Skip to main content

Hermite–Jensen–Mercer type inequalities for conformable integrals and related results

Abstract

In this paper, certain Hermite–Jensen–Mercer type inequalities are proved via conformable integrals of arbitrary order. We establish some different and new fractional Hermite–Hadamard–Mercer type inequalities for a differentiable function f whose derivatives in the absolute values are convex.

Introduction

The concept of convex function differs from other function classes with its features such as high application areas in mathematics, statistics, and many other applied sciences. This is due to its special useful definition having geometric interpretation. Moreover, it is one of the indispensable parts of inequality theory and has become the main motivation point of many inequalities.

Although the concept of convex function has a useful place in many fields of mathematical analysis and statistics, it has revealed its main importance and effectiveness in the field of inequality theory with convex analysis. Many classical and analytical inequalities, especially Hadamard’s inequality, Jensen’s inequality, and Steffensen’s inequality, have been achieved with the help of this concept. Detailed information and effectiveness of this function class can be found in [16].

Let \(0<\mu_{1}\leq\mu_{2}\leq\cdots\leq\mu_{n}\), and let \(\xi = (\xi_{1},\xi_{2},\ldots,\xi_{n} )\) be nonnegative weights such that \(\sum_{i=1}^{n} \xi_{i}=1\). The famous Jensen inequality (see [7]) in the literature states that if ϒ is a convex function on the interval \([ a,b ]\), then

$$ \Upsilon \Bigl( \underset{i=1}{\overset{n}{\sum}} \xi_{i} \mu _{i} \Bigr)\leq \Bigl( \underset{i=1}{ \overset{n}{\sum}} \xi_{i} \Upsilon ( \mu_{i} ) \Bigr) $$
(1.1)

for all \(\mu_{i}\in[ \theta,\vartheta]\) and all \(\xi_{i}\in [ 0,1 ]\) (\(i=1,2,\ldots,n \)).

In 2003, Mercer gave a variant of Jensen’s inequality (see [8]) as follows.

Theorem 1.1

If ϒ is a convex function on \([ \theta,\vartheta ]\), then

$$ \Upsilon \Bigl( \theta+\vartheta-\underset{i=1}{\overset{n}{ \sum }} \xi_{i} \mu_{i} \Bigr) \leq\Upsilon ( \theta ) +\Upsilon ( \vartheta ) -\underset{i=1}{\overset{n}{\sum }} \xi_{i} \Upsilon ( \mu_{i} ) $$
(1.2)

\(\forall \mu_{i}\in [ \theta,\vartheta ]\)and all \(\xi _{i}\in [ 0,1 ] \) (\(i=1,2,\ldots,n \)).

Based on this useful inequality, several papers have been performed. One of them can be stated in Matkovic et al. This study includes some new findings on Jensen’s inequality of Mercer type for operators with applications [9]. Then, in 2009, Mercer’s result was expanded to higher dimensions by Niezgoda’s paper in [10]. Recently, notable contributions have been made on Jensen’s Mercer type inequality. In 2014, Kian gave a concept of Jensen’s inequality for superquadratic functions [11]. Therefore, Anjidani proved some motivating results on reverse Jensen–Mercer type operator inequalities and Jensen–Mercer operator inequalities for superquadratic functions (see [12, 13]). Ali and Khan generalized integral Mercer’s inequality and integral means in [14].

Another important inequality that characterizes convex functions is Hermite–Hadamard inequality, that is, if a mapping \(\Upsilon :J\subseteq{\Re} \to{\Re}\) is a convex function on J and \(\theta ,\vartheta\in J\), \(\theta<\vartheta\), then

$$ \Upsilon \biggl(\frac{\theta+\vartheta}{2} \biggr) \le \frac {1}{\vartheta-\theta} \int_{\theta}^{\vartheta} \Upsilon(\lambda ) \,d\lambda\le \frac{\Upsilon(\theta)+\Upsilon(\vartheta)}{2} $$

(see [1518] for the fractional setting). Fractional calculus, one of the areas where inequality theory has benefited most in recent years, is an area that continues its development with a high acceleration by defining new fractional derivative and integral operators. Operators’ applications in various fields, such as economics, applied mathematics, engineering, and mathematical biology, add strength to fractional analysis (see [1926]).

Now, we recall the definition of conformable integral of arbitrary order including the higher order case, on which our proven inequalities will be based.

Definition 1.1

([27])

Let \(\alpha\in(n,n+1]\) and set \(\beta=\alpha-n\), then the left conformable operator starting at θ if order α is defined by

$$\begin{aligned} &\bigl(I^{\theta}_{\alpha}\phi\bigr) (\kappa)= \frac{1}{n!} \int^{\kappa }_{\theta} (\kappa-\mu)^{n}(\mu- \theta)^{\beta-1}\phi(\mu)\,d\mu, \end{aligned}$$
(1.3)

and right conformable fractional integral is defined by

$$\begin{aligned} &\bigl(^{\vartheta}I_{\alpha}\phi\bigr) (\kappa)= \frac{1}{n!} \int^{\vartheta }_{\kappa} (\mu-\kappa)^{n}( \vartheta-\mu)^{\beta-1}\phi(\mu )\,d\mu, \end{aligned}$$
(1.4)

if \(\alpha= n+1\), then \(\beta= \alpha-n = n+1-n = 1\), where \(n = 0,1,2,3,dots\), and hence \((I^{\theta}_{\alpha}\phi)(\kappa )=(J^{\theta}_{n+1}\phi)(\kappa)\).

Remark 1.1

Notice that the conformable derivatives of order \(\theta >1\) have memory effect with kernel whose power law is integer.

In this article, by using the Jensen–Mercer inequality, we prove Hermite–Hadamard type inequalities for fractional integrals, and we establish some new conformable integrals connected with the left and right sides of Hermite–Hadamard type inequalities for differentiable mappings whose derivatives in absolute value are convex. Moreover, there will be further equalities for differentiable functions using Hölder inequality and power mean inequality.

Hermite–Hadamard–Mercer type inequalities for conformable integrals

By using Jensen–Mercer inequality, Hermite–Hadamard type inequalities can be expressed via conformable integrals as follows.

Theorem 2.1

Let ϕ be a convex function. Then the following conformable integral inequalities hold:

$$\begin{aligned} \phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) &\leq \frac{\Gamma ( \alpha+1 ) }{2 ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)} \\ &\quad\times \bigl\{ I^{(\theta+\vartheta-\nu)}_{\alpha}\phi(\theta+\vartheta -\mu)+ ^{(\theta+\vartheta-\mu)}I_{\alpha}\phi(\theta+\vartheta -\nu) \bigr\} \\ &\leq\phi ( \theta ) +\phi ( \vartheta ) - \biggl( \frac{\phi ( \mu ) + \phi ( \nu ) }{2} \biggr) \end{aligned}$$
(2.1)

and

$$\begin{aligned} \phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) &\leq\phi ( \theta ) +\phi ( \vartheta )-\frac{\Gamma ( \alpha+1 ) }{2 ( \nu-\mu ) ^{\alpha}\Gamma (\alpha-n)} \bigl\{ I^{\mu}_{\alpha}\phi(\nu)+ ^{\nu}I_{\alpha} \phi(\mu) \bigr\} \\ &\leq\phi ( \theta ) +\phi ( \vartheta ) -\phi \biggl( \frac{\mu+\nu}{2} \biggr) \end{aligned}$$
(2.2)

\(\forall\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha >0\), and \(\Gamma ( \cdot )\)is the gamma function.

Proof

Using the convexity of ϕ, we can write

$$\begin{aligned} \phi \biggl( \theta+\vartheta-\frac{\tau+\omega}{2} \biggr)&=\phi \biggl( \frac{\theta+\vartheta-\tau+\theta+\vartheta-\omega }{2} \biggr) \leq\frac{1}{2} \bigl(\phi ( \theta+\vartheta-\tau ) +\phi ( \theta+ \vartheta-\omega ) \bigr) \end{aligned}$$

for all \(\tau,v\omega\in [ \theta,\vartheta ]\). By changing the variables \(\tau=\kappa\mu+(1-\kappa)\nu\) and \(\omega=(1-\kappa)\mu+\kappa\nu\), \(\kappa\in [ 0,1 ]\), we have

$$\begin{aligned} &2\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \leq \phi \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) +\phi \bigl( \theta +\vartheta- \bigl( ( 1-\kappa)\mu+\kappa\nu \bigr) \bigr). \end{aligned}$$

Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa)^{\alpha -n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\). Let \(x= ( \theta+\vartheta- ( \kappa \mu+(1-\kappa)\nu ) )\), also let \(w= ( \theta +\vartheta- ( (1-\kappa)\mu+\kappa\nu ) )\), we get

$$\begin{aligned} &\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \frac {2}{n!} \int_{0}^{1}\kappa^{n}(1- \kappa)^{\alpha-n -1}\,d\kappa \\ &\quad\leq\frac{1}{n!} \int_{0}^{1}\kappa ^{n}(1- \kappa)^{\alpha-n -1} \\ &\quad\quad\times \bigl( \phi \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) +\phi \bigl( \theta+\vartheta- \bigl( (1-\kappa)\mu+\kappa\nu \bigr) \bigr) \bigr) \,d\kappa \\ &\quad\leq\frac{\Gamma ( \alpha+1 ) }{2 ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)} \bigl\{ I^{(\theta+\vartheta-\nu)}_{\alpha}\phi( \theta+\vartheta -\mu)+ ^{(\theta+\vartheta-\mu)}I_{\alpha}\phi(\theta+\vartheta - \nu) \bigr\} , \end{aligned}$$

where \(\int_{0}^{1}\kappa^{n}(1-\kappa)^{\alpha-n -1}\,d\kappa=B (n+1,\alpha-n )=\frac{\Gamma(n+1)\Gamma (\alpha-n)}{\Gamma(\alpha+1)}\), and so the first inequality of (2.1) is proved.

Now, to prove the second inequality of (2.1), we first remind that if ϕ is a convex function, then for \(\kappa\in [ 0,1 ] \) it gives

$$\begin{aligned} &\phi \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) \leq\phi ( \theta ) +\phi ( \vartheta ) - \bigl[ \kappa \phi ( \mu ) +(1-\kappa)\phi ( \nu ) \bigr] \end{aligned}$$
(2.3)

and

$$\begin{aligned} &\phi \bigl( \theta+\vartheta- \bigl( (1-\kappa)\mu+t\nu \bigr) \bigr) \leq \phi ( \theta ) +\phi ( \vartheta ) - \bigl[ (1-\kappa)\phi ( \mu ) + \kappa\phi ( \nu ) \bigr]. \end{aligned}$$
(2.4)

By adding the inequalities of (2.3) and (2.4), we have

$$\begin{aligned} &\phi \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) + \phi \bigl( \theta+\vartheta- \bigl( (1-\kappa)\mu +\kappa\nu \bigr) \bigr) \\ &\quad\leq 2 \bigl( \phi ( \theta ) +\phi ( \vartheta ) \bigr) - \bigl( \phi ( \mu ) +\phi ( \nu ) \bigr). \end{aligned}$$

Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa )^{\alpha-n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\), we have

$$\begin{aligned} &\frac{1}{n!} \int_{0}^{1}\kappa^{n}(1- \kappa)^{\alpha-n -1} \bigl( \phi \bigl( \theta+\vartheta- \bigl(\kappa\mu+(1- \kappa)\nu \bigr) \bigr) +\phi \bigl( \theta+\vartheta- \bigl( (1-\kappa )\mu+ \kappa\nu \bigr) \bigr) \bigr) \,d\kappa \\ &\quad \leq \bigl\{ 2 \bigl( \phi ( \theta ) +\phi ( \vartheta ) \bigr) - \bigl( \phi ( \mu ) +\phi ( \nu ) \bigr) \bigr\} \frac{1}{n!} \int_{0}^{1}\kappa^{n}(1- \kappa)^{\alpha-n -1}\,d\kappa, \\ & \frac{\Gamma ( \alpha+1 ) }{ ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)} \bigl\{ I^{(\theta+\vartheta-\nu)}_{\alpha}\phi(\theta+ \vartheta -\mu)+ ^{(\theta+\vartheta-\mu)}I_{\alpha}\phi(\theta+\vartheta -\nu) \bigr\} \\ &\quad\leq \bigl\{ 2 \bigl( \phi ( \theta ) +\phi ( \vartheta ) \bigr) - \bigl( \phi ( \mu ) +\phi ( \nu ) \bigr) \bigr\} . \end{aligned}$$
(2.5)

Multiplying \(\frac{1}{2}\) to (2.5), we have

$$\begin{aligned} &\frac{\Gamma ( \alpha+1 ) }{2 ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)} \bigl\{ I^{(\theta+\vartheta-\nu)}_{\alpha}\phi(\theta+ \vartheta -\mu)+ ^{(\theta+\vartheta-\mu)}I_{\alpha}\phi(\theta+\vartheta -\nu) \bigr\} \\ &\quad \leq \bigl( \phi ( \theta ) +\phi ( \vartheta ) \bigr) -\frac{\phi ( \mu ) +\phi ( \nu ) }{2}. \end{aligned}$$

After further simplification we get the required result. Now, in order to prove (2.2), we employ Jensen–Mercer’s inequality as follows:

$$ \phi \biggl( \theta+\vartheta-\frac{\tau+\omega}{2} \biggr) \leq \phi (\theta ) +\phi ( \vartheta ) -\frac{\phi ( \tau ) +\phi ( \omega ) }{2} $$
(2.6)

\(\forall \tau,\omega\in [ \theta,\vartheta ]\).

Now, by change of variables \(\tau=\kappa\mu+(1-\kappa)\nu\) and \(\omega=\kappa\nu+(1-\kappa)\mu\), \(\forall \mu,\nu\in [a,b ]\) and \(\kappa\in [ 0,1 ] \) in (2.6), we have

$$ \phi \biggl(\theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \leq\phi ( \theta ) + \phi ( \vartheta ) -\frac{\phi ( \kappa\mu +(1-\kappa)\nu ) +\phi ( \kappa\nu+(1-\kappa)\mu ) }{2}. $$

Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa )^{\alpha-n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\), we have

$$\begin{gathered} \phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \frac {1}{n!} \int_{0}^{1}\kappa^{n}(1- \kappa)^{\alpha-n-1}\\ \quad\leq\frac {1}{n!} \int_{0}^{1}\kappa^{n}(1- \kappa)^{\alpha-n-1}\bigl[\phi ( \theta ) +\phi ( \vartheta )\bigr]\,d\kappa \\ \qquad{}-\frac{ \int_{0}^{1}\kappa^{n}(1-\kappa)^{\alpha-n-1} ( \phi (\kappa\mu+(1-\kappa)\nu ) +\phi (\kappa\nu+(1-\kappa )\mu ) )\,d\kappa}{2}, \\ \phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \leq \phi ( \theta ) +\phi ( \vartheta )-\frac {\Gamma ( \alpha+1 ) }{2 ( \nu-\mu ) ^{\alpha }\Gamma(\alpha-n)} \bigl\{ I^{\mu}_{\alpha}\phi(\nu)+^{\nu}I_{\alpha} \phi(\mu) \bigr\} ,\end{gathered} $$

and so the first inequality of (2.2) is proved.

Now, for the proof of the second inequality of (2.2), we first note that if ϕ is a convex function, then for \(\kappa\in [ 0,1 ]\)

$$\begin{aligned} \phi \biggl( \frac{\mu+\nu}{2} \biggr)& =\phi \biggl( \frac{\kappa \mu+(1-\kappa)\nu+\kappa\nu+(1-\kappa)\mu}{2} \biggr) \\ &\leq \frac{\phi (\kappa\mu+(1-\kappa)\nu ) + \phi ( \kappa\nu+(1-\kappa)\mu ) }{2}.\end{aligned} $$

Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa )^{\alpha-n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\), we have

$$\begin{aligned} &\phi \biggl( \frac{\mu+\nu}{2} \biggr)\leq\frac{\Gamma ( \alpha+1 ) }{2 ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)} \bigl\{ I^{\mu}_{\alpha}\phi(\nu)+^{\nu}I_{\alpha} \phi(\mu) \bigr\} . \end{aligned}$$

Multiplying by \((-1)\), then adding \(\phi(\theta)+\phi(\vartheta)\) on both sides of the inequality, we get the desired result. □

Remark 2.1

For \(\alpha=n+1\) in Theorem 2.1, we get Theorem 3 proved in [28] in the integer case order.

Theorem 2.2

Let \(0\leq\theta<\vartheta\), \(\phi:[\theta,\vartheta]\rightarrow \Re\)be a positive function and \(\phi\in L_{1} [\theta,\vartheta ]\). Also, suppose that ϕ is a convex function on \([\theta ,\vartheta]\), \(\phi{'}\)on \((\theta,\vartheta)\)and \(\alpha\in (0,1)\). Then the following conformable integral inequalities hold:

$$\begin{aligned} \phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) &\leq\frac {2^{\alpha -1}\Gamma ( \alpha+1 ) }{ ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)} \\ &\quad\times \bigl\{ \bigl(I^{\theta+\vartheta-\frac{\mu+\nu }{2}}_{\alpha} \bigr) \bigl(\phi( \theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\frac{\mu+\nu}{2}}I_{\alpha } \bigr) \bigl(\phi(\theta+\vartheta-\nu) \bigr) \bigr\} \\ & \leq\phi ( \theta ) +\phi ( \vartheta ) - \biggl( \frac{\phi ( \mu ) + \phi ( \nu ) }{2} \biggr) \end{aligned}$$
(2.7)

\(\forall\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha>0\), and \(\Gamma ( \cdot )\)is the gamma function.

Proof

To prove the first part of the inequality, by using the Jensen–Mercer’s inequality and by changing the variables \(\tau=\frac {\kappa}{2}\mu+\frac{2-\kappa}{2}\nu\) and \(\omega=\frac{2-\kappa }{2}\mu+\frac{\kappa}{2}\nu\), \(\kappa\in [ 0,1 ]\), we can write the following inequality for \(\forall\tau,\omega\in [ \theta,\vartheta ]\):

$$\begin{aligned} &2\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \leq \phi \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu \biggr) \biggr) +\phi \biggl( \theta+\vartheta- \biggl( \frac{2-\kappa}{2}\mu+ \frac{\kappa}{2}\nu \biggr) \biggr). \end{aligned}$$

Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa)^{\alpha -n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ] \), let \(w= ( \theta+\vartheta- ( \frac {\kappa}{2}\mu+\frac{2-\kappa}{2}\nu ) )\) and \(x= ( \theta +\vartheta- ( \frac{2-\kappa}{2}\mu+\frac{\kappa}{2}\nu ) )\), we have

$$\begin{aligned} & \frac{2}{n!}\phi \biggl( \theta+\vartheta-\frac{\mu+\nu }{2} \biggr) \int_{0}^{1}\kappa^{n}(1- \kappa)^{\alpha-n -1}\,d\kappa \\ &\quad\leq\frac{1}{n!} \int_{0}^{1}\kappa ^{n}(1- \kappa)^{\alpha-n -1}\\&\qquad\times \biggl( \phi \biggl( \theta+\vartheta - \biggl( \frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu \biggr) \biggr) +\phi \biggl( \theta +\vartheta- \biggl( \frac{2-\kappa}{2}\mu+\frac{\kappa}{2}\nu \biggr) \biggr) \biggr) \,d\kappa , \\ &\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \\ &\quad \leq \frac{2^{\alpha -1}\Gamma ( \alpha+1 ) }{ ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)}\bigl\{ \bigl(I^{\theta+\vartheta-\frac{\mu+\nu}{2}}_{\alpha } \bigr) \bigl(\phi(\theta+ \vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\frac{\mu+\nu}{2}}I_{\alpha } \bigr) \bigl( \phi(\theta+\vartheta-\nu) \bigr) \bigr\} , \end{aligned}$$

and so the first inequality of (2.7) is proved.

Now, for the proof of the second inequality of the theorem, we first note that if ϕ is a convex function, then for \(\kappa\in [ 0,1 ] \) it gives

$$\begin{aligned} &\phi \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2} \mu+\frac {2-\kappa}{2}\nu \biggr) \biggr) \leq\phi ( \theta ) +\phi ( \vartheta ) - \biggl[ \frac{\kappa}{2}\phi ( \mu ) + \frac{2-\kappa}{2}\phi ( \nu ) \biggr] \end{aligned}$$
(2.8)

and

$$\begin{aligned} &\phi \biggl( \theta+\vartheta- \biggl( \frac{2-\kappa}{2} \mu+\frac {\kappa}{2}\nu \biggr) \biggr) \leq \phi ( \theta ) +\phi ( \vartheta ) - \biggl[ \frac{2-\kappa}{2}\phi ( \mu ) +\frac{\kappa}{2}\phi ( \nu ) \biggr]. \end{aligned}$$
(2.9)

By adding the inequalities of (2.8) and (2.9), we have

$$\begin{aligned} &\phi \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\mu+ \frac {2-\kappa}{2}\nu \biggr) \biggr) +\phi \biggl( \theta+\vartheta- \biggl( \frac{2-\kappa }{2}\mu+\frac{\kappa}{2}\nu \biggr) \biggr) \\ &\quad\leq 2 \bigl( \phi ( \theta ) +\phi ( \vartheta ) \bigr) - \bigl( \phi ( \mu ) + \phi ( \nu ) \bigr). \end{aligned}$$

Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa )^{\alpha-n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\), we have

$$\begin{aligned} &\frac{1}{n!} \int_{0}^{1}\kappa^{n}(1- \kappa)^{\alpha-n -1}\\&\quad\quad\times \biggl( \phi \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu \biggr) \biggr) +\phi \biggl( \theta +\vartheta- \biggl( \frac{2-\kappa}{2}\mu+\frac{\kappa}{2}\nu \biggr) \biggr) \biggr) \,d\kappa \\ &\quad \leq \bigl\{ 2 \bigl( \phi ( a ) +\phi ( b ) \bigr) - \bigl( \phi ( \mu ) +\phi ( \nu ) \bigr) \bigr\} \frac{1}{n!} \int_{0}^{1}\kappa^{n}(1- \kappa)^{\alpha -n-1}\,d\kappa , \\ & \frac{2^{\alpha} \Gamma ( \alpha ) }{ ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)} \bigl\{ \bigl(I^{\theta+\vartheta-\frac{\mu+\nu}{2}}_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\frac{\mu+\nu}{2}}I_{\alpha } \bigr) \bigl(\phi(\theta+\vartheta-\nu) \bigr) \bigr\} \\ &\quad \leq \bigl\{ 2 \bigl( \phi ( \theta ) +\phi ( \vartheta ) \bigr) - \bigl( \phi ( \mu ) +\phi ( \nu ) \bigr) \bigr\} . \end{aligned}$$

Multiplying the above inequality by \(\frac{1}{2}\), we obtain

$$\begin{aligned} &\frac{2^{\alpha-1} \Gamma ( \alpha+1 ) }{ ( \nu-\mu ) ^{\alpha}\Gamma(\alpha-n)} \bigl\{ \bigl(I^{\theta+\vartheta-\frac{\mu+\nu}{2}}_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\frac{\mu+\nu}{2}}I_{\alpha } \bigr) \bigl(\phi(\theta+\vartheta-\nu) \bigr) \bigr\} \\ & \quad\leq \bigl( \phi ( \theta ) +\phi ( \vartheta ) \bigr) -\frac{\phi ( \mu ) +\phi ( \nu ) }{2}. \end{aligned}$$

After further simplifications, we get the required inequality. □

Lemma 2.1

Let \(\phi:[\theta,\vartheta]\rightarrow\Re\)be a differentiable mapping on \((\theta,\vartheta)\)with \(\theta<\vartheta\). If \(\phi {'}\in L[\theta,\vartheta]\), then the following equation holds:

$$\begin{aligned} &B (n+1,\alpha-n )\frac{\phi ( \theta+\vartheta -\mu ) +\phi ( \theta+\vartheta-\nu ) }{2}- \frac {n!}{2 ( \nu-\mu ) ^{\alpha}} \\ &\qquad\times \bigl\{ \bigl(I^{\theta+\vartheta-\nu}_{\alpha} \bigr) \bigl( \phi( \theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\mu}I_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta -\nu) \bigr) \bigr\} \\ &\quad= \frac{\nu-\mu}{2} \int_{0}^{1} \bigl[ B_{\kappa} (n+1, \alpha-n )-B_{1-\kappa} (n+1,\alpha-n ) \bigr] \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa\mu +(1-\kappa)\nu \bigr) \bigr)\,d\kappa \end{aligned}$$
(2.10)

\(\forall\mu,\nu\in [ \theta,\vartheta ] \), \(\alpha>0 \), \(\kappa\in [ 0,1 ]\), and \(\beta ( \cdot )\)is the beta function.

Proof

It suffices to note that

$$\begin{aligned} &I= \frac{\nu-\mu}{2} \{ I_{2}-I_{1} \}, \end{aligned}$$
(2.11)

where

$$\begin{aligned} I_{1}&= \int_{0}^{1}B_{1-\kappa} (n+1,\alpha-n ) \phi {'} \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) \,d\kappa \\ &= \int_{0}^{1} \biggl( \int_{0}^{1-\kappa}\mu^{n}(1-x)^{\alpha-n-1} \biggr) \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa\mu +(1- \kappa)\nu \bigr) \bigr) \,d\kappa \\ &= B (n+1,\alpha-n )\frac{-\phi ( \theta+\vartheta -\nu ) }{\nu-\mu} +\frac{1 }{(\nu-\mu)^{\alpha+1}} \\ &\quad\times \int_{\theta+\vartheta-\nu}^{\theta+\vartheta-\mu} \bigl( (\theta+\vartheta-\nu )-w \bigr)^{n} \bigl(w- (\theta +\vartheta-\nu ) \bigr)^{\alpha-n-1} \phi(w)\,dw \\ &= B (n+1,\alpha-n )\frac{-\phi ( \theta+\vartheta -\nu ) }{\nu-\mu}+ \frac{n! }{ ( \nu-\mu ) ^{\alpha+1}} \bigl\{ I^{\theta+\vartheta-\nu}_{\alpha}\phi(\theta +\vartheta-\mu) \bigr\} \end{aligned}$$
(2.12)

and

$$\begin{aligned} I_{2}&= \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \phi {'} \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) \,d\kappa \\ &= \int_{0}^{1} \biggl( \int_{0}^{\kappa}\mu^{n}(1- \mu)^{\alpha -n-1} \biggr) \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa\mu +(1-\kappa)\nu \bigr) \bigr) \,d\kappa \\ &= B (n+1,\alpha-n )\frac{\phi ( \theta+\vartheta -\mu ) }{\nu-\mu} -\frac{1 }{(\nu-\mu)^{\alpha+1}} \\ &\quad \times \int_{\theta+\vartheta-\mu}^{\theta+\vartheta-\nu} \bigl(w- (\theta+\vartheta-\mu ) \bigr)^{n} \bigl( (\theta +\vartheta-\nu )-w \bigr)^{\alpha-n-1} \phi(w)\,dw \\ &= B (n+1,\alpha-n )\frac{\phi ( \theta+\vartheta-\mu ) }{\nu-\mu}- \frac{n! }{ ( \nu-\mu ) ^{\alpha +1}} \bigl\{ ^{\theta+\vartheta-\mu}I_{\alpha}\phi(\theta +\vartheta-\nu) \bigr\} . \end{aligned}$$
(2.13)

By combining (2.12) and (2.13) with (2.11), we get (2.10). □

Remark 2.2

If we set \(\mu=a\) and \(\nu=b\) in Lemma 2.1, we will get Lemma 3.1 in [29].

Theorem 2.3

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\)and \(\phi\in L [ \theta,\vartheta ] \). If \(|\phi{'}|\)is a convex function on \([\theta,\vartheta ]\),then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert B (n+1,\alpha-n )\frac{\phi ( \theta +\vartheta-\mu ) +\phi ( \theta+\vartheta-\nu ) }{2}- \frac{n!}{2 ( \nu-\mu ) ^{\alpha}} \\ &\qquad\times \bigl\{ \bigl(I^{\theta+\vartheta-\nu}_{\alpha } \bigr) \bigl( \phi( \theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\mu}I_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta -\nu) \bigr) \bigr\} \biggr\vert \\ &\quad \leq \frac{(\nu-\mu )}{2}B (n+1,\alpha-n ) \biggl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert - \biggl( \frac{ \vert \phi{'} ( \mu ) \vert + \vert \phi{'} ( \nu ) \vert }{2} \biggr) \biggr\} , \end{aligned}$$
(2.14)

where \(\forall\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha >0\), \(\kappa\in [ 0,1 ]\), and \(B ( \cdot,\cdot )\) is the Euler beta function.

Proof

By using Lemma 2.1 and Jensen–Mercer’s inequality, we have

$$\begin{aligned} & \biggl\vert B (n+1,\alpha-n )\frac{\phi ( \theta +\vartheta-\mu ) +\phi ( \theta+\vartheta-\nu ) }{2}- \frac{n!}{2 ( \nu-\mu ) ^{\alpha}} \\ &\qquad\times \bigl\{ \bigl(I^{\theta+\vartheta-\nu}_{\alpha} \bigr) \bigl( \phi( \theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\mu}I_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta -\nu) \bigr) \bigr\} \biggr\vert \\ &\quad\leq\frac{(\nu-\mu)}{2} \biggl[ \int_{0}^{1} B_{\kappa} (n+1,\alpha-n ) \bigl\vert \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1- \kappa)\nu \bigr) \bigr) \bigr\vert \,d\kappa \\ &\qquad - \int_{0}^{1}B_{1-\kappa} (n+1,\alpha-n ) \bigl\vert \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa \mu+(1- \kappa )\nu \bigr) \bigr) \bigr\vert \,d\kappa \biggr] \\ &\quad\leq\frac{\nu-\mu}{2} [ I_{1}-I_{2} ], \end{aligned}$$

where

$$\begin{aligned}& I_{1}= \int_{0}^{\frac{1}{2}}B_{\kappa} (n+1,\alpha-n ) \bigl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert - \bigl( \kappa \bigl\vert \phi{'} ( \mu ) \bigr\vert + ( 1-\kappa ) \bigl\vert \phi{'} ( \nu ) \bigr\vert \bigr) \bigr\} \\& \phantom{I_{1}=}{}+ \int_{\frac{1}{2}}^{1}B_{\kappa} (n+1,\alpha-n ) \bigl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert - \bigl( \kappa \bigl\vert \phi{'} ( \mu ) \bigr\vert + ( 1-\kappa ) \bigl\vert \phi{'} ( \nu ) \bigr\vert \bigr) \bigr\} , \\& I_{2}=- \int_{0}^{\frac{1}{2}}B_{1-\kappa} (n+1,\alpha-n ) \bigl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert - \bigl( \kappa \bigl\vert \phi{'} ( \mu ) \bigr\vert + ( 1-\kappa ) \bigl\vert \phi{'} ( \nu ) \bigr\vert \bigr) \bigr\} \\& \phantom{I_{2}=}{}- \int_{\frac{1}{2}}^{1}B_{1-\kappa} (n+1,\alpha-n ) \bigl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert - \bigl( \kappa \bigl\vert \phi{'} ( \mu ) \bigr\vert + ( 1-\kappa ) \bigl\vert \phi{'} ( \nu ) \bigr\vert \bigr) \bigr\} . \end{aligned}$$

On the other hand, using the property of incomplete beta function, we have

$$\begin{aligned} &B_{1-\kappa} (n+1,\alpha-n )-B_{\kappa} (n+1,\alpha-n )\\&\quad= \int_{0}^{1-\kappa}\mu^{n}(1- \mu)^{\alpha -n-1}\,d\mu- \int_{0}^{\kappa}\mu^{n}(1- \mu)^{\alpha -n-1}\,d\mu = \int_{\kappa}^{1-\kappa}\mu^{n}(1- \mu)^{\alpha-n-1}\,d\mu, \end{aligned}$$

where \(0 \leq\kappa\leq\frac{1}{2}\);

$$\begin{aligned} &B_{\kappa} (n+1,\alpha-n )-B_{1-\kappa} (n+1,\alpha-n ) \\&\quad= \int_{0}^{\kappa}\mu^{n}(1- \mu)^{\alpha-n-1}\,d\mu- \int _{0}^{1-\kappa}\mu^{n}(1- \mu)^{\alpha-n-1}\,d\mu = \int_{1-\kappa }^{\kappa}\mu^{n}(1- \mu)^{\alpha-n-1}\,d\mu, \end{aligned}$$

where \(\frac{1}{2} \leq\kappa\leq1\);

$$\begin{aligned} &\leq\frac{(\nu-\mu)}{2} \biggl[ \int_{0}^{1}\kappa^{\alpha} \biggl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert + \bigl\vert \phi {'} ( \vartheta ) \bigr\vert - \biggl( \frac{1+\kappa}{2} \bigl\vert \phi{'} ( \mu ) \bigr\vert +\frac{ ( 1-\kappa ) }{2} \bigl\vert \phi{'} ( \nu ) \bigr\vert \biggr) \biggr\} \, dt \\ &\quad+ \int_{0}^{1}\kappa^{\alpha } \biggl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert - \biggl( \frac{ ( 1-\kappa ) }{2} \bigl\vert \phi {'} ( \mu ) \bigr\vert +\frac{1+\kappa}{2} \bigl\vert \phi{'} ( \nu ) \bigr\vert \biggr) \biggr\} \,d\kappa \biggr] \\ &\leq \frac{(\nu-\mu)}{2 }B (n+1,\alpha-n ) \biggl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert - \biggl( \frac{ \vert \phi{'} ( \mu ) \vert + \vert \phi{'} ( \nu ) \vert }{2} \biggr) \biggr\} , \end{aligned}$$

which completes the proof. □

Remark 2.3

If we choose \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.3, we get Theorem 3.1 for the case of \(s=1\) in [29].

Theorem 2.4

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\)and \(\phi\in L [ \theta,\vartheta ] \). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta ]\),then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert B (n+1,\alpha-n )\frac{\phi ( \theta +\vartheta-\mu ) +\phi ( \theta+\vartheta-\nu ) }{2}- \frac{n!}{2 ( \nu-\mu ) ^{\alpha}} \\ &\qquad\times \bigl\{ \bigl(I^{\theta+\vartheta-\nu}_{\alpha} \bigr) \bigl( \phi( \theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\mu}I_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta -\nu) \bigr) \bigr\} \biggr\vert \\ & \quad\leq \frac{(\nu-\mu)}{2}\Psi^{\frac{1}{p}} \biggl\{ \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q} - \biggl( \frac{ \vert \phi{'} ( \mu ) \vert ^{q} + \vert \phi{'} ( \nu ) \vert ^{q} }{2} \biggr) \biggr\} \end{aligned}$$
(2.15)

for all \(\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha>0\), \(\kappa\in [ 0,1 ]\), and \(B ( \cdot,\cdot )\) is the Euler beta function and \(\Psi=2\int _{0}^{\frac{1}{2}} (\int_{0}^{1-\kappa} \mu^{n}(1-\mu )^{\alpha-n-1} )^{p}\).

Proof

By using Lemma 2.1 and Jensen–Mercer’s inequality, we have

$$\begin{aligned} & \biggl\vert B (n+1,\alpha-n )\frac{\phi ( \theta +\vartheta-\mu ) +\phi ( \theta+\vartheta-\nu ) }{2}- \frac{n!}{2 ( \nu-\mu ) ^{\alpha}} \\ &\qquad\times \bigl\{ \bigl(I^{\theta+\vartheta-\nu}_{\alpha} \bigr) \bigl( \phi( \theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\mu}I_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta -\nu) \bigr) \bigr\} \biggr\vert \\ &\quad \leq\frac{(\nu-\mu)}{2} \biggl[ \int_{0}^{1} \bigl\vert B_{\kappa} (n+1,\alpha-n )- B_{1-\kappa} (n+1,\alpha-n ) \bigr\vert \\& \qquad\times \bigl\vert \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) \bigr\vert \,d\kappa \biggr] \\ &\quad \leq\frac{(\nu-\mu)}{2} \biggl[ \int_{0}^{1} \bigl\vert B_{\kappa} (n+1,\alpha-n )- B_{1-\kappa} (n+1,\alpha-n ) \bigr\vert ^{p} \biggr]^{\frac{1}{q}} \\ &\qquad\times \bigl[ \bigl\vert \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) \bigr\vert ^{q} \,d\kappa \bigr]^{\frac{1}{q}}, \\ &\Psi= \int_{0}^{1} \bigl\vert B_{\kappa} (n+1,\alpha-n )-B_{1-\kappa} (n+1,\alpha-n ) \bigr\vert ^{p} \\ &\phantom{\Psi}= \int_{0}^{\frac{1}{2}} \bigl( B_{\kappa} (n+1, \alpha-n )-B_{1-\kappa} (n+1,\alpha-n ) \bigr)^{p} \\ &\phantom{\Psi=}+ \int_{\frac{1}{2}}^{1} \bigl( B_{\kappa} (n+1, \alpha-n )-B_{1-\kappa} (n+1,\alpha-n ) \bigr)^{p} \\ &\phantom{\Psi}=2 \int_{0}^{\frac{1}{2}} \biggl( \int_{0}^{1-\kappa} \mu ^{n}(1- \mu)^{\alpha-n-1} \biggr)^{p} \int_{0}^{1} \bigl\vert \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) \bigr\vert ^{q}\,d\kappa. \end{aligned}$$

After simplifications, we get the required result. □

Remark 2.4

If we select \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.4, we get Theorem 3.2 for the case of \(s=1\) in [29].

Lemma 2.2

Let \(\phi:[\theta,\vartheta]\rightarrow\Re\)be a differentiable mapping on \((\theta,\vartheta)\)with \(\theta<\vartheta\). If \(\phi {'}\in L[\theta,\vartheta]\), then the following equality for conformable integrals holds:

$$\begin{aligned} & \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \\ &\quad= \frac{\nu-\mu}{4} \biggl[ \int_{0}^{1} B_{\kappa} (n+1,\alpha-n ) \phi{'} \biggl( \theta+\vartheta- \biggl(\frac {\kappa}{2}\mu+ \frac{2-\kappa}{2}\nu \biggr) \biggr)\,d\kappa \\ &\qquad- \int_{0}^{1} B_{\kappa} (n+1,\alpha-n ) \phi{'} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\nu+ \frac{2-\kappa }{2}\mu \biggr) \biggr)\,d\kappa \biggr] \end{aligned}$$
(2.16)

with \(\alpha\in( n,n+1 ]\), \(n=0,1,2,3\dots\), where \(B_{\kappa} (a,b )\)is an incomplete beta function and Γ is the Euler gamma function.

Proof

Integrating by parts and changing the variables with \(u=\theta +\vartheta- (\frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu )\), we get the following results via conformable integrals:

$$\begin{aligned} I_{1}&= \int_{0}^{1} B_{\kappa} (n+1,\alpha-n ) \phi {'} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+ \frac {2-\kappa}{2}\nu \biggr) \biggr)\,d\kappa \\ &= \frac{2}{\nu-\mu}B (n+1,\alpha-n )\phi{'} \biggl( \theta+ \vartheta-\frac{\mu+\nu}{2} \biggr) \\ &\quad\times \int _{0}^{1}\kappa^{n} (1-\kappa )^{\alpha-n-1}\phi \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+ \frac{2-\kappa}{2}\nu \biggr) \biggr)\,d\kappa \\ &= \frac{2}{\nu-\mu}B (n+1,\alpha-n )\phi{'} \biggl( \theta+ \vartheta-\frac{\mu+\nu}{2} \biggr) \\ &\quad\times \biggl(\frac{2}{\nu-\mu} \biggr)^{\alpha+1} \int_{\theta+\vartheta-\nu }^{\theta+\vartheta-\frac{\mu+\nu}{2}} \bigl[u- (\theta +\vartheta-\nu ) \bigr]^{n} \biggl[ \biggl(\theta+\vartheta- \frac {\mu+\nu}{2} \biggr)-u \biggr]^{\alpha-n-1}\phi ( u )\,du \\ &= \frac{2}{\nu-\mu}B (n+1,\alpha-n )\phi{'} \biggl( \theta+ \vartheta-\frac{\mu+\nu}{2} \biggr) \\ &\quad-\frac {2^{\alpha+1}}{(\nu-\mu)^{\alpha+1}}n! \bigl(I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} (\theta+ \vartheta-\nu ) \bigr). \end{aligned}$$
(2.17)

Similarly,

$$\begin{aligned} I_{2}&= -\frac{2}{\nu-\mu}B (n+1,\alpha-n ) \phi {'} \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \\ &\quad+\frac{2^{\alpha+1}}{(\nu-\mu)^{\alpha+1}}n! \bigl(I^{\alpha }_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} (\theta+ \vartheta -\mu ) \bigr). \end{aligned}$$
(2.18)

Adding equations (2.17), (2.18) and multiplying with \(\frac{\nu-\mu}{4}\), the proof is completed. □

Remark 2.5

If we set \(\mu=\theta\) and \(\nu=\vartheta\) in Lemma 2.2, we get Lemma 2.1 in [30].

Theorem 2.5

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{\nu-\mu}{4}\Pi^{1-\frac{1}{q}} \bigl\{ \bigl(\Pi \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} +\Pi \bigl\vert \phi {'} ( \vartheta ) \bigr\vert ^{q} - \Pi_{1} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} -\Pi_{2} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \bigr)^{\frac{1}{q}} \\ &\qquad+ \bigl(\Pi \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} +\Pi \bigl\vert \phi {'} ( \vartheta ) \bigr\vert ^{q} -\Pi_{1} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} -\Pi_{2} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \bigr)^{\frac{1}{q}} \bigr\} , \end{aligned}$$
(2.19)

where

$$\begin{aligned} &\Pi= \bigl[B (n+1,\alpha-n )-B (n+2,\alpha-n ) \bigr], \\ &\Pi_{1}=\frac{1}{4} \bigl[B (n+1,\alpha-n )-B (n+3, \alpha-n ) \bigr], \\ &\Pi_{2}=\frac{1}{4} \bigl[3B (n+1,\alpha-n )-4B (n+2, \alpha-n )+B (n+3,\alpha-n ) \bigr] \end{aligned}$$

with \(q\geq1\).

Proof

Taking modulus in Lemma 2.2 and using the well-known power mean inequality with convexity of \(|\phi{'}|^{q}\) and Jensen–Mercer’s inequality, we have

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ &\quad \leq\frac{(\nu-\mu)}{4} \biggl[ \biggl\vert \int_{0}^{1}B_{\kappa } (n+1,\alpha-n ) \phi{'} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+ \frac{2-\kappa}{2}\nu \biggr) \biggr)\,d\kappa \biggr\vert \\ &\qquad+ \biggl\vert \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \phi{'} \biggl( \theta+\vartheta- \biggl(\frac {\kappa}{2}\nu+ \frac{2-\kappa}{2}\mu \biggr) \biggr)\,d\kappa \biggr\vert \biggr] \\ &\quad \leq\frac{(\nu-\mu)}{4} \biggl[ \biggl( \int_{0}^{1}B_{\kappa} (n+1,\alpha-n )\,d\kappa \biggr)^{1-\frac{1}{q}} \\ &\qquad\times \biggl( \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \biggl\vert \phi{'} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\mu +\frac{2-\kappa}{2}\nu \biggr) \biggr) \biggr\vert ^{q}\,d\kappa \biggr)^{\frac{1}{q}} \\ &\qquad+ \biggl( \int_{0}^{1}B_{\kappa} (n+1,\alpha-n )\,d\kappa \biggr)^{1-\frac{1}{q}} \\ &\qquad\times \biggl( \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \biggl\vert \phi{'} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\nu +\frac{2-\kappa}{2}\mu \biggr) \biggr) \biggr\vert ^{q}\,d\kappa \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq\frac{(\nu-\mu)}{4} \biggl\{ \biggl( \int_{0}^{1}B_{\kappa} (n+1,\alpha-n )\,d\kappa \biggr)^{1-\frac{1}{q}} \\ &\qquad\times \biggl[ \biggl( \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} \int_{0}^{1}B_{\kappa} (n+1,\alpha-n )dt + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q} \int _{0}^{1}B_{\kappa} (n+1,\alpha-n )\,d\kappa \\ &\qquad- \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \int_{0}^{1}B_{\kappa } (n+1,\alpha-n ) \frac{\kappa}{2}\,d\kappa- \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \frac{2-\kappa}{2}\,d\kappa \biggr)^{\frac {1}{q}} \\ &\qquad+ \biggl( \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} \int_{0}^{1}B_{\kappa} (n+1,\alpha-n )\,d\kappa + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q} \int _{0}^{1}B_{\kappa} (n+1,\alpha-n )\,d\kappa \\ &\qquad- \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \int_{0}^{1}B_{\kappa } (n+1,\alpha-n ) \frac{\kappa}{2}\,d\kappa- \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \frac{2-\kappa}{2}\,d\kappa \biggr)^{\frac {1}{q}} \biggr] \biggr\} . \end{aligned}$$
(2.20)

Integrating by parts, we get the following equalities:

$$\begin{aligned}& \begin{aligned}[b]\Pi&= \int_{0}^{1}B_{\kappa} (n+1,\alpha-n )\,d\kappa \\ &= \bigl[B (n+1,\alpha-n )-B (n+2,\alpha-n ) \bigr],\end{aligned} \end{aligned}$$
(2.21)
$$\begin{aligned}& \begin{aligned}[b]\Pi_{1}&= \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \frac {\kappa}{2}\,d\kappa \\ &=\frac{1}{4} \bigl[B (n+1,\alpha-n )-B (n+3,\alpha -n ) \bigr],\end{aligned} \end{aligned}$$
(2.22)
$$\begin{aligned}& \begin{aligned}[b]\Pi_{2}&= \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \frac {2-\kappa}{2}\,d\kappa \\ &=\frac{1}{4} \bigl[3B (n+1,\alpha-n )-4B (n+2,\alpha -n )+B (n+3, \alpha-n ) \bigr].\end{aligned} \end{aligned}$$
(2.23)

Thus, combining (2.21) to (2.23) in (2.20), the proof is completed. □

Remark 2.6

If we choose \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.5, we get Theorem 2.1 in [30].

Theorem 2.6

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\quad\quad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ & \quad\leq \frac{\nu-\mu}{4}\Omega^{1-\frac{1}{q}} \biggl\{ \biggl( \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q} - \frac{1}{4} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} -\frac{3}{4} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad+ \biggl( \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q} -\frac{1}{4} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} -\frac{3}{4} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr\} , \end{aligned}$$
(2.24)

where

$$\begin{aligned} &\Omega= \int_{0}^{1} \bigl(B_{\kappa} (n+1, \alpha-n ) \bigr)^{p}\,d\kappa \end{aligned}$$

with \(\frac{1}{p}+\frac{1}{q}=1\), \(q >1\).

Proof

Taking modulus in Lemma 2.2 and using the well-known Hölder inequality with convexity of \(|\phi{'}|^{q}\) and Jensen–Mercer’s inequality, we have

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{x+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ & \quad\leq\frac{(\nu-\mu)}{4} \biggl[ \biggl\vert \int_{0}^{1}B_{\kappa } (n+1,\alpha-n ) \phi{'} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+ \frac{2-\kappa}{2}\nu \biggr) \biggr)\,d\kappa \biggr\vert \\ &\qquad+ \biggl\vert \int_{0}^{1}B_{\kappa} (n+1,\alpha-n ) \phi{'} \biggl( \theta+\vartheta- \biggl(\frac {\kappa}{2}\nu+ \frac{2-\kappa}{2}\mu \biggr) \biggr)\,d\kappa \biggr\vert \biggr] \\ &\quad \leq\frac{(\nu-\mu)}{4} \biggl[ \biggl( \int_{0}^{1} \bigl(B_{\kappa } (n+1, \alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac {1}{p}} \\ &\quad\quad\times \biggl( \int_{0}^{1} \biggl\vert \phi {'} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+ \frac {2-\kappa}{2}\nu \biggr) \biggr) \biggr\vert ^{q}\,d\kappa \biggr)^{\frac {1}{q}} \\ &\qquad+ \biggl( \int_{0}^{1} \bigl(B_{\kappa} (n+1, \alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \phi{'} \biggl( \theta+\vartheta- \biggl( \frac{\kappa }{2}\nu+\frac{2-\kappa}{2}\mu \biggr) \biggr) \biggr\vert ^{q}\,d\kappa \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq\frac{(\nu-\mu)}{4} \biggl\{ \biggl( \int_{0}^{1} \bigl(B_{\kappa } (n+1, \alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac {1}{p}} \\ &\quad\quad\times \biggl[ \biggl( \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q}- \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \int_{0}^{1}\frac{\kappa }{2}\,d\kappa- \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \int _{0}^{1}\frac{2-\kappa}{2}\,d\kappa \biggr)^{\frac{1}{q}} \\ &\qquad+ \biggl( \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q}- \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \int_{0}^{1}\frac{\kappa }{2}\,d\kappa- \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \int _{0}^{1}\frac{2-\kappa}{2}\,d\kappa \biggr)^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$

After some basic calculations, we get the required result. □

Remark 2.7

If we set \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.6, we get Theorem 2.2 in [30].

Lemma 2.3

Let \(\phi:[\theta,\vartheta]\rightarrow\Re\)be a twice differentiable mapping on \((\theta,\vartheta)\)with \(\theta <\vartheta\). If \(\phi{'}\in L[\theta,\vartheta]\), then the following equality for conformable integrals holds:

$$\begin{aligned} & \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \\ &\quad= \frac{(\nu-\mu)^{2}}{8} \int_{0}^{1} \bigl[\kappa B_{\kappa } (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr] \\ &\qquad\times \biggl[\phi{''} \biggl( \theta+\vartheta - \biggl( \frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu \biggr) \biggr)+ \phi{''} \biggl( \theta+\vartheta- \biggl(\frac{\kappa }{2}\nu+ \frac{2-\kappa}{2}\mu \biggr) \biggr) \biggr]\,d\kappa \end{aligned}$$
(2.25)

with \(\alpha\in( n,n+1 ]\), \(n=0,1,2,3,\dots\), where \(B_{t} (\theta ,\vartheta )\)is an incomplete beta function and Γ is the Euler gamma function.

Proof

Integrating by parts and changing the variables with \(u=\theta +\vartheta- (\frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu )\), we get the following results via conformable integrals:

$$\begin{aligned} I_{1}&= \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\phi{''} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+\frac{2-\kappa }{2}\nu \biggr) \biggr)\,d\kappa \\ &= \frac{2}{\nu-\mu} \bigl[B (n+1,\alpha-n )-B (n+2,\alpha-n ) \bigr] \phi{'} \biggl( \theta+\vartheta-\frac {\mu+\nu}{2} \biggr) \\ &\quad-\frac{2}{\nu-\mu} [B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta- \frac{\mu+\nu }{2} \biggr)\frac{2}{\nu-\mu} \\ &\quad- \int_{0}^{1}\kappa ^{n} (1-\kappa )^{\alpha-n-1}\phi \biggl( \theta+\vartheta - \biggl(\frac{\kappa}{2} \mu+\frac{2-\kappa}{2}\nu \biggr) \biggr)\,d\kappa \\ &= \frac{2}{\nu-\mu} \bigl[B (n+1,\alpha-n )-B (n+2,\alpha-n ) \bigr] \phi{'} \biggl( \theta+\vartheta-\frac {\mu+\nu}{2} \biggr) \\ &\quad-\frac{2}{\nu-\mu} [B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta- \frac{\mu+\nu }{2} \biggr)\frac{2}{\nu-\mu} \\ &\quad-\frac{2}{\nu-\mu} \int _{\theta+\vartheta-\nu}^{\theta+\vartheta-\frac{\mu+\nu }{2}} \bigl[u- (\theta+\vartheta-\nu ) \bigr]^{n} \biggl[ \biggl(\theta+\vartheta- \frac{\mu+\nu}{2} \biggr)-u \biggr]^{\alpha -n-1}\phi ( u )\frac{2^{\alpha}}{(\nu-\mu)^{\alpha}}\,du \\ &= \frac{2}{\nu-\mu} \bigl[B (n+1,\alpha-n )-B (n+2,\alpha-n ) \bigr] \phi{'} \biggl( \theta+\vartheta-\frac {\mu+\nu}{2} \biggr) \\ &\quad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \frac{4}{(\nu -\mu)^{2}} \\ &\quad+\frac{2^{\alpha+2}}{(\nu-\mu)^{\alpha +2}}n! \bigl(I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu }{2})-} (\theta+ \vartheta-\nu ) \bigr). \end{aligned}$$
(2.26)

Similarly,

$$\begin{aligned} \begin{aligned}[b]I_{2}&= -\frac{2}{\nu-\mu} \bigl[B (n+1, \alpha-n )-B (n+2,\alpha-n ) \bigr]\phi{'} \biggl( \theta + \vartheta-\frac{\mu+\nu}{2} \biggr) \\ &\quad-B (n+1,\alpha -n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \frac{4}{(\nu-\mu)^{2}} \\ &\quad+\frac{2^{\alpha+2}}{(\nu-\mu )^{\alpha+2}}n! \bigl(I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu }{2})-} (\theta+ \vartheta-\nu ) \bigr).\end{aligned} \end{aligned}$$
(2.27)

Adding equations (2.26), (2.27) and multiplying with \(\frac{(\nu-\mu)^{2}}{8}\), we get the desired result. □

Remark 2.8

If we select \(\mu=\theta\) and \(\nu=\vartheta\) in Lemma 2.3, we get Lemma 2.1 in [31].

Theorem 2.7

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a twice differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{''}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ & \quad\leq \frac{(\nu-\mu)^{2}}{8}\Lambda^{1-\frac{1}{q}} \bigl\{ \bigl(\Lambda \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q} +\Lambda \bigl\vert \phi {''} ( \vartheta ) \bigr\vert ^{q} - \Lambda_{1} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} -\Lambda_{2} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \bigr)^{\frac{1}{q}} \\ &\qquad+ \bigl(\Lambda \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q} +\Lambda \bigl\vert \phi {''} ( \vartheta ) \bigr\vert ^{q} -\Lambda_{1} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} - \Lambda_{2} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \bigr)^{\frac{1}{q}} \bigr\} , \end{aligned}$$
(2.28)

where

$$\begin{aligned}& \Lambda=\frac{1}{2} \bigl[B (n+1,\alpha-n )-2B (n+2,\alpha-n )+B (n+3,\alpha-n ) \bigr], \\& \Lambda_{1}=\frac{1}{12} \bigl[2B (n+1,\alpha-n )-3B (n+2,\alpha-n )+B (n+4,\alpha-n ) \bigr], \\& \Lambda_{2}=\frac{1}{12} \bigl[4B (n+1,\alpha-n )-9B (n+2,\alpha-n )+6B (n+3,\alpha-n ) -B (n+4,\alpha-n ) \bigr]. \end{aligned}$$

Proof

Taking modulus in Lemma 2.3 and using the well-known power mean inequality with convexity of \(|\phi{''}|^{q}\) and Jensen–Mercer’s inequality, we have

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ & \quad\leq\frac{(\nu-\mu)^{2}}{8} \biggl[ \biggl\vert \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr] \\&\qquad\times\phi{''} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu \biggr) \biggr)\,d\kappa \biggr\vert \\ &\quad\quad+ \biggl\vert \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha -n ) \bigr]\phi{''} \biggl( \theta+\vartheta- \biggl(\frac {\kappa}{2}\nu+\frac{2-\kappa}{2}\mu \biggr) \biggr)\,d\kappa \biggr\vert \biggr] \\ & \quad\leq\frac{(\nu-\mu)^{2}}{8} \biggl[ \biggl( \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\,d\kappa \biggr)^{1-\frac{1}{q}} \\ &\qquad\times \biggl( \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha -n )-B_{\kappa} (n+2,\alpha-n ) \bigr] \biggl\vert \\&\qquad\times \phi{''} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+ \frac {2-\kappa}{2}\nu \biggr) \biggr) \biggr\vert ^{q}\,d\kappa \biggr)^{\frac {1}{q}} \\ &\quad\quad+ \biggl( \int_{0}^{1} \bigl[\kappa B_{\kappa } (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\,d\kappa \biggr)^{1-\frac{1}{q}} \\ &\qquad\times \biggl( \int _{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr] \biggl\vert \\&\qquad\times\phi {''} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\nu+ \frac {2-\kappa}{2}\mu \biggr) \biggr) \biggr\vert ^{q}\,d\kappa \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq\frac{(\nu-\mu)^{2}}{8} \biggl\{ \biggl( \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\,d\kappa \biggr)^{1-\frac{1}{q}} \\ &\qquad\times \biggl[ \biggl( \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q} \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\,d\kappa \\ &\qquad+ \bigl\vert \phi{''} ( \vartheta ) \bigr\vert ^{q} \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\,d\kappa \\ &\qquad- \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \int _{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\frac{\kappa }{2}\,d\kappa \\ &\qquad- \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\frac{2-\kappa}{2}\,d\kappa \biggr)^{\frac{1}{q}} \\ &\qquad+ \biggl( \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q} \int _{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\,d\kappa \\ &\qquad+ \bigl\vert \phi{''} ( \vartheta ) \bigr\vert ^{q} \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\,d\kappa \\ &\qquad- \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \int _{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\frac{\kappa }{2}\,d\kappa \\ &\qquad- \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\frac{2-\kappa}{2}\,d\kappa \biggr)^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$
(2.29)

By using Lemma 2.2 in [31], we get the following equalities:

$$\begin{aligned}& \begin{aligned}[b]\Lambda&= \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\,d\kappa \\ &=\frac{1}{2} \bigl[B (n+1,\alpha-n )-2B (n+2,\alpha -n )+B (n+3, \alpha-n ) \bigr],\end{aligned} \end{aligned}$$
(2.30)
$$\begin{aligned}& \begin{aligned}[b]\Lambda_{1}&= \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\frac{\kappa }{2}\,d\kappa \\ &=\frac{1}{12} \bigl[2B (n+1,\alpha-n )-3B (n+2,\alpha-n )+B (n+4, \alpha-n ) \bigr],\end{aligned} \end{aligned}$$
(2.31)
$$\begin{aligned}& \begin{aligned}[b]\Lambda_{2}&= \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]\frac {2-t}{2}\,d\kappa \\ &=\frac{1}{12} \bigl[4B (n+1,\alpha-n )-9B (n+2,\alpha-n )+6B (n+3, \alpha-n ) \\ &\quad -B (n+4,\alpha-n ) \bigr].\end{aligned} \end{aligned}$$
(2.32)

Thus, by combining (2.30) to (2.32) in (2.29), the proof is completed. □

Remark 2.9

If we choose \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.7, we get Theorem 2.1 for the case of \(m=1\) in [31].

Theorem 2.8

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a twice differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{''}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{(\nu-\mu)^{2}}{8}\Psi^{1-\frac{1}{q}} \biggl\{ \biggl( \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi {''} ( \vartheta ) \bigr\vert ^{q} - \frac{1}{4} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} -\frac{3}{4} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad+ \biggl( \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi {''} ( \vartheta ) \bigr\vert ^{q} -\frac{1}{4} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} - \frac{3}{4} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr\} , \end{aligned}$$
(2.33)

where

$$\begin{aligned} &\Psi= \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]^{p}\,d\kappa \end{aligned}$$

with \(\frac{1}{p}+\frac{1}{q}=1\), \(q >1\).

Proof

Taking modulus in Lemma 2.3 and using the well-known Hölder inequality with convexity of \(|\phi{''}|^{q}\) and Jensen–Mercer’s inequality, we have

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ & \quad\leq\frac{(\nu-\mu)^{2}}{8} \biggl[ \biggl\vert \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr] \\&\qquad\times\phi{''} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu \biggr) \biggr)\,d\kappa \biggr\vert \\ &\quad\quad+ \biggl\vert \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha -n ) \bigr] \\&\qquad\times\phi{''} \biggl( \theta+\vartheta- \biggl(\frac {\kappa}{2}\nu+\frac{2-\kappa}{2}\mu \biggr) \biggr)\,d\kappa \biggr\vert \biggr] \\ & \quad\leq\frac{(\nu-\mu)^{2}}{8} \biggl[ \biggl( \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl\vert f{''} \biggl( \theta +\vartheta- \biggl(\frac{\kappa}{2}\mu+\frac{2-\kappa}{2} \nu \biggr) \biggr) \biggr\vert ^{q}\,d\kappa \biggr)^{\frac{1}{q}} \\ &\qquad+ \biggl( \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \biggl\vert \phi {''} \biggl( \theta+\vartheta- \biggl(\frac{\kappa}{2}\nu+\frac {2-\kappa}{2}\mu \biggr) \biggr) \biggr\vert ^{q}\,d\kappa \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq\frac{(\nu-\mu)^{2}}{8} \biggl\{ \biggl( \int_{0}^{1} \bigl[\kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr]^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl[ \biggl( \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi{''} ( \vartheta ) \bigr\vert ^{q}- \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \int_{0}^{1}\frac {\kappa}{2}\,d\kappa- \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \int_{0}^{1}\frac{2-\kappa}{2}\,d\kappa \biggr)^{\frac {1}{q}} \\ &\qquad+ \biggl( \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q} + \bigl\vert \phi{''} ( \vartheta ) \bigr\vert ^{q}- \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \int_{0}^{1}\frac {\kappa}{2}\,d\kappa- \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \int_{0}^{1}\frac{2-\kappa}{2}\,d\kappa \biggr)^{\frac {1}{q}} \biggr] \biggr\} . \end{aligned}$$

After computing the above integrals, we get the required result. □

Remark 2.10

If we set \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.8, we get Theorem 2.2 for the case of \(m=1\) in [31].

New inequalities via improved Hölder’s inequality

Theorem 3.1

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\)and \(\phi\in L [ \theta,\vartheta ] \). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta ]\),then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert B (n+1,\alpha-n )\frac{\phi ( \theta +\vartheta-\mu ) +\phi ( \theta+\vartheta-\nu ) }{2}- \frac{n!}{2 ( \nu-\mu ) ^{\alpha}} \\ &\qquad\times \bigl\{ \bigl(I^{\theta+\vartheta-\nu}_{\alpha} \bigr) \bigl( \phi( \theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\mu}I_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta -\nu) \bigr) \bigr\} \biggr\vert \\ & \quad\leq\frac{\nu-\mu}{2} \biggl\{ \biggl( \int_{0}^{1} ( 1-\kappa ) \bigl( B_{\kappa} (n+1,\alpha-n )- B_{1-\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \frac { \vert \phi{'} ( \theta ) \vert ^{q}+ \vert \phi{'} ( \vartheta ) \vert ^{q}}{2}- \biggl( \frac{1}{6} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+ \frac{1}{3} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\kappa \bigl( B_{\kappa} (n+1,\alpha-n )- B_{1-\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \frac{ \vert \phi{'} ( \theta ) \vert ^{q}+ \vert \phi{'} ( \vartheta ) \vert ^{q}}{2}- \biggl( \frac{1}{3} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \end{aligned}$$

for all \(\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha>0\), \(\kappa\in [ 0,1 ]\), and \(\beta ( \cdot )\)is the Euler beta function.

Proof

By using Lemma 2.1 with Jensen–Mercer’s inequality, the convexity of \(\vert \phi{'} \vert ^{q} \) and applying the Hölder–İşcan integral inequality that is given in (Theorem 2.1, [32]), we can write

$$\begin{aligned} & \biggl\vert B (n+1,\alpha-n )\frac{\phi ( \theta +\vartheta-\mu ) +\phi ( \theta+\vartheta-\nu ) }{2}- \frac{n!}{2 ( \nu-\mu ) ^{\alpha}} \\ &\qquad\times \bigl\{ \bigl(I^{\theta+\vartheta-\nu}_{\alpha} \bigr) \bigl( \phi( \theta+\vartheta-\mu) \bigr) + \bigl(^{\theta +\vartheta-\mu}I_{\alpha} \bigr) \bigl(\phi(\theta+\vartheta -\nu) \bigr) \bigr\} \biggr\vert \\ &\quad \leq\frac{(\nu-\mu)}{2} \biggl\{ \biggl( \int_{0}^{1} ( 1-\kappa ) \bigl( B_{\kappa} (n+1,\alpha-n )- B_{1-\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} ( 1-\kappa ) \bigl\vert \phi {'} \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) \bigr\vert ^{q} \,d\kappa \biggr) ^{\frac{1}{q}} \\ & \qquad+ \biggl( \int_{0}^{1}\kappa \bigl( B_{\kappa} (n+1,\alpha-n )- B_{1-\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1}\kappa \bigl\vert \phi{'} \bigl( \theta+\vartheta- \bigl( \kappa\mu+(1-\kappa)\nu \bigr) \bigr) \bigr\vert ^{q} \,d\kappa \biggr) ^{\frac{1}{q}} \biggr\} \\ &\quad\leq\frac{(\nu-\mu)}{2} \biggl\{ \biggl( \int_{0}^{1} ( 1-\kappa ) \bigl( B_{\kappa} (n+1,\alpha-n )- B_{1-\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} ( 1-\kappa ) \bigl[ \bigl\vert \phi {'} ( a ) \bigr\vert ^{q}+ \bigl\vert \phi{'} ( b ) \bigr\vert ^{q}- \bigl(\kappa \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+(1-\kappa) \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \bigr) \bigr]\,d\kappa \biggr) ^{\frac{1}{q}} \\ & \qquad+ \biggl( \int_{0}^{1}\kappa \bigl( B_{\kappa} (n+1,\alpha-n )- B_{1-\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1}\kappa \bigl[ \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q}- \bigl( \kappa \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+(1- \kappa) \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \bigr) \bigr]\,d\kappa \biggr) ^{\frac {1}{q}} \biggr\} . \end{aligned}$$

By making use of the computations, one can have the required result. □

Theorem 3.2

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ &\quad \leq\frac{\nu-\mu}{4} \biggl[ \biggl\{ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( B_{\kappa } (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac {1}{p}} \\ &\qquad\times \biggl( \frac{3 \vert \phi{'} ( \theta ) \vert ^{q}+3 \vert \phi{'} ( \vartheta ) \vert ^{q}}{4}- \biggl( \frac{1}{6} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+ \frac{7}{12} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( B_{\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \frac{ \vert \phi{'} ( \theta ) \vert ^{q}+ \vert \phi{'} ( \vartheta ) \vert ^{q}}{4}- \biggl( \frac{1}{12} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \\ &\qquad + \biggl\{ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl(B_{\kappa } (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac {1}{p}} \\ &\qquad\times \biggl( \frac{3 \vert \phi{'} ( \theta ) \vert ^{q}+3 \vert \phi{'} ( \theta ) \vert ^{q}}{4}- \biggl( \frac{1}{6} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q}+ \frac{7}{12} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( B_{t} (n+1,\alpha-n ) \bigr)^{p}dt \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \frac{ \vert \phi{'} ( \theta ) \vert ^{q}+ \vert \phi{'} ( \vartheta ) \vert ^{q}}{4}- \biggl( \frac{1}{12} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \biggr]. \end{aligned}$$

Proof

By using Lemma 2.2 with Jensen–Mercer’s inequality, the convexity of \(\vert \phi{'} \vert ^{q} \) and applying the Hölder–İşcan integral inequality that is given in (Theorem 2.1, [32]), we can write

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ &\quad \leq\frac{(\nu-\mu)}{4} \biggl[ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl(B_{\kappa } (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \biggl\vert \phi{'} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\mu+\frac{2-\kappa }{2}\nu \biggr) \biggr) \biggr\vert ^{q} \,d\kappa \biggr) ^{\frac{1}{q}} \\ &\qquad\times \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl(B_{\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad+ \biggl( \int_{0}^{1}\frac{\kappa}{2} \biggl\vert \phi{'} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\mu+ \frac{2-\kappa }{2}\nu \biggr) \biggr) \biggr\vert ^{q} \,d\kappa \biggr) ^{\frac {1}{q}} \\ &\qquad+ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( B_{\kappa } (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \biggl\vert \phi{'} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\nu+\frac{2-\kappa }{2}\mu \biggr) \biggr) \biggr\vert ^{q} \,d\kappa \biggr) ^{\frac{1}{q}} \\ &\qquad\times \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl(B_{\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad+ \biggl( \int_{0}^{1}\frac{\kappa}{2} \biggl\vert \phi{'} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\nu+ \frac{2-\kappa }{2}\mu \biggr) \biggr) \biggr\vert ^{q} \,d\kappa \biggr) ^{\frac {1}{q}} \biggr] \\ &\quad\leq\frac{(\nu-\mu)}{4} \biggl[ \biggl\{ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( B_{\kappa } (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \biggl[ \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q}- \biggl(\frac{\kappa}{2} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+\frac{2-\kappa }{2} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \biggr) \biggr]\,d\kappa \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl(B_{\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1}\frac{\kappa}{2} \biggl[ \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{\kappa}{2} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+\frac{2-\kappa}{2} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \biggr) \biggr]\,d\kappa \biggr) ^{\frac {1}{q}} \biggr\} \\ &\qquad + \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl(B_{\kappa } (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \biggl[ \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q}- \biggl(\frac{\kappa}{2} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q}+\frac{2-\kappa }{2} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q} \biggr) \biggr]\,d\kappa \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( B_{\kappa} (n+1,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1}\frac{\kappa}{2} \biggl[ \bigl\vert \phi{'} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{'} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\kappa}{2} \bigl\vert \phi{'} ( \mu ) \bigr\vert ^{q}+\frac{\kappa}{2} \bigl\vert \phi{'} ( \nu ) \bigr\vert ^{q} \biggr) \biggr]\,d\kappa \biggr) ^{\frac {1}{q}} \biggr]. \end{aligned}$$

By making use of the computations, one can have the required result. □

Theorem 3.3

Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{''}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ &\quad \leq\frac{\nu-\mu}{4} \biggl[ \biggl\{ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2, \alpha -n ) \bigr)^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \frac{3 \vert \phi{'} ( \theta ) \vert ^{q}+3 \vert \phi{''} ( \vartheta ) \vert ^{q}}{4}- \biggl( \frac{1}{6} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q}+ \frac{7}{12} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \frac{ \vert \phi{''} ( \theta ) \vert ^{q}+ \vert \phi{''} ( \vartheta ) \vert ^{q}}{4}- \biggl( \frac{1}{12} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \\ &\qquad + \biggl\{ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2, \alpha -n ) \bigr)^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \frac{3 \vert \phi{''} ( \theta ) \vert ^{q}+3 \vert \phi{''} ( \vartheta ) \vert ^{q}}{4}- \biggl( \frac{1}{6} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q}+ \frac{7}{12} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr)^{p}\,d\kappa \biggr)^{\frac{1}{p}} \\ &\qquad\times \biggl( \frac{ \vert \phi{''} ( \theta ) \vert ^{q}+ \vert \phi{''} ( \vartheta ) \vert ^{q}}{4}- \biggl( \frac{1}{12} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \biggr]. \end{aligned}$$

Proof

By using Lemma 2.3 with Jensen–Mercer’s inequality, the convexity of \(\vert \phi{''} \vert ^{q} \) and applying the Hölder–İşcan integral inequality that is given in (Theorem 2.1, [32]), we can write

$$\begin{aligned} & \biggl\vert \frac{2^{\alpha-1}n!}{ ( \nu-\mu ) ^{\alpha}} \bigl[ I^{\alpha}_{(\theta+\vartheta-\frac{\mu+\nu}{2})+} \bigl( \phi(\theta+\vartheta-\mu) \bigr) +I^{\alpha}_{(\theta +\vartheta-\frac{\mu+\nu}{2})-} \bigl(\phi(\theta+\vartheta-\nu ) \bigr) \bigr] \\ &\qquad-B (n+1,\alpha-n )\phi \biggl( \theta+\vartheta-\frac{\mu+\nu}{2} \biggr) \biggr\vert \\ &\quad \leq\frac{(\nu-\mu)}{4} \biggl[ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2, \alpha -n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \biggl\vert \phi{''} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\mu+\frac{2-\kappa }{2}\nu \biggr) \biggr) \biggr\vert ^{q} \,d\kappa \biggr) ^{\frac{1}{q}} \\ &\qquad\times \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad+ \biggl( \int_{0}^{1}\frac{\kappa}{2} \biggl\vert \phi{''} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\mu+ \frac{2-\kappa }{2}\nu \biggr) \biggr) \biggr\vert ^{q} \,d\kappa \biggr) ^{\frac {1}{q}} \\ &\qquad+ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2, \alpha -n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \biggl\vert \phi{''} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\nu+\frac{2-\kappa }{2}\mu \biggr) \biggr) \biggr\vert ^{q} \,d\kappa \biggr) ^{\frac{1}{q}} \\ &\qquad\times \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad+ \biggl( \int_{0}^{1}\frac{\kappa}{2} \biggl\vert \phi{''} \biggl( \theta+\vartheta- \biggl( \frac{\kappa}{2}\nu+ \frac{2-\kappa }{2}\mu \biggr) \biggr) \biggr\vert ^{q} \,d\kappa \biggr) ^{\frac {1}{q}} \biggr] \\ &\quad\leq\frac{(\nu-\mu)}{4} \biggl[ \biggl\{ \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2, \alpha -n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \biggl[ \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{''} ( \vartheta ) \bigr\vert ^{q}- \biggl(\frac{\kappa}{2} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q}+\frac{2-\kappa }{2} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \biggr) \biggr]\,d\kappa \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1}\frac{\kappa}{2} \biggl[ \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{''} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{\kappa}{2} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q}+\frac{2-\kappa}{2} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \biggr) \biggr]\,d\kappa \biggr) ^{\frac {1}{q}} \biggr\} \\ &\qquad + \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2, \alpha -n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1} \biggl( \frac{2-\kappa}{2} \biggr) \biggl[ \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{''} ( \vartheta ) \bigr\vert ^{q}- \biggl(\frac{\kappa}{2} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q}+\frac{2-\kappa }{2} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q} \biggr) \biggr]\,d\kappa \biggr) ^{\frac{1}{q}} \\ &\qquad + \biggl( \int_{0}^{1}\frac{\kappa}{2} \bigl( \kappa B_{\kappa} (n+1,\alpha-n )-B_{\kappa} (n+2,\alpha-n ) \bigr)^{p}\,d\kappa \biggr) ^{\frac{1}{p}} \\ &\qquad\times \biggl( \int_{0}^{1}\frac{\kappa}{2} \biggl[ \bigl\vert \phi{''} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \phi{''} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\kappa}{2} \bigl\vert \phi{''} ( \mu ) \bigr\vert ^{q}+\frac{\kappa}{2} \bigl\vert \phi{''} ( \nu ) \bigr\vert ^{q} \biggr) \biggr]\,d\kappa \biggr) ^{\frac {1}{q}} \biggr]. \end{aligned}$$

By making use of the simple computations for the above integrals, one can have the required result. □

Conclusion

Conformable integrals act as inverse operators for conformable derivatives, which are related to a class of local derivatives. Conformable integrals of order between 0 and 1 have been used to generate nonlocal fractional integrals with kernel depending on a function \(\psi(t)=\frac{(t-a)^{\rho}}{\rho}\) [33], so that certain sequential conformable integrals become special cases of them. However, higher order conformable integrals, for which we have proved Hermite–Jensen–Mercer type inequalities in this work, have a different structure and cannot be considered as special cases of the nonlocal fractional ones. This observation, besides the fact that the conformable integrals with order larger than 1 have kernels of integer power law, adds more interest to the proven results in this article. In fact, this inequality work, to the best of our knowledge, is one among few for such higher order extension.

References

  1. 1.

    Özcan, S., İşcan, İ.: Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019(1), Article ID 201 (2019)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Rashid, S., Akdemir, A.O., Jarad, F., Noor, M.A., Noor, K.I.: Simpson’s type integral inequalities for κ-fractional integrals and their applications. AIMS Math. 4(4), 1087–1100 (2019). https://doi.org/10.3934/math.2019.4.1087

    MathSciNet  Article  Google Scholar 

  3. 3.

    Rashid, S., Abdeljawad, T., Jarad, F., Noor, M.A.: Some estimates for generalized Riemann–Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 7(9), Article ID 807 (2019). https://doi.org/10.3390/math7090807

    Article  Google Scholar 

  4. 4.

    Rashid, S., Noor, M.A., Noor, K.I., Safdar, F., Chu, Y.-M.: Hermite–Hadamard type inequalities for the class of convex functions on time scale. Mathematics 7, Article ID 956 (2019). https://doi.org/10.3390/math7100956

    Article  Google Scholar 

  5. 5.

    Rashid, S., Jarad, F., Noor, M.A., Kalsoom, H., Chu, Y.-M.: Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 7, Article ID 1225 (2020). https://doi.org/10.3390/math7121225

    Article  Google Scholar 

  6. 6.

    Rashid, S., Latif, M.A., Hammouch, Z., Chu, Y.-M.: Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 11, Article ID 1448 (2019). https://doi.org/10.3390/sym11121448

    Article  Google Scholar 

  7. 7.

    Pečarić, J.E., Mitrinovic, D.S., Fink, A.M.: Classical and New Inequalities in Analysis, pp. 1–2 (1993)

    MATH  Google Scholar 

  8. 8.

    Mercer, A.M.: A varient of Jensen’s inequality. J. Inequal. Pure Appl. Math. 4(4), Article ID 73 (2003)

    MATH  Google Scholar 

  9. 9.

    Matkovic, A., Pečarić, J., Perić, I.: A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 418, 551–564 (2006)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Niezgoda, M.: A generalization of Mercer’s result on convex functions. Nonlinear Anal. 71, 2771–2779 (2009)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kian, M.: Operator Jensen inequality for superquadratic functions. Linear Algebra Appl. 456, 82–87 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Anjidani, E., Changalvaiy, M.R.: Reverse Jensen–Mercer type operator inequalities. Electron. J. Linear Algebra 31, 87–99 (2016)

    MathSciNet  Article  Google Scholar 

  13. 12.

    Anjidani, E.: Jensen–Mercer operator inequalities involving superquadratic functions. Mediterr. J. Math. 18, 1660–5446 (2018)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Ali, M.M., Khan, A.R.: Generalized integral Mercer’s inequality and integral means. J. Inequal. Spec. Funct. 10(1), 60–76 (2019)

    MathSciNet  Google Scholar 

  15. 15.

    Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)

    Article  Google Scholar 

  16. 16.

    Mohammed, P.O.: Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5784

    Article  Google Scholar 

  17. 17.

    Mohammed, P.O., Abdeljawad, T.: Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, Article ID 69 (2020)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Mohammed, P.O., Brevik, I.: A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 12, Article ID 610 (2019). https://doi.org/10.3390/sym12040610

    Article  Google Scholar 

  19. 19.

    Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  20. 20.

    Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  21. 21.

    Sarikaya, M.Z., Alp, N.: On Hermite–Hadamard–Fejer type integral inequalities for generalized convex functions via local fractional integrals. Open J. Math. Sci. 3(1), 273–284 (2019)

    Article  Google Scholar 

  22. 22.

    Gorenflo, R.: Fractional calculus: some numerical methods. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 277–290. Springer, Wien (1997)

    Chapter  Google Scholar 

  23. 23.

    Farid, G.: Existence of an integral operator and its consequences in fractional and conformable integrals. Open J. Math. Sci. 3(1), 210–216 (2019)

    Article  Google Scholar 

  24. 24.

    Mohammed, P.O., Abdeljawad, T.: Opial integral inequalities for generalized fractional operators with nonsingular kernel. J. Inequal. Appl. 2020, Article ID 148 (2020). https://doi.org/10.1186/s13660-020-02419-4

    MathSciNet  Article  Google Scholar 

  25. 25.

    Aliev, F.A., Aliev, N.A., Safarova, N.A.: Transformation of the Mittag-Leffler function to an exponential function and some of its applications to problems with a fractional derivative. Appl. Comput. Math. 18(3), 316–325 (2019)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Rahman, G., Nisar, K.S., Abdeljawad, T., Ullah, S.: Certain fractional proportional integral inequalities via convex functions. Mathematics 8, Article ID 222 (2020)

    Article  Google Scholar 

  27. 27.

    Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Ögunmez, H., Sarikaya, M.Z.: Hermite–Hadamard–Mercer type inequalities for fractional integrals (2019)

  29. 29.

    Set, E., Gözpinar, A.: A study on Hermite Hadamard type inequality for s-convex function via conformable integrals. Stud. Univ. Babeş–Bolyai, Math. 62, 309–323 (2016)

    Article  Google Scholar 

  30. 30.

    Set, E., Sarikaya, M.Z., Gözpinar, A.: Some Hermite–Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities. Preprint

  31. 31.

    Set, E., Gözpinar, A., Choi, J.: Hermite–Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional integrals. Far East J. Math. Sci.: FJMS 101(4), 873–891 (2017)

    MATH  Google Scholar 

  32. 32.

    İşcan, İ.: New refinements for integral and sum forms of Hoölder inequality. J. Inequal. Appl. 2019, Article ID 304 (2019)

    Article  Google Scholar 

  33. 33.

    Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, Article ID 247 (2017)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The research of the first author has been fully supported by H.E.C. Pakistan under NRPU project 7906.

Availability of data and materials

Data sharing is not applicable to this paper as no datasets were generated or analyzed during the current study.

Funding

There is no funding for this work.

Author information

Affiliations

Authors

Contributions

All authors jointly worked on the results and they read and approved the final manuscript.

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Butt, S.I., Nadeem, M., Qaisar, S. et al. Hermite–Jensen–Mercer type inequalities for conformable integrals and related results. Adv Differ Equ 2020, 501 (2020). https://doi.org/10.1186/s13662-020-02968-4

Download citation

Keywords

  • Convex functions
  • Hermite–Hadamard inequalities
  • Jensen–Mercer inequality
  • Conformable integrals