Skip to main content

Optical solitons of space-time fractional Fokas–Lenells equation with two versatile integration architectures

Abstract

Nonlinear Schrödinger’s equation and its variation structures assume a significant job in soliton dynamics. The soliton solutions of space-time fractional Fokas–Lenells equation with a relatively new definition of local M-derivative have been recovered by utilizing improved \(\tan (\frac{\phi (\eta )}{2})\)-expansion method and generalized projective Riccati equation method. The obtained solutions are periodic, dark, bright, singular, rational, along with few forms of combo-soliton solutions. These solutions are given under constraints conditions which ensure their existence. The impact of local fractional parameter is featured by its graphical portrayal. 2D and 3D diagrams are drawn to illustrate the efficacy of the conformable fractional order on the behavior of some of those solutions. The secured solutions of this model have dynamic and significant justifications for some real-world physical occurrences. Our study shows that the suggested schemes are effective, reliable, and simple for solving different types of nonlinear differential equations.

Introduction

From the past three decades, optical solitons emerge as a fast growing area of research due to their use in transmission technology, through different forms of wave-guides. Solitons are utilized to represent the particle-like properties of nonlinear pulses. The importance of solitons is due to their presence in a variety of nonlinear differential equations portraying many complex nonlinear phenomena, including acoustics, nonlinear optics, telecommunication industry, convictive fluids, plasma physics, condensed matter, and solid-state physics. Nonlinear Schrödinger’s equation and its variant forms are used in dispersive mediums in different fields of mathematical physics and have been studied mathematically in recent years [115].

Solitons exist due to an accurate balance among nonlinearity and group velocity dispersion (GVD) in the area. If the value of GVD is small, this balance may be at risk. Therefore, to keep the balance among the two, expression terms with dispersive effects need to be investigated. One of the known models which is relevant is the Fokas–Lenells (FL) equation [1618]. FL equation is one of the known forms of nonlinear Schrödinger’s equation, introduced about a decade ago. Due to its vast applications in fiber-optics communication, this sort of equation is crucial in research and thus the search for different forms of wave solutions is very significant. Many computational methodologies have been developed for constructing wave solutions for such equations, including the improved \(\tan (\phi (\eta )/2)\)-expansion method, the trial equation method, improved Bernoulli subequation function method, the extended Fan subequation method, extended and the modified simple equation methods, Riccati–Bernoulli’s sub-ODE method, the Lie group analysis, extended Jacobi’s elliptic function approach, and many others [1935].

Nowadays, fractional science is a flourishing area of mathematical analysis along with fractional operators, such as Caputo, Grunwald–Letnikov, and Riemann–Liouville [3644]. In 1695, in a letter to Leibniz, l’Hospital asked him about the detection of expanding the sense of an integer-order derivative \(\frac{d^{\lambda }y}{dx^{\lambda }}\) to the case of a fraction of the order. This problem started the development of a modern calculus that was named the calculus of arbitrary order and is now commonly called the calculus of fractions. Many forms of fractional derivatives, including Riemann–Liouville, Caputo, Hadamard, Caputo–Hadamard, and Riesz [40, 41, 43], have been developed to date. Almost all of these derivatives are described in the Riemann–Liouville sense based on the corresponding fractional integral.

In 2017, Sousa introduced a new fractional derivative that generalizes the so-called alternative fractional derivative [45]. This new differential operator is denoted by \(D^{\lambda , \mu }_{M}\), where λ is the order, such that \(0<\lambda \leq 1\), \(\mu >0\), and M denotes that the derived function includes a Mittag-Leffler function along with one parameter. This new type of derivative is known as a local M-derivative, it fulfills certain characteristics of integer-order calculus, e.g., linearity, quotient rule, product rule, chain rule, and function composition. Furthermore, the local M-derivative of a constant is zero. Since the Mittag-Leffler function is the generalization of the exponential function, some of the classical outcomes of calculus of the integer-order can be extended, namely the mean value theorem, Rolle’s theorem, and its extensions. Moreover, when the derivative order is \(\lambda =1\) and the Mittag-Leffler function parameter is also unitary, our specification is analogous to that of the ordinary derivative of order one.

This work aims to build specific fractional spatio-temporal optical solitons of FL equation by using two versatile integration gadgets, namely improved \(\tan (\frac{\phi (\eta )}{2})\)-expansion method [4648] and generalized projective Riccati equation method (GPREM) [49, 50].

Governing model

Using the definition of the local M-derivative and its properties, the space-time fractional FL equation is introduced as follows:

$$\begin{aligned} &i D_{M,t}^{\alpha ; \delta _{1}}\Psi +a_{1} D_{M,x}^{2\alpha ; \delta _{1}}\Psi +a_{2}D_{M,t}^{\alpha ; \delta _{1}}D_{M,x}^{\alpha ; \delta _{1}} \Psi + \vert \Psi \vert ^{2}\bigl(\beta \Psi +i \sigma D_{M,x}^{\alpha ; \delta _{1}}\Psi \bigr) \\ &\quad {}-i\delta D_{M,x}^{\alpha ; \delta _{1}}-i\rho D_{M,x}^{\alpha ; \delta _{1}} \bigl( \vert \Psi \vert ^{2n}\Psi \bigr)-i \gamma \Psi D_{M,x}^{\alpha ; \delta _{1}}\bigl( \vert \Psi \vert ^{2n}\bigr)=0, \quad 0< \alpha \leq 1, n>0, \end{aligned}$$
(1)

where \(i=\sqrt{-1}\), \(\Psi =\Psi (x,t)\) is a complex-valued wave function. The first term of Eq. (1) gives the fractional temporal evolution of the pulse; \(a_{1}\), \(a_{2}\) are the spatio-temporal dispersion (STD), group velocity dispersion (GVD) coefficients, while ρ, δ, and γ represent the self-steepening, inter-modal dispersion (IMD), and nonlinear dispersion (ND) coefficients respectively [1618].

When \(\alpha =1\), Eq. (1) is converted to the original FL equation [1618]. The FL equation emerges as a model equation that defines the nonlinear pulse propagation in optical fibers by maintaining terms up to the next leading asymptotic order (the nonlinear Schrödinger equation (NLSE) results in the leading asymptotic order). In the context of nonlinear optics, this equation sculpts the promulgation of nonlinear light pulses in monomode optical fibers as assumed nonlinear higher-order effects are captured in the elaboration [51]. It is worth noticing that the FL equation is a fully integrable equation in nonlinear PDEs which has been developed as an integrable generalization of the NLSE using bi-Hamiltonian techniques [52].

Local M-derivative

Consider the function \(f:[0,\infty )\rightarrow R \) where \(t>0\). For \(0<\mu <1\), let us define the local M-derivative of order μ for the function f, denoted by \(D^{\mu ;\delta }_{M}\) [5356], by

$$ D^{\mu ;\delta }_{M}\bigl\{ f(t)\bigr\} :=\lim _{\epsilon \rightarrow 0}\frac{f(t{E}_{\delta }(\epsilon t^{-\mu }))-f(t)}{\epsilon },\quad \forall t>0, $$
(2)

where \({E}_{\delta }(\cdot )\) is the Mittag-Leffler function with one parameter. Here \(f(t)\) is a p-differentiable function in some interval \((0,p), p>0\), and if \(\lim_{t\rightarrow 0^{+}}D^{\mu ;\delta }_{M}\) exists, then we have

$$ D^{\mu ;\delta }_{M}\bigl\{ f(0)\bigr\} =\lim _{t\rightarrow 0^{+}}D^{\mu ;\delta }_{M}\bigl\{ f(t)\bigr\} . $$
(3)

The local M-derivative possess the following properties:

$$ D^{\mu ;\delta }_{M}\bigl\{ f(t)\bigr\} =\frac{t^{1-\mu }}{\Gamma (\delta +1)} \frac{df(t)}{dt}, $$
(4)

therefore

$$ D^{\mu ;\delta }_{M}\biggl(\frac{t^{\mu }\Gamma (\delta +1)}{\alpha }\biggr)=1. $$
(5)

This local fractional-order M-derivative also has the following chain rule property:

$$ D^{\mu ;\delta }_{M}(f.g) (a)=f'\bigl(g(a) \bigr)D^{\mu ;\delta }_{M}. $$
(6)

Using Eqs. (4)–(6), we obtain the following expression:

$$ D^{\mu ;\delta }_{M}F\biggl(\frac{\Gamma (\delta +1)t^{\mu }}{\mu } \biggr)=F'\biggl(\frac{\Gamma (\delta +1)t^{\mu }}{\mu }\biggr) D^{\mu ;\delta }_{M} \biggl(\frac{\Gamma (\delta +1)t^{\mu }}{\mu }\biggr)=F'\biggl(\frac{\Gamma (\delta +1)t^{\mu }}{\mu }\biggr), $$
(7)

with

$$ \eta =\frac{m}{\mu }\Gamma (\delta +1)t^{\mu } , $$
(8)

where m is a constant. The last property is given as

$$ D^{\mu ;\delta }_{M}F(\eta )=mF'(\eta ). $$
(9)

Traveling wave hypothesis

Consider the following complex traveling wave transformation:

$$\begin{aligned} &\Psi (x,t)=U(\eta )e^{i\Theta },\qquad \eta =\nu \biggl( \Gamma (\delta _{1}+1) \biggl(\frac{x^{\alpha }}{\alpha }-v\frac{t^{\alpha }}{\alpha } \biggr) \biggr), \\ & \Theta =\Gamma (\delta _{1}+1) \biggl(-k \frac{x^{\alpha }}{\alpha }+\omega \frac{t^{\alpha }}{\alpha } \biggr)+\theta . \end{aligned}$$
(10)

Substituting Eq. (10) into Eq. (1) yields

$$ \nu ^{2}(a_{1}-a_{2}v)U''+ \bigl(a_{2}k\omega -\omega -a_{1}k^{2}-\delta k \bigr)U+(\beta +k\sigma )U^{3}-k\rho U^{1+2n}=0, $$
(11)

from the real part, and

$$ \bigl(\bigl(v+\delta +2a_{1}k-a_{2}(vk+\omega )\bigr)-\sigma U^{2}+(\rho +2n\rho +2n\gamma )U^{2n} \bigr)U'=0, $$
(12)

from the imaginary part.

Considering \(n=1\), Eqs. (1), (11), and (12) become

$$\begin{aligned} &iD^{\alpha ;\delta _{1}}_{M, t}\Psi +a_{1}D^{2\alpha ;\delta _{1}}_{M, x}+a_{2}D^{\alpha ;\delta _{1}}_{M, t}D^{\alpha ;\delta _{1}}_{M, x} \Psi + \vert \Psi \vert ^{2}\bigl(\beta \Psi +i\sigma D^{\alpha ;\delta _{1}}_{M, x}\Psi \bigr) \end{aligned}$$
(13)
$$\begin{aligned} &\quad {}-i\delta D^{\alpha ;\delta _{1}}_{M, x}\Psi -i\rho D^{\alpha ;\delta _{1}}_{M, x}\bigl( \vert \Psi \vert ^{2}\Psi \bigr)-i\gamma \Psi D^{\alpha ;\delta _{1}}_{M, x}\bigl( \vert \Psi \vert ^{2}\bigr)=0,\quad 0\leq \alpha \leq 1, \\ &\nu ^{2}(a_{1}-a_{2}v)U''+ \bigl(a_{2}k\omega -\omega -a_{1}k^{2}-\delta k \bigr)U+\bigl(\beta -k(\rho -\sigma )\bigr)U^{3}=0, \end{aligned}$$
(14)

and

$$ \bigl(\bigl(v+\delta +2a_{1}k-a_{2}(vk+\omega )\bigr)+(3\rho +2\gamma -\sigma )U^{2}\bigr)U'=0, $$
(15)

respectively.

Setting \((3\rho +2\gamma -\sigma )=0\) into Eq. (15), we get the following relations:

$$ \sigma =3\rho +2\gamma , \qquad v=\frac{\delta +2a_{1}k-a_{2}\omega }{a_{2}k-1}, $$
(16)

where v in Eq. (16) represents the velocity of solitons.

Soliton solutions

In this section soliton solutions are extracted for Eq. (13) with the help of two different integration schemes, namely the improved \(\tan (\frac{\phi (\eta )}{2})\)-expansion method and generalized projective Riccati equation method. In order to obtain these solutions, it is enough to solve the real part of Eq. (13), which is given in Eq. (14).

Improved \(\tan (\frac{\phi (\eta )}{2})\)-expansion method

Consider the initial hypothesis in the following form [4648]:

$$ U(\eta )=S(\Phi )=\sum^{m}_{l=0}A_{k} \biggl[p+\tan \biggl(\frac{\Phi (\eta )}{2} \biggr) \biggr]^{k}+ \sum ^{m}_{l=1}B_{k} \biggl[p+\tan \biggl(\frac{\Phi (\eta )}{2} \biggr) \biggr]^{-k}, $$
(17)

where \(A_{k}(0\leq l\leq m)\) and \(B_{k}(1\leq l\leq m)\) are constants to be determined, such that \(A_{m}\neq 0\), \(B_{m}\neq 0\) and \(\Phi =\Phi (\eta )\) satisfies the following ordinary differential equation:

$$ \Phi '(\eta )=a\sin \bigl(\Phi (\eta )\bigr)+b\cos \bigl(\Phi (\eta )\bigr)+c. $$
(18)

By using the homogeneous balance principle between the terms \(U''\) and \(U^{3}\) of Eq. (14) lead us to the value \(l=1\). For \(p=0\), Eq. (17) takes the following form:

$$\begin{aligned} U(\eta )=A_{0}+A_{1} \biggl[\tan \biggl( \frac{\Phi (\eta )}{2} \biggr) \biggr]+B_{1} \biggl[\tan \biggl( \frac{\Phi (\eta )}{2} \biggr) \biggr]^{-1}. \end{aligned}$$
(19)

Herein the objective is to find the values of \(A_{0}\), \(A_{1}\), and \(B_{1}\). In order to find these values, substitute Eq. (19) into Eq. (14), and comparing all the coefficients of \((\tan (\frac{\Phi (\eta )}{2} ) )^{n}\), where \(n=-3,-2,-1,0,1,2,3\), with zero provides the following set of algebraic equations:

$$ \begin{aligned} &\omega =\frac{1}{(a_{2} k-1)a^{2}} (A_{0}^{2}(k \rho -k\sigma -\beta ) \bigl(a^{2}+b^{2}-c^{2} \bigr)+k a^{2}(\delta +a_{1} v ), \\ &A_{0}=A_{0},\qquad A_{1}=-\frac{A_{0}(b-c)}{a},\qquad B_{1}=0,\\ & v=\frac{2A_{0}^{2}k(\sigma -\rho )+2\beta A_{0}^{2}+\nu ^{2}a_{1}a^{2}}{\nu ^{2} a_{2} a^{2}}.\end{aligned} $$
(20)

Now equating the values of velocities in Eqs. (16) and (20), we will get subsequent value of \(a_{1}\):

$$ a_{1}=\frac{\nu ^{2}a_{2}a^{2}(a_{2}\omega -\delta )+2A_{0}^{2}(ka_{2}-1)(k\sigma -k\rho +\beta )}{\nu ^{2}a^{2}(a_{2}k+1)}. $$
(21)

Substituting the above value of \(a_{1}\) in ω, we get

$$ \omega =\frac{A_{0}^{2}(k\sigma -k\rho +\beta )(\nu ^{2}(a^{2}+b^{2}-c^{2})(ka_{2}+1)+2k^{2}(1-ka_{2}))}{\nu ^{2}a^{2}}. $$
(22)

Substituting these values in Eq. (19) and using the relation in Eq. (18) yields the following soliton solutions for Eq. (13).

When \(a^{2}+b^{2}-c^{2}<0\), the subsequent periodic soliton solution is obtained as

$$\begin{aligned} \Psi _{1}(x,t)=\frac{A_{0} \sqrt{c^{2}-b^{2}-a^{2}}}{a}\tan \biggl(\frac{\sqrt{c^{2}-b^{2}-a^{2}}}{2}(\eta +C) \biggr)e^{i\Theta }. \end{aligned}$$
(23)

If \(a^{2}+b^{2}-c^{2}>0\), then the following dark soliton solution is obtained:

$$\begin{aligned} \Psi _{2}(x,t)=-\frac{A_{0} \sqrt{b^{2}+a^{2}-c^{2}}}{a}\tanh \biggl(\frac{\sqrt{b^{2}+a^{2}-c^{2}}}{2}(\eta +C) \biggr)e^{i\Theta }. \end{aligned}$$
(24)

If \(a^{2}+b^{2}-c^{2}>0\), \(b\neq 0\), and \(c=0\), then

$$\begin{aligned} \Psi _{3}(x,t)=-\frac{A_{0} \sqrt{b^{2}+a^{2}}}{a}\tanh \biggl(\frac{\sqrt{b^{2}+a^{2}}}{2}( \eta +C) \biggr)e^{i\Theta }. \end{aligned}$$
(25)

If \(a^{2}+b^{2}-c^{2}<0\), \(c\neq 0\), and \(b=0\), then

$$\begin{aligned} \Psi _{4}(x,t)=-\frac{A_{0} \sqrt{c^{2}-a^{2}}}{a}\tan \biggl(\frac{\sqrt{c^{2}-a^{2}}}{2}(\eta +C) \biggr)e^{i\Theta }. \end{aligned}$$
(26)

If \(a^{2}+b^{2}=c^{2}\), then

$$\begin{aligned} \Psi _{5}(x,t)= A_{0} \biggl(1+\frac{(b^{2}-c^{2})(a(\eta +C)+2)}{a^{3}(\eta +C)} \biggr)e^{i\Theta }. \end{aligned}$$
(27)

If \(a=c=la\) and \(b=-l a\), then

$$\begin{aligned} \Psi _{6}(x,t)= A_{0} \biggl(1+\frac{2le^{la(\eta +C)}}{1-e^{la(\eta +C)}} \biggr)e^{i\Theta }. \end{aligned}$$
(28)

If \(c=a\), then

$$\begin{aligned} \Psi _{7}(x,t)= A_{0} \biggl(1+\frac{b-a}{a} \biggl[ \frac{(a+b)e^{b(\eta +C)}-1}{(a-b)e^{b(\eta +C)}-1} \biggr] \biggr)e^{i\Theta }. \end{aligned}$$
(29)

If \(a=c\), then

$$\begin{aligned} \Psi _{8}(x,t)= A_{0} \biggl(1-\frac{b-c}{c} \biggl[ \frac{(b+c)e^{b(\eta +C)}+1}{(b-c)e^{b(\eta +C)}-1} \biggr] \biggr)e^{i\Theta }. \end{aligned}$$
(30)

If \(c=-a\), then

$$\begin{aligned} \Psi _{9}(x,t)= A_{0} \biggl(1-\frac{b+a}{a} \biggl[ \frac{e^{b(\eta +C)}+b-a}{e^{b(\eta +C)}-b-a} \biggr] \biggr)e^{i\Theta }. \end{aligned}$$
(31)

If \(b=-c\), then

$$\begin{aligned} \Psi _{10}(x,t)= A_{0} \biggl(1+\frac{2ce^{a(\eta +C)}}{ce^{a(\eta +C)}-1} \biggr)e^{i\Theta }. \end{aligned}$$
(32)

If \(b=0\) and \(a=c\), then

$$\begin{aligned} \Psi _{11}(x,t)= A_{0} \biggl(1- \biggl[\frac{c(\eta +C)+2}{c(\eta +C)} \biggr] \biggr)e^{i\Theta }. \end{aligned}$$
(33)

In Eqs. (23)–(33), \(\eta =\nu (\Gamma (\delta _{1}+1) (\frac{x^{\alpha }}{\alpha }-v\frac{t^{\alpha }}{\alpha } ) )\) and \(\Theta =\Gamma (\delta _{1}+1) (-k\frac{x^{\alpha }}{\alpha }+\omega \frac{t^{\alpha }}{\alpha } )+\theta \).

Generalized projective Riccati equation method

Consider the following initial solution in order to solve Eq. (14) to find soliton solution of Eq. (13) with the aid of generalized projective Riccati equation method [49, 50]:

$$\begin{aligned} U(\eta )= A_{0}+ \sum_{j=0}^{N} \bigl(A_{j} \varrho (\eta )+ B_{j} \tau (\eta )\bigr). \end{aligned}$$
(34)

In Eq. (14), the homogeneous balance principle gives \(N=1\). Equation (34) becomes

$$\begin{aligned} U(\eta )= A_{0}+ A_{1} \varrho (\eta )+ B_{1}\tau (\eta ), \end{aligned}$$
(35)

where \(\varrho (\eta )\) and \(\tau (\eta )\) satisfy the projective Riccati system (PRS)

$$\begin{aligned}& \varrho '(\eta )= \epsilon \varrho (\eta ) \tau (\eta ), \end{aligned}$$
(36)
$$\begin{aligned}& \tau '(\eta )= \epsilon \tau ^{2}(\eta )- m \varrho (\eta )+ R, \end{aligned}$$
(37)

and PRS first integral is expressed as

$$\begin{aligned} \tau ^{2}(\eta )= -\epsilon \biggl(R- 2 \mu \varrho ( \eta )+ \frac{\mu ^{2}-1}{R}\varrho ^{2}(\eta ) \biggr). \end{aligned}$$
(38)

Substituting Eqs. (35), (36), and (38) into Eq. (14) provides a polynomial in \((\varrho ^{i}(\eta ), \tau ^{j}(\eta ))\), setting whose coefficients to zero yields a set of algebraic equations. When solving this system of equation with the aid of Maple, we will get

Set 1.

$$\begin{aligned} &R=\frac{2(-a_{2}k\omega +a_{1}k^{2}+\omega +\delta k)}{(a_{1}-a_{2}v)\nu ^{2}\epsilon },\quad \lambda =\lambda , \mu =1, A_{0}=0, A_{1}=0, \\ &B_{1}=\sqrt{-\frac{4a_{2}v\epsilon ^{2}+3a_{1}-3a_{2}v-4a_{1}\epsilon ^{2}}{2k\rho -2k\sigma -2\beta }}\nu . \end{aligned}$$
(39)

Set 2.

$$\begin{aligned} &R=\frac{(-a_{2}k\omega +a_{1}k^{2}+\omega +\delta k)}{2(a_{1}-a_{2}v)\nu ^{2}\epsilon },\quad \lambda =\lambda , \mu =0, A_{0}=0, A_{1}=0, \\ &B_{1}=\sqrt{\frac{-2a_{1}+2a_{2}v}{k\rho -k\sigma -\beta }}\nu \epsilon . \end{aligned}$$
(40)

Case 1. When \(\epsilon =-1\) and \(R\neq 0\), the PRS system has the following solutions:

$$\begin{aligned} &\sigma _{1}(\eta )=\frac{R\operatorname{sech}(\sqrt{R}\eta )}{\mu \operatorname{sech}(\sqrt{R}\eta )+1}, \qquad \tau _{1}(\eta )=\frac{\sqrt{R}\tanh (\sqrt{R}\eta )}{\mu \tanh (\sqrt{R}\eta )+1}, \\ & \sigma _{2}(\eta )=\frac{R \operatorname{csch}(\sqrt{R}\eta )}{\mu \operatorname{csch}(\sqrt{R}\eta )+1}, \qquad \tau _{2}(\eta )=\frac{\sqrt{R}\coth (\sqrt{R}\eta )}{\mu \coth (\sqrt{R}\eta )+1}. \end{aligned}$$
(41)

Case 2. When \(\epsilon =1\) and \(R\neq 0\), the PRS system has the subsequent solutions:

$$\begin{aligned} &\sigma _{3}(\eta )=\frac{R \sec (\sqrt{R}\eta )}{\mu \sec (\sqrt{R}\eta )+1}, \qquad \tau _{3}(\eta )=\frac{\sqrt{R}\tan (\sqrt{R}\eta )}{\mu \tan (\sqrt{R}\eta )+1}, \\ &\sigma _{4}(\eta )=\frac{R\csc (\sqrt{R}\eta )}{\mu \csc (\sqrt{R}\eta )+1}, \qquad \tau _{4}(\eta )=\frac{\sqrt{R}\cot (\sqrt{R}\eta )}{\mu \cot (\sqrt{R}\eta )+1}. \end{aligned}$$
(42)

Case 3. If \(R=\mu =0\), then

$$\begin{aligned} \sigma _{5}(\eta )=\frac{C}{\xi }=C\epsilon \tau _{5}( \xi ), \qquad \tau _{5}(\xi )=\frac{1}{\epsilon \xi }, \end{aligned}$$
(43)

where C is a constant.

Substituting the values of Set 1 along with equations (35), (41), and (42) into Eq. (10) provides the following solutions:

$$\begin{aligned}& \Psi _{12}(x,t)=\sqrt{\frac{k(a_{1}k+\delta )+\omega (1-a_{2}k)}{\beta -k\rho +k\sigma }} \biggl(\frac{\tanh (\sqrt{\frac{2(a_{2}k\omega -a_{1}k^{2}-\omega -\delta k)}{(a_{1}-a_{2}v)\nu ^{2}}}\eta )}{ \tanh (\sqrt{\frac{2(a_{2}k\omega -a_{1}k^{2}-\omega -\delta k)}{(a_{1}-a_{2}v)\nu ^{2}}}\eta )+1} \biggr)e^{i\Theta }, \end{aligned}$$
(44)
$$\begin{aligned}& \Psi _{13}(x,t)=\sqrt{\frac{k(a_{1}k+\delta )+\omega (1-a_{2}k)}{\beta -k\rho +k\sigma }} \biggl(\frac{\coth (\sqrt{\frac{2(a_{2}k\omega -a_{1}k^{2}-\omega -\delta k)}{(a_{1}-a_{2}v)\nu ^{2}}}\eta )}{ \coth (\sqrt{\frac{2(a_{2}k\omega -a_{1}k^{2}-\omega -\delta k)}{(a_{1}-a_{2}v)\nu ^{2}}}\eta )+1} \biggr)e^{i\Theta }, \end{aligned}$$
(45)
$$\begin{aligned}& \Psi _{14}(x,t)=\sqrt{\frac{k(a_{1}k+\delta )+\omega (1-a_{2}k)}{k\rho -k\sigma -\beta }} \biggl(\frac{ \tan (\sqrt{\frac{2(-a_{2}k\omega +a_{1}k^{2}+\omega +\delta k)}{(a_{1}-a_{2}v)\nu ^{2}}}\eta )}{ \tan (\sqrt{\frac{2(-a_{2}k\omega +a_{1}k^{2}+\omega +\delta k)}{(a_{1}-a_{2}v)\nu ^{2}}}\eta )+1} \biggr)e^{i\Theta }, \end{aligned}$$
(46)
$$\begin{aligned}& \Psi _{15}(x,t)=\sqrt{\frac{k(a_{1}k+\delta )+\omega (1-a_{2}k)}{k\rho -k\sigma -\beta }} \biggl(\frac{\cot (\sqrt{\frac{2(-a_{2}k\omega +a_{1}k^{2}+\omega +\delta k)}{(a_{1}-a_{2}v)\nu ^{2}}}\eta )}{ \cot (\sqrt{\frac{2(-a_{2}k\omega +a_{1}k^{2}+\omega +\delta k)}{(a_{1}-a_{2}v)\nu ^{2}}}\eta )+1} \biggr)e^{i\Theta }, \end{aligned}$$
(47)

where \(\eta =\nu (\Gamma (\delta _{1}+1) (\frac{x^{\alpha }}{\alpha }-v\frac{t^{\alpha }}{\alpha } ) ) \) and \(\Theta =\Gamma (\delta _{1}+1) (-k\frac{x^{\alpha }}{\alpha }+\omega \frac{t^{\alpha }}{\alpha } )+\theta \).

Using the values of Set 2 along with equations (35), (41), and (42) in Eq. (10) yields the subsequent solutions:

$$\begin{aligned}& \Psi _{16}(x,t)=\sqrt{\frac{k(a_{1}k+\delta )+\omega (1-a_{2}k)}{k\rho -k\sigma -\beta }} \biggl(\tanh \biggl(\sqrt{ \frac{(a_{2}k\omega -a_{1}k^{2}-\omega -\delta k)}{2(a_{1}-a_{2}v)\nu ^{2}}}\eta \biggr) \biggr)e^{i\Theta }, \end{aligned}$$
(48)
$$\begin{aligned}& \Psi _{17}(x,t)=\sqrt{\frac{k(a_{1}k+\delta )+\omega (1-a_{2}k)}{k\rho -k\sigma -\beta }} \biggl(\coth \biggl(\sqrt{ \frac{(a_{2}k\omega -a_{1}k^{2}-\omega -\delta k)}{2(a_{1}-a_{2}v)\nu ^{2}}}\eta \biggr) \biggr)e^{i\Theta }, \end{aligned}$$
(49)
$$\begin{aligned}& \Psi _{18}(x,t)=\sqrt{\frac{k(a_{1}k+\delta )+\omega (1-a_{2}k)}{\beta -k\rho +k\sigma }} \biggl( \tan \biggl(\sqrt{ \frac{(-a_{2}k\omega +a_{1}k^{2}+\omega +\delta k)}{2(a_{1}-a_{2}v)\nu ^{2}}}\eta \biggr) \biggr)e^{i\Theta }, \end{aligned}$$
(50)
$$\begin{aligned}& \Psi _{19}(x,t)=\sqrt{\frac{k(a_{1}k+\delta )+\omega (1-a_{2}k)}{\beta -k\rho +k\sigma }} \biggl(\cot \biggl(\sqrt{ \frac{(-a_{2}k\omega +a_{1}k^{2}+\omega +\delta k)}{2(a_{1}-a_{2}v)\nu ^{2}}}\eta \biggr) \biggr)e^{i\Theta }, \end{aligned}$$
(51)

where \(\eta =\nu (\Gamma (\delta _{1}+1) (\frac{x^{\alpha }}{\alpha }-v\frac{t^{\alpha }}{\alpha } ) ) \) and \(\Theta =\Gamma (\delta _{1}+1) (-k\frac{x^{\alpha }}{\alpha }+\omega \frac{t^{\alpha }}{\alpha } )+\theta \).

Results and discussion

This section deals with graphical demonstration of the obtained results and provides a brief discussion on the effect of fractional parameter α. Figure 1(a) depicts the physical appearance of the periodic soliton solution \(|\Psi _{1}(x,t)|\), and Fig. 1(b) demonstrates the effect of fractional parameter \(\alpha =0.8,0.9,1.0\), along the time domain with fixed space parameter. A graphical illustration of the dark soliton solution \(|\Psi _{2}(x,t)|\) can be viewed in Fig. 2(a), and its 2D fractional parameter effects are depicted in Fig. 2(b). Figures 3(a), 4(a), 5(a), and 6(a) highlight the physical appearance of the traveling wave solution \(|\Psi _{10}(x,t)|\), dark soliton solution \(|\Psi _{16}(x,t)|\), singular soliton solution \(|\Psi _{17}(x,t)|\), and periodic soliton solution \(|\Psi _{10}(x,t)|\), respectively, and their respective 2D fractional parameter effects are given in Figs. 3(b), 4(b), 5(b), and 6(b).

Figure 1
figure1

Graphical representation of periodic soliton obtained by the \(\tan (\frac{\phi (\eta )}{2})\)-expansion method

Figure 2
figure2

Dark soliton solution profile retrieved by the \(\tan (\frac{\phi (\eta )}{2})\)-expansion method

Figure 3
figure3

Graphical depiction of a traveling wave solution obtained by the \(\tan (\frac{\phi (\eta )}{2})\)-expansion method

Figure 4
figure4

Physical appearance of the dark soliton solution retrieved by GPREM

Figure 5
figure5

Graphical demonstration of a singular soliton solution obtained by GPREM

Figure 6
figure6

Physical illustration of a periodic soliton solution gained by GPREM

Conclusion

An M-fractional FL equation representing the propagation of short light pulses in the monomode optical fibers is investigated using the improved \(\tan (\frac{\phi (\eta )}{2})\)-expansion method and GPREM. The FL model is a higher-order nonlinear Schrödinger shape equation that gives bright soliton solutions with internal freedom. Furthermore, the dark soliton solutions for the equation with the M-fractional effect, which have no internal freedom and exist for both focusing and lake of focusing equations, are investigated. The improved \(\tan (\frac{\phi (\eta )}{2})\)-expansion method is used to extract dark, singular, and rational soliton solutions, and GPREM provides dark, singular, periodic, and some forms of combo soliton solutions. These solutions are also demonstrated graphically. The fractional parameter effect on the dispersion is also highlighted through 2D graphical representation. The reported outcomes are useful in the empirical application of fiber optics. The essential advantages of the proposed schemes over all the other methods are that these methods provide new explicit analytic wave solutions including many real free parameters. The closed-form wave solutions of the nonlinear PDEs have their significant meaning to reveal the interior device of the complex physical phenomena. More problems in applied mathematics, mathematical physics, and engineering might be solved through the presented methods. In the future work, we will find the multisoliton solutions for the FL equation by the aid of the Hirota method.

References

  1. 1.

    Bazighifan, O., Chatzarakis, G.E.: Oscillatory and asymptotic behavior of advanced differential equations. Adv. Differ. Equ. 2020, 414 (2020)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Javid, A., Raza, N., Osman, M.S.: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets. Commun. Theor. Phys. 71, 362–366 (2019)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Zhou, Q., Mirzazadeh, M., Ekici, M., Sonmezoglu, A.: Analytical study of solitons in non-Kerr nonlinear negative-index materials. Nonlinear Dyn. 86, 623–638 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Zhou, Q., Yao, D., Chen, F., Li, W.: Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. J. Mod. Opt. 60, 854–859 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Zhang, H., Wang, Y., Xu, J.: Explicit monotone iterative sequences for positive solutions of a fractional differential system with coupled integral boundary conditions on a half-line. Adv. Differ. Equ. 2020, 396 (2020)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ghanbari, B., Raza, N.: An analytical method for soliton solutions of perturbed Schrödinger equation with quadratic-cubic nonlinearity. Mod. Phys. Lett. B 33, 1850427 (2019)

    Article  Google Scholar 

  8. 8.

    Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85, 731–737 (2016)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Mockary, S., Babolian, E., Vahidi, A.R.: A fast numerical method for fractional partial differential equations. Adv. Differ. Equ. 2019, 452 (2019)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Ali, K.K., Wazwaz, A.M., Osman, M.S.: Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik 208, 164132 (2020)

    Article  Google Scholar 

  11. 11.

    Ekici, M., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik 127, 10659–10669 (2016)

    Article  Google Scholar 

  12. 12.

    Raza, N., Sial, S., Kaplan, M.: Exact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution. Optik 156, 628–634 (2018)

    Article  Google Scholar 

  13. 13.

    Ali, K.K., Wazwaz, A.M., Mehanna, M.S., Osman, M.S.: On short-range pulse propagation described by \((2+ 1)\)-dimensional Schrödinger’s hyperbolic equation in nonlinear optical fibers. Phys. Scr. 95(7), 075203 (2020)

    Article  Google Scholar 

  14. 14.

    Osman, M.S., Lu, D., Khater, M.M.A., Attia, R.A.M.: Complex wave structures for abundant solutions related to the complex Ginzburg–Landau model. Optik 192, 162927 (2019)

    Article  Google Scholar 

  15. 15.

    Osman, M.S., Ali, K.K.: Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations. Optik 209, 164589 (2020)

    Article  Google Scholar 

  16. 16.

    Arshed, S., Raza, N.: Optical solitons perturbation of Fokas–Lenells equation with full nonlinearity and dual dispersion. Chin. J. Phys. 63, 314–324 (2020)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Raza, N., Arshed, S., Sial, S.: Optical solitons for coupled Fokas–Lenells equation in birefringence fibers. Mod. Phys. Lett. B 33, 1950317 (2019)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Biswasa, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Ekici, M., Zhou, Q., Moshokoac, S.P., Belic, M.: Optical soliton perturbation with Fokas–Lenells equation using three exotic and efficient integration schemes. Optik 165, 288–294 (2018)

    Article  Google Scholar 

  19. 19.

    Hosseini, K., Bekir, A., Kaplan, M., Goner, O.: On a new technique for solving the nonlinear conformable time-fractional differential equations. Opt. Quantum Electron. 49, 43 (2017)

    Article  Google Scholar 

  20. 20.

    Khater, M.M.A., Attia, R.A.M., Abdel-Aty, A.: Computational analysis of a nonlinear fractional emerging telecommunication model with higher-order dispersive cubic-quintic. Inf. Sci. Lett. 9, 83–93 (2020)

    Article  Google Scholar 

  21. 21.

    Xu, M.J., Tian, S.-F., Tu, J.-M., Zhang, T.-T.: Backlund transformation, infinite conservation laws and periodic wave solutions to a generalized \((2 + 1)\)-dimensional Boussinesq equation. Nonlinear Anal., Real World Appl. 31, 388–408 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Raza, N., Murtaza, I., Sial, S., Younis, M.: On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients. Waves Random Complex Media 28, 553–569 (2017)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Nchama, G.A.M., Mecias, A.L., Richard, M.R.: The Caputo–Fabrizio fractional integral to generate some new inequalities. Inf. Sci. Lett. 8, 73–80 (2019)

    Article  Google Scholar 

  24. 24.

    Ding, Y., Osman, M.S., Wazwaz, A.M.: Abundant complex wave solutions for the nonautonomous Fokas–Lenells equation in presence of perturbation terms. Optik 181, 503–513 (2019)

    Article  Google Scholar 

  25. 25.

    Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Ullah, M.Z., Zhou, Q., Triki, H., Moshokoa, S.P., Biswas, A.: Optical solitons with anti-cubic nonlinearity by extended trial equation method. Optik 136, 368–373 (2017)

    Article  Google Scholar 

  26. 26.

    Elgendy, A.T., Abdel-Aty, A., Youssef, A.A., Khder, M.A.A., Lotfy, Kh., Owyed, S.: Exact solution of Arrhenius equation for non-isothermal kinetics at constant heating rate and n-th order of reaction. J. Math. Chem. 58, 922–938 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Tsega, E.G.: A finite volume solution of unsteady incompressible Navier–Stokes equations using Matlab. Num. Com. Meth. Sci. Eng. 1, 117 (2019)

    Google Scholar 

  28. 28.

    Osman, M.S., Wazwaz, A.M.: A general bilinear form to generate different wave structures of solitons for a \((3+ 1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation. Math. Methods Appl. Sci. 42(18), 6277–6283 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Biswas, A., Ekici, M., Sonmezoglu, A., Triki, H., Majid, F.B., Zhou, Q., Moshokoa, S.P., Mirzazadeh, M., Belic, M.: Optical solitons with Lakshmanan–Porsezian–Daniel model using a couple of integration schemes. Optik 158, 705–711 (2018)

    Article  Google Scholar 

  30. 30.

    Ereu, J., Gimenez, J., Perez, L.: On solutions of nonlinear integral equations in the space of functions of Shiba-bounded variation. Appl. Math. Inf. Sci. 14, 393–404 (2020)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Liu, J.G., Osman, M.S., Zhu, W.H., Zhou, L., Ai, G.P.: Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers. Appl. Phys. B 125(9), 175 (2019)

    Article  Google Scholar 

  32. 32.

    Osman, M.S.: New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics. Pramana 93(2), 26 (2019)

    Article  Google Scholar 

  33. 33.

    Kumar, V.S., Rezazadeh, H., Eslami, M., Izadi, F., Osman, M.S.: Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity. Int. J. Appl. Comput. Math. 5(5), 127 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Capelas de Oliveira, E., Tenreiro Machado, J.A.: A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 238459 (2014)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Sousa, J., Capelas de Oliveira, E.: On a new operator in fractional calculus and applications (2017) arXiv:1710.03712

  36. 36.

    Agarwal, P., Berdyshev, A., Karimov, E.: Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 71(3–4), 1235–1257 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Al-Refai, M., Pal, K.: New aspects of Caputo–Fabrizio fractional derivative. Prog. Fract. Differ. Appl. 5, 157–166 (2019)

    Article  Google Scholar 

  38. 38.

    Sene, N.: Solutions for some conformable differential equations. Prog. Fract. Differ. Appl. 4, 493–501 (2018)

    Google Scholar 

  39. 39.

    Agarwal, P., Jain, S.: On unified finite integrals involving a multivariable polynomial and a generalized Mellin Barnes type of contour integral having general argument. Nat. Acad. Sci. Lett. 32(9–10), 281–286 (2009)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    da Vanterler, J., Sousa, C., Capelas de Oliveira, E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Sousa, J., de Oliveira, E.C.: On the local M-derivative (2017) arXiv:1704.08186

  42. 42.

    Sitho, S., Ntouyas, S.K., Agarwal, P., Tariboon, J.: Noninstantaneous impulsive inequalities via conformable fractional calculus. J. Inequal. Appl. 2018(1), 261 (2018)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Manafian, J., Lakestani, M.: New improvement of the expansion methods for solving the generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Int. J. Eng. Math. 2015, 107978 (2015)

    MATH  Article  Google Scholar 

  44. 44.

    Zhang, X., Agarwal, P., Liu, Z., Peng, H., You, F., Zhu, Y.: Existence and uniqueness of solutions for stochastic differential equations of fractional-order \(q>1\) with finite delays. Adv. Differ. Equ. 2017(1), 123, 1–18 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Manafian, J.: Optical soliton solutions for Schrodinger type nonlinear evolution equations by the \(\tan (\phi (\xi )/2)\)-expansion method. Optik 127, 4222–4245 (2016)

    Article  Google Scholar 

  46. 46.

    Manafian, J., Lakestani, M.: Application of \(\tan (\phi (\xi )/2)\)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik 127, 2040–2054 (2016)

    Article  Google Scholar 

  47. 47.

    Conte, R., Musette, M.: Link between solitary waves and projective Riccati equations. J. Phys. A 25, 5609 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Chen, Y., Li, B.: General projective Riccati equation method and exact solutions for generalized KdV-type and KdV–Burgers-type equations with nonlinear terms of any order. Chaos Solitons Fractals 19, 977–984 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method. Opt. Quantum Electron. 50(3), 150 (2018)

    Article  Google Scholar 

  50. 50.

    Bountis, T.C., Papageorgiou, V., Winternitz, P.: On the integrability of nonlinear ODEs with superposition principles. J. Math. Phys. 27, 1215 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Fokas, A.S.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123, 215–232 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Anderson, D.R.: Taylors formula and integral inequalities for conformable fractional derivatives. In: Contributions in Mathematics and Engineering, pp. 25–43. Springer, Berlin (2016)

    Chapter  Google Scholar 

  55. 55.

    Zheng, Z., Liu, H., Cai, J., Zhang, Y.: Criteria of limit-point case for conformable fractional Sturm–Liouville operators. Math. Methods Appl. Sci. 43, 2548–2557 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Anastassiou, G.A.: Conformable fractional inequalities. In: Anastassiou, G., Rassias, J. (eds.) Frontiers in Functional Equations and Analytic Inequalities. Springer, Cham (2019)

    MATH  Chapter  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (D-681-130-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Availability of data and materials

Not applicable.

Author information

Affiliations

Authors

Contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Corresponding author

Correspondence to Abdel-Haleem Abdel-Aty.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raza, N., Osman, M.S., Abdel-Aty, AH. et al. Optical solitons of space-time fractional Fokas–Lenells equation with two versatile integration architectures. Adv Differ Equ 2020, 517 (2020). https://doi.org/10.1186/s13662-020-02973-7

Download citation

MSC

  • 35E05
  • 35C08
  • 35Q51
  • 37L50

Keywords

  • Complex wave solutions
  • Local M-derivative
  • Improved \(\tan (\frac{\phi (\eta )}{2})\)-expansion method
  • Generalized projective Riccati equation method