Jagannathan [26]. For some results on the study of \((p,q)\)-calculus, we refer to [2738]. For example, Sadjang [30] investigated the fundamental theorem of \((p,q)\)-calculus and some \((p,q)\)-Taylor formulas; the boundary value problems for \((p,q)\)-difference equations were initiated in [35, 36]; and we see the concept of \((p,q)\)-Beta and \((p,q)\)-gamma functions in [37, 38]. We can see the applications of \((p,q)\)-calculus in [3944]. For example, Mursaleen et al. [3941] investigated some approximation results by using the \((p,q)\)-analogue of Bernstein–Stancu operators, Bleimann–Butzer–Hahn operators, and Lorentz polynomials on a compact disk. Convergence of iterates of \((p,q)\)-Bernstein operator and convergence of Lupaş \((p,q)\)-Bernstein operator are found in [42, 43]. Recently, Nasiruzzaman et al. [44] studied some Opial-type integral inequalities via \((p,q)\)-calculus.

The study of fractional calculus in discrete settings was initiated in [4547]. Agarwal [45] and Al-Salam [46] introduced fractional q-difference calculus, while Díaz and Osler [47] studied fractional difference calculus. Recently, Brikshavana and Sitthiwirattham [48] introduced fractional Hahn difference calculus. In addition, Patanarapeelert and Sitthiwirattham [49] discussed fractional symmetric Hahn difference calculus. Although many interesting results related to discrete analogues of some topics of continuous fractional calculus have been studied, the theory of discrete fractional calculus remains much less developed than that of continuous fractional calculus.

In particular, the fractional \((p,q)\)-difference equations have not been studied. The gap mentioned above is the motivation for this research. The aim of this paper is to introduce new concepts of \((p,q)\)-integral, and some fundamental properties are studied in the first part of this note. Then, we consider the fractional \((p,q)\)-difference operators of the Riemann–Liouville and Caputo types. A study of this fractional \((p,q)\)-calculus is expected to be of great importance in the development of the \((p,q)\)-function theory, which plays an important role in analysis and applications.

Preliminary definitions and properties

In this section, we provide basic definitions, notations, and lemmas that will be used in this study. Letting \(0< q< p\leq 1\), we define

$$\begin{aligned} &{[k]}_{p,q} := \textstyle\begin{cases} \frac{p^{k}-q^{k}}{p-q}=p^{k-1}[k]_{\frac{q}{p}}, & \text{$k \in \mathbb{N}$}, \\ 1, & \text{$k=0$}, \end{cases}\displaystyle \\ &{[k]}_{p,q}!:= \textstyle\begin{cases} {[k]}_{p,q}{[k-1]}_{p,q}\cdot \cdot \cdot {[1]}_{p,q}=\prod_{i=1}^{k}\frac{p ^{i}-q^{i}}{p-q}, & \text{$k \in \mathbb{N}$}, \\ 1, & \text{$k=0$}. \end{cases}\displaystyle \end{aligned}$$

The \((p,q)\)-forward jump operator and the \((p,q)\)-backward jump operator are defined as follows:

$$\sigma ^{k}_{p,q}(t):= \biggl(\frac{q}{p} \biggr)^{k}t \quad \text{and}\quad \rho ^{k}_{p,q}(t):= \biggl(\frac{p}{q} \biggr)^{k}t \quad \text{for } k\in {\mathbb{N}}, \text{ respectively}. $$

The q-analogue of the power function \({(a-b)}_{q}^{\underline{n}}\) with \(n\in \mathbb{N}_{0}:=\{0,1,2,\ldots\}\) is given by

$$ (a-b)_{q}^{\underline{0}}:=1,\qquad (a-b)_{q}^{\underline{n}}:= \prod_{i=0}^{n-1} \bigl(a-bq^{i} \bigr),\quad a,b\in \mathbb{R}. $$

The \((p,q)\)-analogue of the power function \((a-b)_{p,q}^{ \underline{n}}\) with \(n\in \mathbb{N}_{0}\) is given by

$$ (a-b)_{p,q}^{\underline{0}}:=1, \qquad (a-b)_{p,q}^{\underline{n}}:= \prod_{k=0}^{n-1} \bigl(ap^{k}-bq^{k} \bigr),\quad a,b\in \mathbb{R}. $$

If \(\alpha \in \mathbb{R}\), we have a general form:

$$ (a-b)_{q}^{\underline{\alpha }}= a^{\alpha }\prod _{i=0}^{\infty } \frac{1- (\frac{b}{a} )q ^{i}}{1- (\frac{b}{a} )q^{\alpha +i}},\quad a\neq 0. $$

Since

$$\begin{aligned} (a-b)_{p,q}^{\underline{n}} = \prod_{i=0}^{n-1} \bigl(ap^{i}-bq^{i}\bigr) = \Biggl( \prod _{i=0}^{n-1} p ^{i} \Biggr) \Biggl( \prod _{i=0}^{n-1} \biggl[ a-b \biggl( \frac{q}{p} \biggr) ^{i} \biggr] \Biggr) =p^{{n \choose 2}}(a-b)_{ \frac{q}{p}}^{\underline{n}}, \end{aligned}$$

where \({n \choose k}=\frac{\varGamma (n+1)}{\varGamma (k+1)\varGamma (n-k+1)}\), and

$$\begin{aligned} (a-b)_{p,q}^{\underline{n}}& = \prod_{i=0}^{n-1} \bigl(ap^{i}-bq^{i}\bigr) = a^{n}\prod _{i=0}^{n-1} p^{i} \biggl[ 1- \frac{b}{a} \biggl( \frac{q}{p} \biggr) ^{i} \biggr] \\ &= a^{n}\prod_{i=0}^{n-1} p^{i} \biggl[ 1-\frac{b}{a} \biggl( \frac{q}{p} \biggr) ^{i} \biggr] \cdot \frac{\prod_{j=n}^{\infty } p ^{j} [ 1-\frac{b}{a} ( \frac{q}{p} ) ^{j} ] }{ \prod_{j=n}^{\infty } p^{j} [ 1-\frac{b}{a} ( \frac{q}{p} ) ^{j} ] } \\ &= a^{n}\frac{ \prod_{i=0}^{\infty } p^{i} [ 1-\frac{b}{a} ( \frac{q}{p} ) ^{i} ] }{\prod_{i=0}^{\infty } p^{i+n} [ 1-\frac{b}{a} ( \frac{q}{p} ) ^{i+n} ] } = a^{n}\prod _{i=0}^{\infty } \frac{1}{p^{n}} \biggl[ \frac{1- \frac{b}{a} ( \frac{q}{p} ) ^{i} }{1-\frac{b}{a} ( \frac{q}{p} ) ^{i+n}} \biggr], \end{aligned}$$

we obtain

$$ {(a-b)}_{p,q}^{\underline{\alpha }}= p^{{\alpha \choose 2}}(a-b)_{ \frac{q}{p}}^{\underline{\alpha }} = a^{\alpha }\prod_{i=0}^{\infty } \frac{1}{p^{\alpha }} \biggl[ \frac{1- \frac{b}{a} ( \frac{q}{p} ) ^{i} }{1-\frac{b}{a} ( \frac{q}{p} ) ^{i+\alpha }} \biggr],\quad a\neq 0. $$

Note that \(a_{q}^{\underline{\alpha}} ={a}_{p,q}^{\underline{\alpha}} = a^{\alpha}\) and \((0)_{q}^{\underline{\alpha}}={(0)}_{p,q}^{\underline{\alpha}}=0\) for \(\alpha >0\).

Lemma 2.1

For \(\alpha,\beta,\gamma,\lambda \in {\mathbb{R}}\)and \(I_{p,q} ^{T}:= \lbrace \frac{q^{k}}{p^{k+1}}T:k\in \mathbb{N}_{0} \rbrace \cup \lbrace 0 \rbrace \),

  1. (a)

    \((\gamma \beta -\gamma \lambda )_{p,q}^{\underline{ \alpha }}=\gamma ^{\alpha }(\beta -\lambda )_{p,q}^{\underline{\alpha }}\),

  2. (b)

    \((\beta -\gamma )_{p,q}^{\underline{\alpha +\gamma}}=\frac{1}{p ^{\alpha \gamma }}(\beta -\gamma )_{p,q}^{\underline{\alpha}}(p^{ \alpha }\beta -q^{\alpha }\lambda )_{p,q}^{\underline{\gamma}}\),

  3. (c)

    \((t-s)_{p,q}^{\underline{\alpha}}=0, \alpha \notin {\mathbb{N}}_{0}, t\geq s \), and \(t,s \in I_{p,q}^{T} \).

Proof

For \(\alpha,\beta,\gamma,\lambda \in {\mathbb{R}}\) and \(0< q< p\leq 1\), we have

$$\begin{aligned} (\gamma \beta -\gamma \lambda )_{p,q}^{\underline{\alpha}} = ( \gamma \beta )^{\alpha } \prod_{i=0}^{\infty } \frac{1}{p^{\alpha }} \biggl[ \frac{1-\frac{ \lambda }{\beta } ( \frac{q}{p} ) ^{i} }{1-\frac{\lambda }{ \beta } ( \frac{q}{p} ) ^{i+\alpha }} \biggr] = \gamma ^{\alpha }( \beta -\lambda )_{p,q}^{\underline{\alpha }}, \end{aligned}$$

and

$$\begin{aligned} (\beta -\gamma )_{p,q}^{\underline{\alpha +\gamma }} &= \beta ^{\alpha +\gamma } \prod _{i=0}^{\infty } \frac{1}{p^{\alpha +\gamma }} \biggl[ \frac{1-\frac{ \gamma }{\beta } ( \frac{q}{p} ) ^{i} }{1-\frac{\gamma }{ \beta } ( \frac{q}{p} ) ^{i+\alpha +\gamma }} \biggr] \\ &= \beta ^{\alpha +\gamma } \frac{ \prod_{i=0}^{\infty } \frac{1}{p ^{\alpha +\gamma }} [ 1-\frac{\gamma }{\beta } ( \frac{q}{p} ) ^{i} ] }{ \prod_{i=0}^{\infty } [ 1-\frac{ \gamma }{\beta } ( \frac{q}{p} ) ^{i+\alpha +\gamma } ] }\cdot \frac{ \prod_{i=0}^{\infty } [ 1-\frac{\gamma }{ \beta } ( \frac{q}{p} ) ^{i+\alpha } ]}{ \prod_{i=0} ^{\infty } [ 1-\frac{\gamma }{\beta } ( \frac{q}{p} ) ^{i+\alpha } ]} \\ &= \frac{1}{p^{\alpha \gamma }}\cdot \beta ^{\alpha } \prod _{i=0}^{ \infty } \frac{1}{p^{\alpha }} \frac{ [ 1-\frac{\gamma }{\beta } ( \frac{q}{p} ) ^{i} ] }{ [ 1-\frac{\gamma }{\beta } ( \frac{q}{p} ) ^{i+\alpha } ] } \cdot \bigl(p ^{\alpha }\beta \bigr)^{\gamma }\prod _{i=0}^{\infty } \frac{1}{p^{\gamma }} \frac{ [ 1-\frac{q^{\alpha }\gamma }{p ^{\alpha }\beta } ( \frac{q}{p} ) ^{i} ]}{ [ 1-\frac{q ^{\alpha }\gamma }{p^{\alpha }\beta } ( \frac{q}{p} ) ^{i+ \gamma } ]} \\ &= \frac{1}{p^{\alpha \gamma }} (\beta -\gamma )_{p,q}^{\underline{ \alpha }} \bigl(p^{\alpha }\beta -q^{\alpha }\lambda \bigr)_{p,q}^{\underline{ \gamma }}. \end{aligned}$$

So, (a) and (b) hold.

Letting \(t,s \in I_{p,q}^{T}\), there exist \(m,n \in \mathbb{N}_{0}\) such that \(t=\frac{q^{m}}{p^{m+1}}T, s=\frac{q^{n}}{p^{n+1}}T\), where \(t\geq s, m\leq n\), and

$$\begin{aligned} (t-s)_{p,q}^{\underline{\alpha }}& = \biggl( \frac{q^{m}}{p^{m+1}}T- \frac{q ^{n}}{p^{n+1}}T \biggr)_{p,q}^{\underline{\alpha }} \\ &= \biggl( \frac{q^{m}}{p^{m+1}} T \biggr)^{\alpha }\prod _{i=0}^{ \infty }\frac{1}{p^{\alpha }} \biggl[ \frac{ 1- ( \frac{q}{p} ) ^{i+m-n} }{ 1- ( \frac{q}{p} )^{i+m-n+\alpha } } \biggr] =0. \end{aligned}$$

Hence, (c) holds. □

Lemma 2.2

For \(m,n\in {\mathbb{N}}_{0}\), \(\alpha \in \mathbb{R}\), and \(0< q< p\leq 1\),

  1. (a)

    \({ (t-\sigma _{p,q}^{n}(t) )}_{p,q}^{\underline{ \alpha }}=t^{\alpha } ( 1- ( \frac{q}{p} ) ^{n} ) _{p,q}^{\underline{\alpha}}\),

  2. (b)

    \({ (\sigma _{p,q}^{m}(t)-\sigma _{p,q}^{n}(t) )} _{p,q}^{\underline{\alpha}}= ( \frac{q}{p} ) ^{m\alpha }t ^{\alpha } ( 1- ( \frac{q}{p} ) ^{n-m} )_{p,q} ^{\underline{\alpha }}\).

Proof

For \(m,n\in {\mathbb{N}}_{0}\) and \(\alpha \in \mathbb{R}\), we have

$$\begin{aligned} { \bigl(t-\sigma _{p,q}^{n}(t) \bigr)}_{p,q}^{\underline{\alpha }} = t ^{\alpha }\prod_{i=0}^{\infty } \frac{1}{p^{\alpha }} \biggl[ \frac{1- ( \frac{q}{p} ) ^{n} ( \frac{q}{p} ) ^{i} }{1 - ( \frac{q}{p} ) ^{n} ( \frac{q}{p} ) ^{i+ \alpha } } \biggr] = t^{\alpha } \biggl( 1- \biggl( \frac{q}{p} \biggr) ^{n} \biggr) _{p,q}^{\underline{\alpha }} \end{aligned}$$

and

$$\begin{aligned} { \bigl( \sigma _{p,q}^{m}(t)-\sigma _{p,q}^{n}(t) \bigr) }_{p,q}^{\underline{ \alpha }} &= \bigl( \sigma _{p,q}^{m}(t) \bigr) ^{\alpha }\prod_{i=0}^{\infty } \frac{1}{p^{\alpha }} \biggl[ \frac{1- ( \frac{q}{p} ) ^{n-m} ( \frac{q}{p} ) ^{i} }{1 - ( \frac{q}{p} ) ^{n-m} ( \frac{q}{p} ) ^{i+ \alpha } } \biggr] \\ &= \biggl( \frac{q}{p} \biggr) ^{m\alpha }t^{\alpha } \biggl( 1- \biggl( \frac{q}{p} \biggr) ^{n-m} \biggr)_{p,q}^{\underline{\alpha }}. \end{aligned}$$

So, (a) and (b) hold. □

The \((p,q)\)-gamma and \((p,q)\)-beta functions are defined by

$$\begin{aligned} &{\varGamma }_{p,q}(x) := \textstyle\begin{cases} \frac{(p-q)_{p,q}^{\underline{x-1}}}{(p-q)^{x-1}} = \frac{ (1- \frac{q}{p} )_{p,q}^{\underline{x-1}}}{ (1-\frac{q}{p} ) ^{x-1}}, & \text{$x\in \mathbb{R}\setminus \{0,-1,-2,\ldots\}$}, \\ {[x-1]}_{p,q}!, & \text{$x\in \mathbb{N}$}, \end{cases}\displaystyle \\ &{B}_{p,q}(x,y):= \int _{0}^{1} t^{x-1}(1-qt)_{p,q}^{\underline{y-1}} \,d _{p,q}t= p^{\frac{1}{2}(y-1)(2x+y-2)}\frac{{\varGamma }_{p,q}(x){\varGamma }_{q}{p,q}(y)}{{\varGamma }_{p,q}(x+y)}, \end{aligned}$$

respectively.

Definition 2.1

For \(0< q< p\leq 1\) and \(f:[0,T]\rightarrow {\mathbb{R}}\), we define the \((p,q)\)-difference of f as

$$ D_{p,q}f(t):=\frac{f(pt )-f(qt)}{(p-q)(t)}\quad \text{for } t\neq 0, $$

where \(D_{p,q}f(0)=f'(0)\), provided that f is differentiable at 0. We say that f is \((p,q)\)-differentiable on \(I_{p,q}^{T}\) if \(D_{p,q}f(t)\) exists for all \(t \in I_{p,q}^{T}\).

Lemma 2.3

([30])

Let \(f,g\)be \((p,q)\)-differentiable on \(I_{p,q}^{T}\). The properties of \((p,q)\)-difference operator are as follows:

  1. (a)

    \(D_{p,q}[f(t)+g(t)]=D_{p,q}f(t)+D_{p,q}g(t)\),

  2. (b)

    \(D_{p,q}[\alpha f(t)]=\alpha D_{p,q}f(t) \)for \(\alpha \in {\mathbb{R}}\),

  3. (c)

    \(D_{p,q}[f(t)g(t)]=f(pt)D_{p,q}g(t)+g(qt)D_{p,q}f(t)=g(pt)D _{p,q}f(t)+f(qt)D_{p,q}g(t)\),

  4. (d)

    \(D_{p,q} [ \frac{f(t)}{g(t)} ] =\frac{g(qt)D _{p,q}f(t)-f(qt)D_{p,q}g(t)}{g(pt)g(qt)} =\frac{g(pt)D_{p,q}f(t)-f(pt)D _{p,q}g(t)}{g(pt)g(qt)} \)for \(g(pt)g(qt)\neq 0\).

Lemma 2.4

Let \(t\in I_{p,q}^{T}, 0< q< p\leq 1, \alpha \geq 1\), and \({a \in \mathbb{R}}\). Then

  1. (a)

    \(D_{p,q}(t-a)_{p,q}^{\underline{\alpha }}=[\alpha ]_{p,q} ( pt-a ) _{p,q}^{\underline{\alpha -1}}\),

  2. (b)

    \(D_{p,q}(a-t)_{p,q}^{\underline{\alpha }}=-[\alpha ]_{p,q} ( a-qt ) _{p,q}^{\underline{\alpha -1}}\).

Proof

Since \(D_{p,q}f (\frac{t}{q} ) =\frac{f (\frac{p}{q}t )-f(t)}{ (p-q )\frac{t}{q}}\), we have

$$\begin{aligned} &D_{p,q} \biggl( \frac{t}{q}-a \biggr)_{p,q}^{\underline{\alpha }} \\ &\quad = \frac{1}{ (p-q )\frac{t}{q}} \biggl\lbrace \biggl( \frac{p}{q}t-a \biggr)_{p,q}^{\underline{\alpha }} - ( t-a ) _{p,q}^{\underline{\alpha }} \biggr\rbrace \\ &\quad = \frac{1}{ (p-q )\frac{t}{q}} \Biggl\lbrace \biggl( \frac{p}{q}t \biggr)^{\alpha }p^{{\alpha \choose 2}} \prod_{i=0}^{ \infty } \biggl[ \frac{1-\frac{a}{t} (\frac{q}{p} )^{i+1} }{1-\frac{a}{t} (\frac{q}{p} )^{i+\alpha +1}} \biggr] - t ^{\alpha }p^{{\alpha \choose 2}} \prod _{i=0}^{\infty } \biggl[ \frac{1- \frac{a}{t} (\frac{q}{p} )^{i} }{1-\frac{a}{t} (\frac{q}{p} )^{i+\alpha }} \biggr] \Biggr\rbrace \\ &\quad = \frac{p^{{\alpha \choose 2}}}{ (p-q )\frac{t}{q}} \biggl\lbrace \biggl( \frac{p}{q}t \biggr)^{\alpha }\frac{ \prod_{i=0} ^{\infty } [1-\frac{a}{t} (\frac{q}{p} )^{i+1} ] }{\prod_{i=0}^{\infty } [1-\frac{a}{t} (\frac{q}{p} )^{i+\alpha +1} ] } \cdot \biggl[ \frac{ 1-\frac{a}{t} (\frac{q}{p} )^{\alpha }}{ 1-\frac{a}{t} (\frac{q}{p} )^{\alpha }} \biggr] - t^{\alpha }\frac{ \prod_{i=0}^{\infty } [1-\frac{a}{t} (\frac{q}{p} )^{i} ]}{\prod_{i=0}^{\infty } [1-\frac{a}{t} (\frac{q}{p} )^{i+ \alpha } ] } \biggr\rbrace \\ &\quad = p^{{\alpha \choose 2}+1} \biggl( \frac{p}{q}t \biggr)^{\alpha -1} \frac{ \prod_{i=0}^{\infty } [1-\frac{a}{t} (\frac{q}{p} ) ^{i+1} ]}{\prod_{i=0}^{\infty } [1-\frac{a}{t} (\frac{q}{p} )^{i+\alpha } ] } \biggl\lbrace \frac{ [1- \frac{a}{t} (\frac{q}{p} ) ^{\alpha } ] - ( \frac{p}{q}t )^{\alpha } [1- \frac{a}{t} ] }{p-q} \biggr\rbrace \\ &\quad = p^{{\alpha \choose 2}+1} \biggl( \frac{p}{q}t \biggr)^{\alpha -1} \prod _{i=0}^{\infty } \biggl[ \frac{ 1-\frac{a}{t} (\frac{q}{p} ) ^{i+1} }{ 1-\frac{a}{t} (\frac{q}{p} )^{i+\alpha }} \biggr] \biggl\lbrace \frac{[\alpha ]_{p,q}}{p^{\alpha }} \biggr\rbrace \\ &\quad = [\alpha ]_{p,q}p^{{\alpha -1 \choose 2}} \biggl( \frac{p}{q}t \biggr) ^{\alpha -1} \prod_{i=0}^{\infty } \biggl[ \frac{1-\frac{qa}{pt} (\frac{q}{p} )^{i}}{1-\frac{qa}{pt} (\frac{q}{p} )^{i+\alpha -1}} \biggr] \\ &\quad = [\alpha ]_{p,q} ( pt-a ) _{p,q}^{\underline{\alpha -1}}. \end{aligned}$$

So, (a) holds. Proceeding similarly as above, we obtain

$$ D_{p,q} \biggl( a-\frac{t}{q} \biggr) _{p,q}^{\underline{\alpha }}=-[ \alpha ]_{p,q} ( a-t ) _{p,q}^{\underline{\alpha -1}}. $$

Hence, (b) holds. □

Definition 2.2

Let I be any closed interval of \(\mathbb{R}\) containing \(a,b\), and 0. Assuming that \(f:I\rightarrow \mathbb{R}\) is a given function, we define \((p,q)\)-integral of f from a to b by

$$ \int _{a}^{b} f(t)\,d_{p,q}t:= \int _{0}^{b} f(t)\,d_{p,q}t- \int _{0}^{a} f(t)\,d _{p,q}t, $$

where

$$\begin{aligned} {\mathcal{I}}_{p,q}f(x)= \int _{0}^{x} f(t)\,d_{p,q}t= (p-q)x\sum _{k=0}^{\infty } \frac{q^{k}}{p ^{k+1}}f \biggl( \frac{q^{k}}{p^{k+1}}x \biggr),\quad x\in I, \end{aligned}$$

provided that the series converges at \(x=a\) and \(x=b\). f is called \((p,q)\)-integrable on \([a,b]\). We say that f is \((p,q)\)-integrable on I if it is \((p,q)\)-integrable on \([a,b]\) for all \(a,b\in I\).

Next, we define an operator \({{\mathcal{I}}}_{p,q}^{N} \) as

$$ {{\mathcal{I}}}_{p,q}^{0}f(x)=f(x)\quad \text{and}\quad {{ \mathcal{I}}}_{p,q}^{N} f(x)={{\mathcal{I}}}_{p,q} {{\mathcal{I}}} _{p,q}^{N-1} f(x), \quad N\in {\mathbb{N}}. $$

The following are the properties of \((p,q)\)-difference and \((p,q)\)-integral operators:

$$ {D}_{p,q}{{\mathcal{I}}}_{p,q}f(x)=f(x)\quad \text{and}\quad {{ \mathcal{I}}}_{p,q}{D}_{p,q} f(x)=f(x)-f(0). $$

Lemma 2.5

([30])

Let \(0< q< p\leq 1\), \(a,b \in I_{p,q}^{T}\), and \(f,g\)be \((p,q)\)-integrable on \(I_{p,q}^{T}\). Then the following formulas hold:

  1. (a)

    \(\int _{a}^{a} f(t)\,d_{p,q}t=0\),

  2. (b)

    \(\int _{a}^{b} \alpha f(t)\,d_{p,q}t=\alpha \int _{a}^{b} f(t)\,d _{p,q}t, \alpha \in {\mathbb{R}}\),

  3. (c)

    \(\int _{a}^{b} f(t)\,d_{p,q}t=-\int _{b}^{a} f(t)\,d_{p,q}t\),

  4. (d)

    \(\int _{a}^{b} f(t)\,d_{p,q}t=\int _{c}^{b} f(t)\,d_{p,q}t+ \int _{a}^{c} f(t)\,d_{p,q}t, c\in I_{p,q}^{T}, a< c< b\),

  5. (e)

    \(\int _{a}^{b} [ f(t)+g(t) ] \,d_{p,q}t=\int _{a}^{b} f(t)\,d_{p,q}t+\int _{a}^{b} g(t)\,d_{p,q}t\),

  6. (f)

    \(\int _{a}^{b} [ f(pt)D_{p,q}g(t) ] \,d _{p,q}t= [ f(t)g(t) ] _{a}^{b}-\int _{a}^{b} [g(qt)D_{p,q}f(t) ] \,d_{p,q}t\).

We next introduce the fundamental theorem and Leibniz formula of \((p,q)\)-calculus.

Lemma 2.6

([30] Fundamental theorem of \((p,q)\)-calculus)

Let \(f:I\rightarrow \mathbb{R}\)be continuous at 0. Define

$$ F(x):= \int _{0}^{x} f(t)\,d_{p,q}t,\quad x\in I. $$

ThenFis continuous at 0. Furthermore, \(D_{p,q}F(x)\)exists for every \(x\in I\)where

$$ D_{p,q}F(x)=f(x). $$

Conversely,

$$ \int _{a}^{b} D_{p,q}f(t) \,d_{p,q}t=f(b)-f(a) \quad\textit{for all }a,b\in I. $$

Lemma 2.7

(Leibniz formula of \((p,q)\)-calculus)

Let \(f:I_{p,q}^{T} \times I_{p,q}^{T}\rightarrow \mathbb{R}\). Then

$$ D_{p,q} \biggl[ \int _{0}^{t} f(t,s)\,d_{p,q}s \biggr] = \int _{0}^{qt} {_{t}}D_{p,q}f(t,s) \,d_{p,q}s+f ( pt,t ), $$

where \({_{t}}D_{p,q}\)is \((p,q)\)-difference with respect tot.

Proof

For \(t\in I_{p,q}^{T}\), we have

$$\begin{aligned} &D_{p,q} \biggl[ \int _{0}^{t} f(t,s)\,d_{p,q}s \biggr] \\ &\quad =\frac{1}{(p-q)t} \biggl\{ \int _{0}^{pt} f(pt,s)\,d_{p,q}s- \int _{0} ^{qt} f(qt,s)\,d_{p,q}s \biggr\} \\ &\quad =\frac{1}{(p-q)t} \biggl\{ \biggl[ \int _{0}^{qt} f(pt,s)\,d_{p,q}s- \int _{0}^{qt} f(qt,s)\,d_{p,q}s \biggr] \\ &\qquad{} + \biggl[ \int _{0}^{pt} f(pt,s)\,d_{p,q}s - \int _{0}^{qt} f(pt,s)\,d_{p,q}s \biggr] \biggr\} \\ &\quad = \int _{0}^{qt} {_{t}}D_{p,q}f(t,s) \,d_{p,q}s +\frac{1}{(p-q)t} \Biggl[(p-q)pt\sum _{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} f \biggl(pt, \biggl( \frac{q}{p} \biggr) ^{k}t \biggr) \\ &\qquad{} -(p-q)qt\sum_{k=0}^{\infty } \frac{q^{k}}{p^{k+1}}f \biggl(pt, \biggl(\frac{q}{p} \biggr) ^{k+1}t \biggr) \Biggr] \\ &\quad = \int _{0}^{qt} {_{t}}D_{p,q}f(t,s) \,d_{p,q}s+f ( pt,t ). \end{aligned}$$

The proof is completed. □

The following lemmas are provided as tools for simplifying our calculations.

Lemma 2.8

Let \(\alpha,\beta >0, 0< q< p\leq 1\). Then

$$\begin{aligned} &\int _{0}^{t} ( t-qs)_{p,q}^{\underline{\alpha -1}} s^{\beta } \,d_{p,q}s =t^{\alpha +\beta }B_{p,q}(\beta +1,\alpha ), \\ &\int _{0}^{t} \int _{0}^{s}(t-qs)_{p,q}^{\underline{\alpha -1}} (s-qx)_{p,q} ^{\underline{\beta -1}} \,d_{p,q}x\, d_{p,q}s = \frac{ B_{p,q} (\beta +1,\alpha ) }{[\beta ]_{p,q}}t^{\alpha +\beta }. \end{aligned}$$

Proof

From the definition of \((p,q)\)-analogue of the power function, \((p,q)\)-beta function, and Definition 3.1, we obtain

$$\begin{aligned} \int _{0}^{t} ( t-qs)_{p,q}^{\underline{\alpha -1}} s^{\beta } \,d_{p,q}s = {}&(p-q)t \sum _{k=0}^{\infty }\frac{q^{k}}{p^{k+1}} \biggl( t- \biggl( \frac{q}{p} \biggr) ^{k+1}t \biggr) _{p,q}^{\underline{\alpha -1}} \biggl( \frac{q ^{k}}{p^{k+1}}t \biggr)^{\beta } \\ = {}&(p-q)t^{\alpha +\beta } \sum_{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} \biggl( \frac{q^{k}}{p^{k+1}} \biggr)^{\beta } \biggl( 1- q \cdot \frac{q ^{k}}{p^{k+1}} \biggr) _{p,q}^{\underline{\alpha -1}} \\ = {}& t^{\alpha +\beta } \int _{0}^{1} s^{\beta } ( 1- qs ) _{p,q}^{\underline{\alpha -1}}\,d_{p,q}s \\ = {}&t^{\alpha +\beta }B_{p,q}(\beta +1,\alpha ). \end{aligned}$$

By Lemma 2.4(b), we have \(\int _{0}^{s} ( s- qx ) _{p,q}^{\underline{\beta -1}} \,d_{p,q}x= [- \frac{1}{[\beta ]_{p,q}} ( s- x )_{p,q}^{\underline{ \beta }} ]_{x=0}^{s}= \frac{s^{\beta }}{[\beta ]_{p,q}}\). Hence, we find that

$$\begin{aligned} \int _{0}^{t} \int _{0}^{s}(t-qs)_{p,q}^{\underline{\alpha -1}} (s-qx)_{p,q} ^{\underline{\beta -1}} \,d_{p,q}x \,d_{p,q}s = {}& \int _{0}^{t}(t-qs)_{p,q} ^{\underline{\alpha -1}} \biggl[ \int _{0}^{s} (s-qx)_{p,q}^{\underline{ \beta -1}} \,d_{p,q}x \biggr] \,d_{p,q}s \\ = {}& \frac{1}{[\beta ]_{p,q}} \int _{0}^{t}(t-qs)_{p,q}^{\underline{ \alpha -1}} s^{\beta } \,d_{p,q}s \\ = {}& \frac{t^{\alpha +\beta }}{[\beta ]_{p,q}}B_{p,q}(\beta +1,\alpha ). \end{aligned}$$

The proof is completed. □

Lemma 2.9

Let \(0< q< p\leq 1\)and \(f:I_{p,q}^{T}\rightarrow \mathbb{R}\)be continuous at 0. Then

$$\begin{aligned} \int _{0}^{x} \int _{0}^{s} f(\tau )\,d_{p,q}\tau\, d_{p,q}s= \int _{0}^{\frac{x}{p}} \int _{pq\tau }^{x} f(\tau )\,d_{p,q}s \,d_{p,q} \tau. \end{aligned}$$

Proof

Using the definitions of \((p,q)\)-integral, we find that

$$\begin{aligned} \int _{0}^{x} \int _{0}^{s} f(\tau )\,d_{p,q}\tau \,d_{p,q}s &= (p-q)x \sum_{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} \int _{0}^{\frac{q^{k}}{p ^{k+1}} x } f(\tau )\,d_{p,q}\tau \\ &= (p-q)^{2}x^{2}\sum_{k=0}^{\infty } \sum_{h=0}^{\infty }\frac{q^{2k+h}}{p ^{2k+h+3}} f \biggl( \frac{q^{k+h}}{p^{k+h+2}}x \biggr) \\ &= (p-q)^{2}x^{2}\sum_{k=0}^{\infty } \sum_{h=k}^{\infty }\frac{q^{k+h}}{p ^{k+h+3}} f \biggl( \frac{q^{h}}{p^{h+2}}x \biggr) \\ &= (p-q)^{2}x^{2}\sum_{h=0}^{\infty } \sum_{k=0}^{h} \frac{q^{k+h}}{p ^{k+h+3}} f \biggl( \frac{q^{h}}{p^{h+2}}x \biggr) \\ &= (p-q)x^{2}\sum_{h=0}^{\infty } \biggl( \frac{p^{h+1}-q^{h+1}}{p^{h+1}} \biggr) \frac{q^{h}}{p^{h+2}} f \biggl( \frac{q^{h}}{p^{h+2}}x \biggr) \\ &= (p-q)\frac{x}{p}\sum_{h=0}^{\infty } \biggl[ x-pq \biggl( \frac{q ^{h}}{p^{h+1}}\cdot \frac{x}{p} \biggr) \biggr] \frac{q^{h}}{p^{h+1}} f \biggl( \frac{q^{h}}{p^{h+1}}\cdot \frac{x}{p} \biggr) \\ &= \int _{0}^{\frac{x}{p}} (x-pq\tau ) f(\tau ) \,d_{p,q}\tau \\ &= \int _{0}^{\frac{x}{p}} \biggl[ \int _{0}^{x} \,d_{p,q}s - \int _{0} ^{pq\tau } \,d_{p,q}s \biggr] f(\tau ) \,d_{p,q}\tau \\ &= \int _{0}^{\frac{x}{p}} \int _{pq\tau }^{x} f(\tau ) \,d_{p,q}s\, d _{p,q}\tau. \end{aligned}$$

The proof is completed. □

Next, we introduce the multiple \((p,q)\)-integration as follows.

Theorem 2.1

For \(f:I_{p,q}^{T}\rightarrow \mathbb{R}\)and \(n\in \mathbb{N}\), the multiple \((p,q)\)-integration is given by

$$\begin{aligned} \mathcal{I}_{p,q}^{n} f(x)& = \int _{0}^{x} \int _{0}^{\tau _{1}}\cdots \int _{0}^{\tau _{n-1}} f({\tau _{n}})\,d _{p,q}\tau _{n}\cdots d_{p,q}\tau _{2} \,d_{p,q}\tau _{1} \\ &= \frac{1}{p^{{n \choose 2}} [n-1]_{p,q}! } \int _{0}^{x} (x-q\tau )_{p,q}^{\underline{n-1}} f \biggl( \frac{ \tau }{p^{n-1}} \biggr) \,d_{p,q}\tau. \end{aligned}$$
(2.1)

Proof

We prove by using mathematical induction.

If \(n=1\), then \(\mathcal{I}_{p,q} f(x)=\int _{0}^{x} f({\tau })\,d_{p,q} \tau \).

If \(n=2\), by Lemma 2.9 we have

$$\begin{aligned} \mathcal{I}_{p,q}^{2} f(x)& = \int _{0}^{x} \int _{0}^{s} f({\tau })\,d _{p,q}\tau \,d_{p,q}s = \int _{0}^{\frac{x}{p}} \int _{pq\tau }^{x} f( \tau ) \,d_{p,q}s \,d_{p,q}\tau \\ &= \frac{1}{p} \int ^{x}_{0}(x-q\tau ) f \biggl(\frac{\tau }{p} \biggr) \,d_{p,q}\tau \\ &= \frac{1}{p^{{2 \choose 2}}[1]_{p,q}!} \int _{0}^{x} (x-\tau )_{p,q}^{\underline{1}}f \biggl(\frac{ \tau }{p} \biggr) \,d_{p,q}\tau. \end{aligned}$$

Next, we suppose that Theorem 2.1 holds for \(n=k\). For the case \(n=k+1\), we have

$$\begin{aligned} &{\mathcal{I}}_{p,q}^{k+1} f(x) \\ &\quad = \mathcal{I}_{p,q} \biggl[ \frac{1}{p^{{k \choose 2}} [k-1]_{p,q}! } \int _{0}^{x} (x-q\tau )_{p,q}^{\underline{k-1}}f \biggl( \frac{ \tau }{p^{k-1}} \biggr) \,d_{p,q}\tau \biggr] \\ &\quad = \frac{1}{p^{{k \choose 2}} [k-1]_{p,q}! } \int _{0}^{x} \int _{0}^{s} (s-q\tau )_{p,q}^{\underline{k-1}} f \biggl(\frac{ \tau }{p^{k-1}} \biggr) \,d_{p,q}\tau\, d_{p,q}s \\ &\quad = \frac{(p-q)^{2}x^{2}}{ p^{{k \choose 2}} [k-1]_{p,q}!} \sum_{m=0} ^{\infty }\sum _{n=0}^{\infty } \frac{q^{2m+n}}{p^{2m+n+3}} \biggl( \frac{q ^{m}}{p^{m+1}}x - \frac{q^{m+n+1}}{p^{m+n+2}}x \biggr)_{p,q}^{ \underline{k-1}} f \biggl( \frac{q^{m+n}}{p^{m+n+k+1}}x \biggr) \\ &\quad = \frac{(p-q)^{2}x^{2}}{ p^{{k \choose 2}} [k-1]_{p,q}!} \sum_{n=0} ^{\infty }\sum _{m=0}^{n} \frac{q^{m+n}}{p^{m+n+3}} \biggl( \frac{q ^{m}}{p^{m+1}}x \biggr)^{k-1} \biggl( 1 - \biggl( \frac{q}{p} \biggr) ^{n-m+1} \biggr)_{p,q}^{\underline{k-1}} f \biggl( \frac{q^{n}}{p^{n+k+1}}x \biggr) \\ &\quad = \frac{(p-q)x^{k+1}}{p^{{k+1 \choose 2}} [k]_{p,q}!} \sum_{n=0}^{ \infty } \frac{q^{n}}{p^{n+1}} \\ &\qquad{} \times\Biggl[ (p-q)[k]_{p,q}\sum_{m=0}^{n} \frac{q^{mk}}{p^{mk+1}} \biggl( 1 - \biggl( \frac{q}{p} \biggr)^{n-m+1} \biggr)_{p,q}^{ \underline{k-1}} \Biggr] f \biggl( \frac{q^{n}}{p^{n+k+1}}x \biggr). \end{aligned}$$
(2.2)

On the other hand, we have

$$\begin{aligned} \mathcal{I}_{p,q}^{k+1} f(x) &= \frac{1}{p^{{k+1 \choose 2}} [k]_{p,q}! } \int _{0}^{x} (x-q\tau )_{p,q}^{\underline{k}}f \biggl( \frac{\tau }{p ^{k}} \biggr) \,d_{p,q}\tau \\ &= \frac{(p-q)x^{k+1}}{ p^{{k+1 \choose 2}} [k]_{p,q}!} \sum_{n=0} ^{\infty } \frac{q^{n}}{p^{n+1}} \biggl( 1 - \biggl( \frac{q}{p} \biggr) ^{n+1} \biggr)_{p,q}^{\underline{k}} f \biggl( \frac{q^{n}}{p^{n+k+1}}x \biggr). \end{aligned}$$
(2.3)

To show that (2.2) is equal to (2.3), we consider

$$\begin{aligned} &(p-q)[k]_{p,q}\sum_{m=0}^{n} \frac{q^{mk}}{p^{mk+1}} \biggl( 1 - \biggl( \frac{q}{p} \biggr)^{n-m+1} \biggr)_{p,q}^{\underline{k-1}} \\ &\quad= \bigl( p^{k}-q^{k} \bigr) \Biggl\{ \frac{1}{p} \prod_{i=0}^{k-2} \biggl[ p^{i}-q^{i} \biggl( \frac{q}{p} \biggr)^{n+1} \biggr]+\cdots + \frac{q^{(n-2)k}}{p^{(n-2)k+1}} \prod_{i=0}^{k-2} \biggl[ p^{i}-q ^{i} \biggl( \frac{q}{p} \biggr)^{3} \biggr] \\ &\qquad{} +\frac{q^{(n-1)k}}{p^{(n-1)k+1}} \prod_{i=0}^{k-2} \biggl[ p^{i}-q ^{i} \biggl( \frac{q}{p} \biggr)^{2} \biggr]+\frac{q^{nk}}{p^{nk+1}} \prod _{i=0}^{k-2} \biggl[ p^{i}-q^{i} \biggl( \frac{q}{p} \biggr) \biggr] \Biggr\} \\ &\quad = \bigl( p^{k}-q^{k} \bigr) \Biggl\{ \frac{1}{p} \prod_{i=0}^{k-2} \biggl[ \frac{p^{i+n+1}-q^{i+n+1} }{p^{n+1}} \biggr]+\cdots + \frac{q ^{(n-2)k}}{p^{(n-2)k+1}} \prod_{i=0}^{k-2} \biggl[ \frac{p^{i+3}-q^{i+3} }{p^{3}} \biggr] \\ &\qquad{}+\frac{q^{(n-1)k}}{p^{(n-1)k+1}}\cdot \frac{p^{k+1}-q^{k+1}}{p^{3}} \prod _{i=0}^{k-3} \biggl[ \frac{p^{i+2}-q^{i+2}}{p^{2}} \biggr] \Biggr\} \\ &\quad = \bigl( p^{k}-q^{k} \bigr) \Biggl\{ \frac{1}{p} \prod_{i=0}^{k-2} \biggl[ \frac{p^{i+n+1}-q^{i+n+1} }{p^{n+1}} \biggr]+\cdots + \frac{q ^{(n-3)k}}{p^{(n-3)k+1}} \prod_{i=0}^{k-2} \biggl[ \frac{p^{i+4}-q^{i+4} }{p^{4}} \biggr] \\ &\qquad{} +\frac{q^{(n-2)k}}{p^{(n-2)k+1}} \biggl( \frac{p^{k+1}-q^{k+1}}{p ^{3}} \biggr) \biggl( \frac{p^{k+2}-q^{k+2}}{p^{5}} \biggr) \prod_{i=0} ^{k-4} \biggl[ \frac{p^{i+3}-q^{i+3}}{p^{3}} \biggr] \Biggr\} \\ &\quad \vdots \\ &\quad = \bigl( p^{k}-q^{k} \bigr) \Biggl\{ \frac{1}{p} \prod_{i=0}^{k-2} \biggl[ \frac{p^{i+n+1}-q^{i+n+1} }{p^{n+1}} \biggr]+ \biggl[ \frac{q ^{k}}{p^{k+1}} \biggl( \frac{p^{k+1}-q^{k+1}}{p^{3}} \biggr) \biggl( \frac{p ^{k+2}-q^{k+2}}{p^{5}} \biggr) \cdots \\ &\qquad{}\times \biggl( \frac{p^{k+n-1}-q^{k+n-1}}{p^{2(n-1)+1}} \biggr) \biggr] \prod _{i=0}^{k-n-1} \biggl[ \frac{p^{i+n}-q^{i+n}}{p^{n}} \biggr] \Biggr\} \\ &\quad = \frac{p^{k}-q^{k}}{p} \biggl( \frac{p^{k+n-1}-q^{k+n-1}}{p^{n+1}} \biggr) \biggl( \frac{p^{k+n-2}-q ^{k+n-2}}{p^{n+1}} \biggr)\cdots \biggl( \frac{p^{k+1}-q^{k+1}}{p^{n+1}} \biggr) \\ & \qquad{}\times\biggl\{ \frac{p^{k+n}-q^{k+n}}{p^{2n+1}} \biggr\} \prod_{i=0}^{k-n-2} \biggl[ \frac{p^{i+n+1}-q^{i+n+1}}{p^{n+1}} \biggr] \\ &\quad = \frac{1}{p^{(n+1)k}} \bigl\{ \bigl(p^{k+n} -q^{k+n} \bigr) \cdots \bigl(p^{k+1} -q^{k+1} \bigr) \bigl(p^{k} -q^{k} \bigr) \bigl(p^{k-1} -q^{k-1} \bigr) \cdots \bigl(p^{n+2} -q^{n+2} \bigr) \\ &\qquad{}\times\bigl(p^{n+1} -q^{n+1} \bigr) \bigr\} \\ &\quad = \prod_{i=0}^{k-1} \biggl[ \frac{p^{i+n+1}-q^{i+n+1}}{p^{n+1}} \biggr] =\prod_{i=0}^{k-1} \biggl[p^{i}- q^{i} \biggl( \frac{q}{p} \biggr) ^{n+1} \biggr] \\ &\quad = \biggl( 1 - \biggl( \frac{q}{p} \biggr)^{n+1} \biggr)_{p,q}^{ \underline{k}}. \end{aligned}$$

We see that (2.1) holds when \(n=k+1\). □

Fractional \((p,q)\)-integral

In this section, we introduce fractional \((p,q)\)-integral.

Definition 3.1

For \(\alpha >0, 0< q< p\leq 1\), and f defined on \(I^{T}_{p,q}\), the fractional \((p,q)\)-integral is defined by

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha }f(t) &:= \frac{1}{p^{{\alpha \choose 2}} \varGamma _{p,q}(\alpha )} \int _{0}^{t} (t-qs)_{p,q}^{\underline{\alpha -1}}f \biggl( \frac{s}{p ^{\alpha -1}} \biggr) \,d_{p,q}s \\ &= \frac{ (p-q)t }{p^{{\alpha \choose 2}}\varGamma _{p,q}(\alpha )} \sum_{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} \biggl( t- \biggl(\frac{q}{p} \biggr)^{k+1}t \biggr) _{p,q}^{\underline{\alpha -1}} f \biggl( \frac{q ^{k}}{p^{k+\alpha }}t \biggr), \end{aligned}$$

and \(({\mathcal{I}}^{0}_{p,q} f)(t) = f(t)\).

By Lemma 2.2(a), we have

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha }f(t) = \frac{ (p-q)t^{\alpha }}{p^{ {\alpha \choose 2}}\varGamma _{p,q}(\alpha )} \sum_{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} \biggl( 1- \biggl(\frac{q}{p} \biggr)^{k+1} \biggr) _{p,q}^{\underline{\alpha -1}} f \biggl( \frac{q ^{k}}{p^{k+\alpha }}t \biggr). \end{aligned}$$
(3.1)

Next, we introduce the properties of fractional \((p,q)\)-integral.

Theorem 3.1

For \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\), \(\alpha >0, 0< q< p\leq 1\),

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha }f(t)={\mathcal{I}}_{p,q}^{\alpha +1} \bigl[ D_{p,q}f(t) \bigr] +\frac{f(0)}{p^{{\alpha \choose 2}} \varGamma _{p,q}(\alpha +1)}t^{\alpha }. \end{aligned}$$

Proof

Using Lemma 2.4(b) and Lemma 2.5(f), we obtain

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha }f(t)& = -\frac{1}{p^{{\alpha \choose 2}} \varGamma _{p,q} (\alpha ) [\alpha ]_{p,q}} \int _{0}^{t} D_{p,q}(t-s)_{p,q} ^{\underline{\alpha }}f \biggl( \frac{s}{p^{\alpha -1}} \biggr) \,d _{p,q}s \\ &= \frac{1}{p^{{\alpha \choose 2}}\varGamma _{p,q}(\alpha +1)} \biggl[ f(0) t^{\alpha }+ \frac{1}{p^{\alpha }} \int _{0}^{t} ( t-qs ) _{p,q}^{\underline{\alpha }}D_{q,\omega }f \biggl( \frac{s}{p^{\alpha }} \biggr)\,d_{p,q}s \biggr] \\ &= {\mathcal{I}}_{p,q}^{\alpha +1} \bigl[ D_{p,q}f(t) \bigr] +\frac{f(0)}{p ^{{\alpha \choose 2}}\varGamma _{p,q}(\alpha +1)}t^{\alpha }. \end{aligned}$$

The proof is completed. □

Theorem 3.2

For \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),\(\alpha,\beta >0, 0< q< p \leq 1\), and \(a\in I_{p,q}^{T}\),

$$\begin{aligned} \int _{0}^{a} ( t-qs )_{p,q}^{\underline{\beta -1}} {\mathcal{I}} _{p,q}^{\alpha }f(ps) \,d_{p,q}s=0. \end{aligned}$$

Proof

For \(n \in {\mathbb{N}}_{0}\),

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha }f \bigl( \sigma _{p,q}^{n}(a) \bigr)& = \frac{1}{p ^{{\alpha \choose 2}}\varGamma _{p,q}(\alpha )} \int _{0}^{\sigma _{p,q}^{n}(a)} \bigl(\sigma _{p,q}^{n}(a)-qs \bigr)_{p,q} ^{\underline{\alpha -1}}f \biggl(\frac{s}{p^{\alpha -1}} \biggr) \,d _{p,q}s \\ &= \frac{(p-q)\sigma _{p,q}^{n}(a)}{p^{{\alpha \choose 2}}\varGamma _{p,q}( \alpha )} \sum_{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} \bigl(\sigma ^{n} _{p,q}(a)-\sigma ^{n+k+1}_{p,q}(a) \bigr)_{p,q}^{\underline{\alpha -1}}f \biggl( \frac{q^{k+n}}{p^{k+n+\alpha }}a \biggr). \end{aligned}$$

By using Lemma 2.1(c), it implies that \((\sigma ^{n} _{p,q}(a)-\sigma ^{n+k+1}_{p,q}(a) )_{p,q}^{\underline{\alpha -1}}=0\). Thus,

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha }f \bigl( \sigma _{p,q}^{n}(a) \bigr) =0. \end{aligned}$$
(3.2)

Finally, by Definition 3.1, we find that

$$\begin{aligned} & \int _{0}^{a} ( t-qs )_{p,q}^{\underline{\beta -1}} {\mathcal{I}} _{p,q}^{\alpha }f(ps) \,d_{p,q}s \\ &\quad = (p-q)a\sum_{k=0}^{\infty }\frac{q^{k}}{p^{k+1}} \biggl( t- \biggl( \frac{q}{p} \biggr)^{k+1} a \biggr)_{p,q}^{\underline{\beta -1}} \bigl[ {\mathcal{I}}_{p,q}^{\alpha }f \bigl( \sigma _{p,q}^{k}(a) \bigr) \bigr] = 0. \end{aligned}$$

The proof is completed. □

Lemma 3.1

([50])

For \(\mu,\alpha,\beta \in \mathbb{R}^{+}\),

$$ \sum_{k=0}^{\infty } q^{\alpha k} \frac{ { ( 1-\mu q^{1-k} )} _{q}^{\underline{\alpha -1}}{ ( 1-\mu q^{1+k} )}_{q}^{\underline{ \beta -1}} }{ { ( 1- q )}_{q}^{\underline{\alpha -1}} { ( 1- q )}_{q}^{\underline{\beta -1}} } = \frac{ { ( 1-\mu q )} _{q}^{\underline{\alpha +\beta -1}} }{ { ( 1-q )} _{q}^{\underline{ \alpha +\beta -1}} }. $$

Theorem 3.3

For \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),\(\alpha,\beta >0\), and \(0< q< p\leq 1\),

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha } \bigl[ {\mathcal{I}}_{p,q}^{\beta }f(t) \bigr] = {\mathcal{I}}_{p,q}^{\beta } \bigl[ { \mathcal{I}}_{p,q} ^{\alpha }f(t) \bigr] = {\mathcal{I}}_{p,q}^{\alpha +\beta }f(t). \end{aligned}$$

Proof

For \(t\in I_{p,q}^{T}\),

$$\begin{aligned} &{\mathcal{I}}_{q,\omega }^{\alpha }{\mathcal{I}}_{q,\omega }^{ \beta }f(t) \\ &\quad = \frac{1}{p^{{\alpha \choose 2} + {\beta \choose 2}} \varGamma _{p,q}( \alpha )\varGamma _{p,q}(\beta )} \int _{0}^{t} \int _{0}^{\frac{x}{p^{\alpha -1}}} (t-qx)_{p,q}^{\underline{ \alpha -1}} \biggl( \frac{x}{p^{\alpha -1}}-qs \biggr) _{p,q}^{\underline{ \beta -1}} f \biggl( \frac{s}{p^{\beta -1}} \biggr) \,d_{p,q}s\,d_{p,q}x \\ &\quad = \frac{(p-q)^{2}t^{\alpha +\beta }}{p^{{\alpha +\beta \choose 2} +2} \varGamma _{p,q}(\alpha )\varGamma _{p,q}(\beta )} \sum_{k=0}^{\infty }\sum _{h=0}^{\infty } \biggl(\frac{q}{p} \biggr)^{k+h+k\beta } \biggl( 1- \biggl(\frac{q}{p} \biggr)^{k+1} \biggr)_{p,q}^{\underline{ \alpha -1}} \biggl( 1- \biggl(\frac{q}{p} \biggr)^{h+1} \biggr)_{p,q}^{\underline{ \beta -1}} \\ &\qquad {}\times f \biggl( \frac{q^{k+h}}{p^{k+h+\alpha +\beta }} \biggr) \\ &\quad= \frac{(p-q)t^{\alpha +\beta }}{p^{{\alpha +\beta \choose 2} } } \sum_{h=0}^{\infty } \frac{q^{h}}{p^{h+1}} \Biggl[ \frac{(p-q)}{p \varGamma _{p,q}(\alpha )\varGamma _{p,q}(\beta )} \sum_{k=0}^{h} \biggl(\frac{q}{p} \biggr)^{k\beta } \biggl( 1- \biggl( \frac{q}{p} \biggr) ^{k+1} \biggr)_{p,q}^{\underline{ \alpha -1}} \\ &\qquad{} \times\biggl( 1- \biggl(\frac{q}{p} \biggr)^{h-k+1} \biggr)_{p,q}^{\underline{ \beta -1}} \Biggr] f \biggl( \frac{q^{h}}{p ^{h+\alpha +\beta }}t \biggr). \end{aligned}$$

Since \({\varGamma }_{p,q}(\alpha +\beta )= \frac{ ( p-q ) _{p,q}^{\underline{\alpha +\beta -1}}}{ ( p-q )^{\alpha + \beta -1}} =\frac{ ( 1-\frac{q}{p} )_{p,q}^{\underline{ \alpha +\beta -1}}}{ ( 1-\frac{q}{p} )^{\alpha +\beta -1}}\) and by Lemma 3.1, we obtain

$$\begin{aligned} &\sum_{k=0}^{h} \biggl(\frac{q}{p} \biggr)^{k\beta } \biggl( 1- \biggl(\frac{q}{p} \biggr)^{k+1} \biggr)_{p,q}^{\underline{ \alpha -1}} \biggl( 1- \biggl(\frac{q}{p} \biggr)^{h-k+1} \biggr)_{p,q}^{\underline{ \beta -1}} \\ &\quad = p^{ {\alpha -1 \choose 2} + {\alpha -1 \choose 2} } \sum_{k=0} ^{\infty } \biggl(\frac{q}{p} \biggr)^{k\beta } \biggl( 1- \biggl( \frac{q}{p} \biggr)^{k+1} \biggr)_{\frac{q}{p} }^{\underline{ \alpha -1}} \biggl( 1- \biggl(\frac{q}{p} \biggr)^{h-k+1} \biggr) _{\frac{q}{p}}^{\underline{ \beta -1}} \\ &\quad = \varGamma _{p,q}(\alpha )\varGamma _{p,q}(\beta )\cdot \frac{ ( 1- \frac{q}{p} )^{\alpha +\beta -1} }{ ( 1-\frac{q}{p} )} \cdot \frac{ ( 1- ( \frac{q}{p} )^{h+1} )_{p,q} ^{\underline{\alpha +\beta -1}} }{ ( 1-\frac{q}{p} )_{p,q} ^{\underline{\alpha +\beta -1}}} \\ &\quad = \frac{p\varGamma _{p,q}(\alpha )\varGamma _{p,q}(\beta )}{p-q}\cdot \frac{ ( 1- ( \frac{q}{p} )^{h+1} )_{p,q}^{\underline{ \alpha +\beta -1}} }{\varGamma _{p,q}(\alpha +\beta ) }. \end{aligned}$$

Hence,

$$\begin{aligned} {\mathcal{I}}_{q,\omega }^{\alpha }{\mathcal{I}}_{q,\omega }^{\beta }f(t) &= \frac{(p-q)t^{\alpha +\beta }}{p^{{\alpha +\beta \choose 2} } \varGamma _{p,q}(\alpha +\beta )} \sum_{h=0}^{\infty } \frac{q^{h}}{p^{h+1}} \biggl( 1- \biggl( \frac{q}{p} \biggr)^{h+1} \biggr) _{p,q}^{\underline{\alpha +\beta -1}}f \biggl( \frac{q^{h}}{p^{h+ \alpha +\beta }}t \biggr) \\ &= \frac{(p-q)t}{p^{{\alpha +\beta \choose 2} } \varGamma _{p,q}(\alpha + \beta )} \sum_{h=0}^{\infty } \frac{q^{h}}{p^{h+1}} \biggl( t- \biggl( \frac{q}{p} \biggr)^{h+1}t \biggr)_{p,q}^{ \underline{\alpha +\beta -1}}f \biggl( \frac{q^{h}}{p^{h+\alpha + \beta }}t \biggr) \\ &= \frac{1}{p^{{\alpha +\beta \choose 2} } \varGamma _{p,q}(\alpha + \beta )} \int _{0}^{t} ( t-qx )_{p,q}^{\underline{\alpha +\beta -1}}f \biggl( \frac{x}{p^{\alpha +\beta -1}} \biggr)\,d_{p,q}x \\ &= {\mathcal{I}}_{p,q}^{\alpha +\beta }f(t). \end{aligned}$$

Similarly, we find that \({{\mathcal{I}}}_{p,q}^{\beta }{{\mathcal{I}}} _{p,q}^{\alpha }f(t)={{\mathcal{I}}}_{p,q}^{\alpha +\beta } f(t)\). □

Fractional \((p,q)\)-difference operator of Riemann–Liouville type

Next, we present the fractional \((p,q)\)-difference operator of Riemann–Liouville.

Definition 4.1

For \(\alpha >0, 0< q< p\leq 1\), and f defined on \(I^{T}_{p,q}\), the fractional \((p,q)\)-difference operator of Riemann–Liouville type of order α is defined by

$$\begin{aligned} D_{p,q}^{\alpha }f(t) :=D_{p,q}^{N} { \mathcal{I}}_{p,q}^{N-\alpha } f(t), \end{aligned}$$

and \(D^{0}_{p,q}f(t) = f(t)\), where \(N-1<\alpha < N, N\in {\mathbb{N}}\).

In the following theorem, we introduce the properties of fractional \((p,q)\)-difference operator of Riemann–Liouville type.

Theorem 4.1

For \(\alpha >0, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),

$$\begin{aligned} {D}_{p,q}^{\alpha }{\mathcal{I}}_{p,q}^{\alpha }f(t) =f(t). \end{aligned}$$

Proof

For some \(N-1<\alpha < N, N\in {\mathbb{N}}\),

$$\begin{aligned} D_{p,q}^{\alpha }{\mathcal{I}}_{p,q}^{\alpha }f(t) =D_{p,q}^{N} {\mathcal{I}} _{p,q}^{N-\alpha } \mathcal{I}_{p,q}^{\alpha } f(t)= D_{p,q}^{N} \mathcal{I}_{p,q}^{N}f(t) = f(t). \end{aligned}$$

The proof is completed. □

Theorem 4.2

For \(\alpha \in (0,1), 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),

$$\begin{aligned} {{\mathcal{I}}}_{p,q}^{\alpha }D_{p,q}^{\alpha }f(t) =f(t)+Ct^{\alpha -1},\quad C\in \mathbb{R}. \end{aligned}$$

Proof

Let \(C(t)=\mathcal{I}_{p,q}^{\alpha }D_{p,q}^{\alpha }f(t) -f(t)\). Taking \(D_{p,q}^{\alpha }\) to the both sides of the above expression and using Theorem 4.1, we have

$$ D_{p,q}^{\alpha }C(t)=D_{p,q}^{\alpha } \mathcal{I}_{p,q}^{\alpha }D _{p,q}^{\alpha }f(t) - D_{p,q}^{\alpha }f(t)= D_{p,q}^{\alpha }f(t)-D _{p,q}^{\alpha }f(t)=0. $$

On the other hand,

$$\begin{aligned} \int _{0}^{t} (t-qs)_{p,q}^{\underline{-\alpha }} \bigl(p^{\alpha }s\bigr)^{ \alpha -1}\,d_{p,q}s&= (p-q)t \sum _{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} \biggl( t - \biggl( \frac{q}{p} \biggr)^{k+1}t \biggr) _{p,q}^{\underline{-\alpha }} \biggl( \frac{q^{k}}{p^{k+1-\alpha }}t \biggr) ^{\alpha -1} \\ &= (p-q)\sum_{k=0}^{\infty }\frac{q^{k\alpha }}{p^{(k+1)\alpha - \alpha (\alpha -1)}} \biggl( 1 - \biggl( \frac{q}{p} \biggr)^{k+1} \biggr). \end{aligned}$$

Using the above form, according to Definitions 3.1 and 4.1, we have

$$\begin{aligned} D_{p,q}^{\alpha }t^{\alpha -1} &= D_{p,q} \mathcal{I}_{p,q}^{1-\alpha }t ^{\alpha -1} \\ &= D_{p,q} \biggl[ \frac{1}{p^{{1-\alpha \choose 2}}{\varGamma }_{p,q}(1- \alpha )} \int _{0}^{t} (t-qs)_{p,q}^{\underline{-\alpha }} \bigl( p^{\alpha }s \bigr)^{\alpha -1} \,d_{p,q}s \biggr] \\ &= D_{p,q} \Biggl[ (p-q) \sum_{k=0}^{\infty } \frac{q^{k\alpha }}{p^{(k+1)\alpha -\alpha ( \alpha -1)}} \biggl( 1 - \biggl( \frac{q}{p} \biggr)^{k+1} \biggr) \Biggr] \\ &= 0. \end{aligned}$$

Hence, \(C(t)=Ct^{\alpha -1}\). □

Theorem 4.3

Letting \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\), we get

$$\begin{aligned} \mathcal{I}_{p,q}^{\alpha }D_{p,q}^{\alpha }f(t) =f(t)+C_{1}t^{\alpha -1}+C_{2}t^{\alpha -2}+\cdots +C_{N}t^{\alpha -N} \end{aligned}$$

for some \(C_{i}\in {\mathbb{R}},i=1,2,\ldots,N\).

Proof

Using Theorems 3.1 and 4.2, we obtain

$$\begin{aligned} \mathcal{I}_{p,q}^{\alpha }D_{p,q}^{\alpha }f(t) ={}& \mathcal{I}_{p,q} ^{\alpha }D_{p,q}^{N} \mathcal{I}_{p,q}^{N-\alpha } f(t) \\ = {}&\mathcal{I}_{p,q}^{\alpha -1} D_{p,q}^{N-1} \mathcal{I}_{p,q}^{N- \alpha } f(t) - \frac{t^{\alpha -1}}{p^{{\alpha -1 \choose 2}} \varGamma _{p,q}(\alpha )} D_{p,q}^{N-1} \mathcal{I}_{p,q}^{N-\alpha } f(0) \\ ={}& \mathcal{I}_{p,q}^{\alpha -2} D_{p,q}^{N-2} \mathcal{I}_{p,q}^{N- \alpha } f(t) - \frac{t^{\alpha -2}}{p^{{\alpha -2 \choose 2}} \varGamma _{p,q}(\alpha -1)} D_{p,q}^{N-2} \mathcal{I}_{p,q}^{N-\alpha } f(0) \\ &{} - \frac{t^{\alpha -1}}{p^{{\alpha -1 \choose 2}} \varGamma _{p,q}( \alpha )} D_{p,q}^{N-1} \mathcal{I}_{p,q}^{N-\alpha } f(0) \\ \vdots {}& \\ ={}& {\mathcal{I}}_{p,q}^{\alpha -N+1} D_{p,q}^{\alpha -N+1} f(t) -\frac{t ^{\alpha -N+1}}{p^{{\alpha -N+1 \choose 2}} \varGamma _{p,q}(\alpha -N+2)} D_{p,q} \mathcal{I}_{p,q}^{N-\alpha } f(0) \\ &{} -\cdots - \frac{t^{\alpha -2}}{p^{{\alpha -2 \choose 2}} \varGamma _{p,q}(\alpha -1)} D_{p,q}^{N-2} \mathcal{I}_{p,q}^{N-\alpha } f(0) \\ &{}- \frac{t^{\alpha -1}}{p^{{\alpha -1 \choose 2}} \varGamma _{p,q}( \alpha )} D_{p,q}^{N-1} \mathcal{I}_{p,q}^{N-\alpha } f(0). \end{aligned}$$

Using Theorem 4.2, we obtain

$$\begin{aligned} \mathcal{I}_{p,q}^{\alpha }D_{p,q}^{\alpha }f(t) =f(t)+C_{1}t^{\alpha -1}+C_{2}t^{\alpha -2}+\cdots +C_{N}t^{\alpha -N}. \end{aligned}$$

The proof is completed. □

Corollary 4.1

Let \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),

$$\begin{aligned} \mathcal{I}_{p,q}^{\alpha }D_{p,q}^{\alpha }f(t) =f(t)-\sum_{k=0}^{N-1} \frac{t^{\alpha -N+k}}{p^{{\alpha -N+k \choose 2}} \varGamma _{p,q}( \alpha -N+k+1)} \bigl[ D_{p,q}^{\alpha -N+k}f(0) \bigr]. \end{aligned}$$

Fractional \((p,q)\)-difference operator of Caputo type

Now, we introduce fractional \((p,q)\)-difference operator of Caputo type.

Definition 5.1

For \(\alpha >0, 0< q< p\leq 1\), and f defined on \(I^{T}_{p,q}\), the fractional \((p,q)\)-difference operator of Caputo type of order α is defined by

$$\begin{aligned} {^{C}}D_{p,q}^{\alpha }f(t) &:={ \mathcal{I}}_{p,q}^{N-\alpha } D_{p,q} ^{N} f(t) \\ &= \frac{1}{p^{{N-\alpha \choose 2}} \varGamma _{p,q}(N-\alpha )} \int _{0}^{t} (t-qs)_{p,q}^{\underline{N-\alpha -1}}D_{p,q}^{N}f \biggl( \frac{s}{p^{N-\alpha -1}} \biggr) \,d_{q,\omega }s, \end{aligned}$$

and \({^{C}}D^{0}_{p,q}f(t) = f(t)\), where \(N-1<\alpha < N, N\in {\mathbb{N}}\).

Theorem 5.1

Letting \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\)leads to

$$\begin{aligned} {^{C}}D_{p,q}^{\alpha }f(t) = \frac{(p-q)t^{N-\alpha }}{p^{ {N-\alpha \choose 2}} \varGamma _{p,q}(N-\alpha )} \sum_{k=0}^{\infty }\frac{q ^{k}}{p^{k+1}} \biggl( 1- \biggl( \frac{q}{p} \biggr)^{k+1} \biggr) _{p,q}^{\underline{N-\alpha -1}} D_{p,q}^{N}f \biggl( \frac{q^{k}}{p ^{k+N-\alpha }}t \biggr). \end{aligned}$$

Proof

For \(t \in I_{q,\omega }^{T}\), by Definition 5.1, we have

$$\begin{aligned} {^{C}}D_{q,\omega }^{\alpha }f(t)& = \frac{1}{p^{ {N-\alpha \choose 2}} \varGamma _{p,q}(N-\alpha )} \int _{0}^{t} (t-qs)_{p,q}^{\underline{N-\alpha -1}}D_{p,q}^{N}f \biggl( \frac{s}{p^{N-\alpha -1}} \biggr)\,d_{q,\omega }s \\ &= \frac{(p-q)t}{p^{{N-\alpha \choose 2}} \varGamma _{p,q}(N-\alpha )} \sum_{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} \biggl( t- \biggl( \frac{q}{p} \biggr)^{k+1}t \biggr) _{p,q}^{\underline{N-\alpha -1}} D_{p,q}^{N}f \biggl( \frac{q^{k}}{p^{k+N-\alpha }}t \biggr) \\ &= \frac{(p-q)t^{N-\alpha }}{p^{{N-\alpha \choose 2}} \varGamma _{p,q}(N- \alpha )} \sum_{k=0}^{\infty } \frac{q^{k}}{p^{k+1}} \biggl( 1- \biggl( \frac{q}{p} \biggr)^{k+1} \biggr) _{p,q}^{\underline{N-\alpha -1}} D _{p,q}^{N}f \biggl( \frac{q^{k}}{p^{k+N-\alpha }}t \biggr). \end{aligned}$$

 □

The following theorem presents the properties of fractional Hahn difference operator of Caputo type.

Theorem 5.2

Let \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\). Then

$$\begin{aligned} {^{C}}D_{p,q}^{\alpha }{\mathcal{I}}_{p,q}^{\alpha }f(t) =f(t). \end{aligned}$$

Proof

For some \(N-1<\alpha < N,N\in {\mathbb{N}}\), by Definition 5.1 and Theorem 4.3, we have

$$\begin{aligned} {^{C}}D_{p,q}^{\alpha }{\mathcal{I}}_{p,q}^{\alpha }f(t) &= {\mathcal{I}} _{p,q}^{N-\alpha } D_{p,q}^{N} {\mathcal{I}}_{p,q}^{\alpha }f(t) = {\mathcal{I}}_{p,q}^{N-\alpha } D_{p,q}^{N-\alpha } f(t) \\ &= f(t)-\sum_{k=0}^{N-1} \frac{ t^{k-\alpha }}{ p^{ { k-\alpha \choose 2 }}\varGamma _{p,q}(k-\alpha +1)} \bigl[ D^{k}_{p,q} {\mathcal{I}}_{p,q}^{\alpha }f(0) \bigr]. \end{aligned}$$

From (3.2), we have

$$ \sum_{k=0}^{N-1} \frac{ t^{k-\alpha }}{ p^{{ k-\alpha \choose 2 }} \varGamma _{p,q}(k-\alpha +1)} \bigl[ D^{k}_{p,q} {\mathcal{I}}_{p,q} ^{\alpha }f(0) \bigr] =0. $$

It implies that

$$ {^{C}}D_{p,q}^{\alpha }{\mathcal{I}}_{p,q}^{\alpha }f(t) =f(t). $$

The proof is completed. □

Theorem 5.3

Let \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\). Then

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha }{^{C}}D_{p,q}^{\alpha }f(t) = f(t)-\sum_{k=0}^{N-1} \frac{t^{k}}{p^{{ k \choose 2 }}[k]_{p,q}!} \bigl[ D_{p,q} ^{k}f(0) \bigr]. \end{aligned}$$

Proof

From Definition 5.1, Theorem 4.3, and Corollary 4.1, we have

$$\begin{aligned} {\mathcal{I}}_{q,\omega }^{\alpha }{^{C}}D_{q,\omega }^{\alpha }f(t) &= {\mathcal{I}}_{q,\omega }^{\alpha }{\mathcal{I}}_{q,\omega }^{N- \alpha } D_{q,\omega }^{N} f(t) = {\mathcal{I}}_{q,\omega }^{N} D _{q,\omega }^{N} f(t) \\ &= f(t)-\sum_{k=0}^{N-1} \frac{t^{k}}{p^{{ k \choose 2 }}\varGamma _{p,q}(k+1)} \bigl[ D_{p,q}^{k}f(0) \bigr] \\ &= f(t)-\sum_{k=0}^{N-1} \frac{t^{k}}{p^{{ k \choose 2 }}[k]_{p,q}!} \bigl[ D_{p,q}^{k}f(0) \bigr]. \end{aligned}$$

The proof is completed. □

Corollary 5.1

Let \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\). Then

$$\begin{aligned} {\mathcal{I}}_{p,q}^{\alpha }{^{C}}D_{p,q}^{\alpha }f(t) = f(t)+C_{1}t ^{N-1}+C_{2}t^{N-2}+\cdots+C_{N} \end{aligned}$$

for some \(C_{i}\in {\mathbb{R}},i=1,2,\ldots,N\).

Conclusions

In this paper, we introduced fractional \((p,q)\)-integral, Riemann–Liouville, and Caputo fractional \((p,q)\)-difference operators. Many properties of these fractional \((p,q)\)-operators were proved. This work would be a starting point of many other works. For example, in the future we may define the Laplace transform for fractional \((p,q)\)-calculus, find the fractional \((p,q)\)-convolution product, and compute its fractional \((p,q)\)-Laplace transform. In addition, we could solve many fractional \((p,q)\)-difference equations by using this transform.

References

  1. 1.

    Jackson, F.H.: On q-difference equations. Am. J. Math. 32, 305–314 (1910)

    MATH  Article  Google Scholar 

  2. 2.

    Carmichael, R.D.: The general theory of linear q-difference equations. Am. J. Math. 34, 147–168 (1912)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Mason, T.E.: On properties of the solutions of linear q-difference equations with entire function coefficients. Am. J. Math. 37, 439–444 (1915)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Adams, C.R.: On the linear ordinary q-difference equation. Ann. Math. 30, 195–205 (1929)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Trjitzinsky, W.J.: Analytic theory of linear q-difference equations. Acta Math. 62(1), 167–226 (1933)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Google Scholar 

  7. 7.

    Ernst, T.: A new notation for q-calculus and a new q-Taylor formula, U.U.D.M. Report 1999:25, ISSN 1101-3591, Department of Mathematics, Uppsala University (1999)

  8. 8.

    Floreanini, R., Vinet, L.: q-gamma and q-beta functions in quantum algebra representation theory. J. Comput. Appl. Math. 68, 57–68 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Finkelstein, R.J.: Symmetry group of the hydrogen atom. J. Math. Phys. 8(3), 443–449 (1967)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gavrilik, A.M.: q-Serre relations in \(U_{q}(u_{n})\) and q-deformed meson mass sum rules. J. Phys. A, Math. Gen. 27(3), 91–94 (1994)

    MATH  Article  Google Scholar 

  11. 11.

    Finkelstein, R.J.: q-gauge theory. Int. J. Mod. Phys. A 11(4), 733–746 (1996)

    MATH  Article  Google Scholar 

  12. 12.

    Kaniadakis, G., Lavagno, A., Quarati, P.: Kinetic model for q-deformed bosons and fermions. Phys. Lett. A 227(3–4), 227–231 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Ilinski, K.N., Kalinin, G.V., Stepanenko, A.S.: q-functional field theory for particles with exotic statistics. Phys. Lett. A 232(6), 399–408 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Finkelstein, R.J.: q-field theory. Lett. Math. Phys. 34(2), 169–176 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Chan, F.L., Finkelstein, R.J.: q-deformation of the Coulomb problem. J. Math. Phys. 35(7), 3273–3284 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Cadavid, A.C., Finkelstein, R.J.: The q-Coulomb problem in configuration space. J. Math. Phys. 37(8), 3675–3683 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Finkelstein, R.J.: The q-Coulomb problem. J. Math. Phys. 37(6), 2628–2636 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Feigenbaum, J., Freund, P.G.: A q-deformation of the Coulomb problem. J. Math. Phys. 37(4), 1602–1616 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Cheng, H.: Canonical Quantization of Yang–Mills Theories, Perspectives in Mathematical Physics. International Press, Somerville (1996)

    Google Scholar 

  20. 20.

    Finkelstein, R.J.: q-gravity. Lett. Math. Phys. 38(1), 53–62 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Kamata, M., Nakamula, A.: One-parameter family of selfdual solutions in classical Yang–Mills theory. Phys. Lett. B 463(2–4), 257–262 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Negadi, T., Kibler, M.: A q-deformed Aufbau Prinzip. J. Phys. A, Math. Gen. 25(4), 157–160 (1992)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Marinova, L.P., Raychev, P.P., Maruani, J.: Molecular backbending in AgH and its description in terms of q-algebras. Mol. Phys. 82(6), 1115–1129 (1994)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Monteiro, M.R., Rodrigues, L.M.C.S., Wulck, S.: Quantum algebraic nature of the photon spectrum in 4He. Phys. Rev. Lett. 76(7), 1098–1100 (1996)

    Article  Google Scholar 

  25. 25.

    Siegel, W.: Introduction to String Field Theory. Advanced Series in Mathematical Physics, vol. 8. World Scientific, Teaneck (1988)

    Google Scholar 

  26. 26.

    Chakrabarti, R., Jagannathan, R.: A \((p,q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24(24), 5683–5701 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Jagannathan, R., Rao, K.S.: Two-parameter quantum algebras, twin-basic number, and associated generalized hypergeometric series. Differ. Equ. Appl. 2006, 27 (2006)

    Google Scholar 

  28. 28.

    Sahai, V., Yadav, S.: Representations of two parameter quantum algebras and \((p,q)\)-special functions. J. Math. Anal. Appl. 335(1), 268–279 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Burban, I.: Two-parameter deformation of the oscillator algebra and \((p,q)\)-analog of two-dimensional conformal field theory. J. Nonlinear Math. Phys. 2(3–4), 384–391 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Sadjang, P.N.: On the fundamental theorem of \((p,q)\)-calculus and some \((p,q)\)-Taylor formulas. Results Math. 73, 39 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Hounkonnou, M.N., Kyemba, J.D.: \(R(p,q)\)-calculus: differentiation and integration. SUT J. Math. 49(2), 145–167 (2013)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Araci, S., Duran, U.G., Acikgoz, M., Srivastava, H.M.: A certain \((p,q)\)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 301 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Duran, U.: Post quantum calculus [Master Thesis], University of Gaziantep (2016)

  35. 35.

    Kamsrisuk, N., Promsakon, C., Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for \((p,q)\)-difference equations. Differ. Equ. Appl. 10(2), 183–195 (2018)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Promsakon, C., Kamsrisuk, N., Ntouyas, S.K., Tariboon, J.: On the second-order quantum \((p,q)\)-difference equations with separated boundary conditions. Adv. Math. Phys. 2018, Article ID 9089865 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Milovanovic, G.V., Gupta, V., Malik, N.: \((p,q)\)-Beta functions and applications in approximation. Bol. Soc. Mat. Mexicana 24, 219–237 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Cheng, W.T., Zhang, W.H., Cai, Q.B.: \((p,q)\)-gamma operators which preserve \(x^{2}\). J. Inequal. Appl. 2019, 108 (2019)

    Article  Google Scholar 

  39. 39.

    Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by \((p,q)\)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015). [Corrigendum: Appl. Math. Comput.269, 744–746 (2015)]

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Mursaleen, M., Nasiruzzaman, M., Khan, A., Ansari, K.J.: Some approximation results on Bleimann–Butzer–Hahn operators defined by \((p,q)\)-integers. Filomat 30(3), 639–648 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Mursaleen, M., Khan, F., Khan, A.: Approximation by \((p,q)\)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 10(8), 1725–1740 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Rahman, S., Mursaleen, M., Alkhaldi, A.H.: Convergence of iterates of q-Bernstein and \((p,q)\)-Bernstein operators and the Kelisky–Rivlin type theorem. Filomat 32(12), 4351–4364 (2018)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Jebreen, H.B., Mursaleen, M., Ahasan, M.: On the convergence of Lupaş \((p,q)\)-Bernstein operators via contraction principle. J. Inequal. Appl. 2019, 34 (2019)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: Some Opial-type integral inequalities via \((p,q)\)-calculus. J. Inequal. Appl. 2019, 295 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philol. Soc. 66, 365–370 (1969)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15, 135–140 (1966)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Díaz, J.B., Osler, T.J.: Differences of fractional order. Math. Compet. 28, 185–202 (1974)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Brikshavana, T., Sitthiwirattham, T.: On fractional Hahn calculus. Adv. Differ. Equ. 2017, 354 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Patanarapeelert, N., Sitthiwirattham, T.: On fractional symmetric Hahn calculus. Mathematics 7, 873 (2019)

    Article  Google Scholar 

  50. 50.

    Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Availability of data and materials

Not applicable.

Funding

This research was funded by King Mongkut’s University of Technology North Bangkok. Contract no. KMUTNB-61-KNOW-026.

Author information

Affiliations

Authors

Contributions

The authors declare that they carried out all the work in this manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Thanin Sitthiwirattham.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soontharanon, J., Sitthiwirattham, T. On fractional \((p,q)\)-calculus. Adv Differ Equ 2020, 35 (2020). https://doi.org/10.1186/s13662-020-2512-7

Download citation

MSC

  • 39A10
  • 39A13
  • 39A70

Keywords

  • Fractional \((p,q)\)-integral
  • Fractional \((p,q)\)-difference
  • \((p,q)\)-calculus