Skip to main content

A study of boundary value problem for generalized fractional differential inclusion via endpoint theory for weak contractions


This note is concerned with establishing the existence of solutions to a fractional differential inclusion of a ψ-Caputo-type with a nonlocal integral boundary condition. Using the concept of the endpoint theorem for φ-weak contractive maps, we investigate the existence of solutions to the proposed problem. An example is provided at the end to clarify the theoretical result.


On different time ranges, fractional calculus has had great impact due to a diversity of applications that have contributed to several fields of technical sciences and engineering [15]. One of the principal options behind the popularity of the area is that fractional-order differentiations and integrations are more beneficial tools in expressing real-world matters than the integer-order ones. Various studies in the literature, on distinct fractional operators such as the classical Riemann–Liouville, Caputo, Katugamploa, Hadamard, and Marchaud versions have shown versatility in modeling and control applications across various disciplines. However, such forms of fractional derivatives may not be able to explain the dynamic performance accurately, hence, many authors are found to be sorting out new fractional differentiations and integrations which have a kernel depending upon a function and this makes the range of definition expanded; see [68]. Furthermore, models based on these fractional operators provide excellent results to be compared with the integer-order differentiations [912].

Recently, the area of fractional-order differential inclusions has become mainly important as these equations were found to be of high importance in modeling stochastic and optimal controls problems [13]. By using techniques of nonlinear analysis the authors studied different aspects such as establishing the existence and the uniqueness of solutions, the upper and lower solutions, and stability. We refer the reader to [1425] for various qualitative studies.

Details from the historical attitude and recent improvements in the area are detailed in the monograph of Ahmad et al. [26] and the survey of Agarwal et al. [27].

In this paper, we deal with the following ψ-fractional differential inclusions:

$$ {^{c}}\mathcal{D}_{\psi}^{\sigma}u(y) \in Z\bigl(y,u(y)\bigr), \quad y\in J=[1,T], 1 < \sigma\leq2, $$

subject to ψ-boundary conditions of the form

$$ u(1) = \sum_{i=0}^{m} \lambda_{i} I^{\varrho}_{\psi}h\bigl( \eta_{i}, u(\eta_{i})\bigr), \quad\delta_{\psi}u(T)= \delta_{\psi}u(1)=0, $$

where \({^{c}}\mathcal{D}_{\psi}^{\sigma} \) is the ψ-Caputo fractional-order derivative, \(Z: [1,T]\times\mathbb{R} \to\mathcal {P}(\mathbb{R})\) is a multivalued map, \(\mathcal{P}(\mathbb{R})\) is the family of all nonempty subsets of \(\mathbb{R}\), \(I^{\varrho}_{\psi}\) is the ψ-Riemann–Liouville fractional integral of order \(\varrho>0 \), \(0< \eta_{i} \leq T\), \(\delta_{\psi}= \frac{1}{\psi'(y)} \frac{d}{dy}\), \(h: [1,T]\times\mathbb{R}\to\mathbb{R}\) is given continuous function, and \(\lambda_{i} \in\mathbb{R}\), \(i= 0,1,2, \ldots, m\), are real constants such that

$$ -1< \Biggl(\theta\sum_{i=0}^{m} \lambda_{i} \frac{(\psi(\eta_{i}))^{\varrho}}{\varGamma(\varrho+1)} \Biggr)\leq0. $$

θ will be determined later. We establish novel existence results of solutions for the above inclusion problem by using the endpoint theorem when the multivalued map is φ-weak contractive.

The result of the present paper unifies several classes of fractional differential inclusion with different boundary conditions. For example by taking \(\psi(y)=y\) in (1.1)–(1.2) the results agree for the classical Caputo fractional inclusions [28] with a combination of classical nonlocal Riemann–Liouville fractional and Neumann boundary conditions of the form:

$$u(1)=\sum_{i=0}^{m} \lambda_{i}I^{\varrho}_{1^{+}}h\bigl( \eta_{i}, u(\eta_{i})\bigr), \quad u'(T)=u'(1)=0, $$

when \(\psi(y)= \ln(y)\), the results agree with the Caputo–Hadamard fractional inclusions [29] equipped with classical fractional integral boundary conditions of Hadamard type of the form

$$u(1)=\sum_{i=0}^{m} \lambda_{i} {^{H}}I^{\varrho}_{1^{+}}h \bigl(\eta_{i}, u(\eta_{i})\bigr), \quad\delta u(T)= \delta u(1)=0, $$

while the results for generalized Caputo fractional inclusions [30] with nonlocal Katugampola type integral boundary conditions

$$u(1)=\sum_{i=0}^{m} \lambda_{i} {^{\rho}}I^{\varrho}_{1^{+}}h \bigl(\eta_{i}, u(\eta_{i})\bigr), \quad \delta_{\rho}u(T)=\delta_{\rho}u(1)=0, $$

follow by taking \(\psi(y)= y^{\rho}/\rho\).

The paper is organized as follows. Section 2 recalls some basic and fundamental definitions and lemmas. In Sect. 3, we prove the existence of a solution to the proposed problem (1.1)–(1.2). An example is provided to demonstrate the main results in Sect. 4.

Preliminary results

Let \(\mathcal{W}=C([1,T], \mathbb{R})\) be the set of all continuous functions u from \([1,T]\) into \(\mathbb{R}\) with the uniform norm

$$\Vert u \Vert = \sup_{y\in[1,T]} \bigl\vert u(y) \bigr\vert . $$

\(L^{1}([1,T], \mathbb{R})\) be the Banach space of measurable functions \(u: [1,T]\to\mathbb{R}\) with the norm

$$\Vert u \Vert _{1}= \int_{1}^{T} \bigl\vert u(y) \bigr\vert \,dy. $$

We define \(\operatorname{AC}^{m}_{\psi}([1,T], \mathbb{R})\) by

$$\operatorname{AC}^{m}_{\psi}\bigl([1,T], \mathbb{R}\bigr)= \biggl\{ u :[1,T] \to\mathbb{R}; \bigl(\delta_{\psi}^{m-1}u\bigr) (y) \in \operatorname{AC}\bigl([1,T], \mathbb{R}\bigr), \delta_{\psi}=\frac{1}{\psi '(y)} \frac{d}{dy}\biggr\} , $$

which is supplied with the norm described by

$$\Vert u \Vert _{C^{m}_{\psi}}= \sum_{j=0}^{m-1} \bigl\Vert \delta^{j}_{\psi}u(y) \bigr\Vert _{\infty}, $$

where \(\psi\in C^{m}([1,T], \mathbb{R})\), with \(\psi'(y)>0\) on \([1,T]\), and

$$\delta_{\psi}^{j}= \underbrace{\delta_{\psi}\delta_{\psi}\ldots\delta_{\psi}}_{j\text{ times}}, $$

and \(\operatorname{AC}([1,T], \mathbb{R})\) is the space of absolutely continuous functions from \([1,T]\) into \(\mathbb{R}\).

Now we introduce some notations and definitions of fractional calculus with respect to another function and give preliminary results that we will need in our proofs later.

Definition 2.1


The ψ-fractional integration operator in the Riemann–Liouville sense of order \(\sigma>0\) with lower limit 1 for an integrable function g is defined by

$$ {I^{\sigma}_{\psi}}g(y)={\varGamma( \sigma)}^{-1} \int_{1}^{y}\psi'(\xi) \bigl( \psi(y)-\psi(\xi)\bigr)^{\sigma-1}g(\xi)\,d\xi, $$

provided the integral exists.

Definition 2.2


The ψ-fractional differentiation operator in the Riemann–Liouville sense of order \(\sigma>0\) of a function \(g \in \operatorname{AC}^{m}_{\psi}([1,T],\mathbb{R})\) is defined by

$$\begin{aligned} \begin{aligned}[b] \mathcal{D}^{\sigma}_{\psi}g(y)&=I^{m-\sigma}_{\psi} \bigl(\delta_{\psi}^{m} g\bigr) (y)+ \sum _{j=0}^{m-1}\frac{(\delta_{\psi}^{j} g)(1)}{\varGamma(j-\sigma+1)}\bigl(\psi (y)- \psi(1)\bigr)^{j-\sigma} \\ &= {\varGamma(m-\sigma)}^{-1} \int_{1}^{y}\psi'(\xi) \bigl( \psi(y)-\psi(\xi )\bigr)^{m-\sigma-1}\delta^{m}_{\psi}g(\xi)\,d\xi\\&\quad+ \sum_{j=0}^{m-1} \frac{(\delta _{\psi}^{j} g)(1)}{\varGamma(j-\sigma+1)}\bigl(\psi(y)-\psi(1)\bigr)^{j-\sigma},\end{aligned} \end{aligned}$$

provided the integral exists, where \(m= [\sigma]+1\), and Γ is the Gamma Euler function.

Definition 2.3

([6, 7])

The ψ-Caputo differentiation operator of fractional-order \(\sigma >0\) for a given \(g\in \operatorname{AC}^{m}_{\psi}([1,T], \mathbb{R})\) is given by

$$\begin{aligned} {^{c}}\mathcal{D}_{\psi}^{\sigma}g(y) &= {I^{m-\sigma}_{\psi}}\bigl(\delta _{\psi}^{m} g\bigr) (y) \\ &={\varGamma(m-1)}^{-1} \int_{1}^{y} \psi'(\xi) \bigl( \psi(y)- \psi(\xi )\bigr)^{m-\sigma-1}\bigl(\delta^{m}_{\psi}g\bigr) (\xi)\,d\xi, \quad m=[\sigma]+1, \end{aligned}$$

provided the integral exists. If \(\sigma= m\in\mathbb{N}\) we have

$$\begin{aligned} {^{c}}\mathcal{D}_{\psi}^{\sigma}g(y)=\bigl( \delta^{m}_{\psi}g\bigr) (y). \end{aligned}$$

Lemma 2.4


For\(\sigma>0\)and a given function\(g\in \operatorname{AC}^{m}_{\psi} ([1,T], \mathbb {R})\), we have

$$ {I^{\sigma}_{\psi}} {^{c}}\mathcal{D}_{\psi}^{\sigma}g(y)=g(y)- \sum_{j=0}^{m-1}\frac{(\delta_{\psi}^{j} g)(1)}{j!} \bigl( \psi(y)-\psi(1)\bigr)^{j}. $$

Particularly, for\(0 <\sigma<1\), we obtain

$${I^{\sigma}_{\psi}} {^{c}}\mathcal{D}_{\psi}^{\sigma}g(y)=g(y)-g(1) . $$

We will investigate the existence of solutions to the problem (1.1)–(1.2) with the help of the following lemma.

Lemma 2.5

Let\(\phi: [1,T] \rightarrow\mathbb{R}\)be a continuous function, and\(1< \sigma\leq2\). Then theψ-fractional problem

$$\begin{aligned}& {^{c}}\mathcal{D}_{\psi}^{\sigma}u(y)= \phi(y), \quad y\in[1,T], \end{aligned}$$
$$\begin{aligned}& u(1) = \sum_{i=0}^{m} \lambda_{i} I^{\varrho}_{\psi}h\bigl( \eta_{i}, u(\eta_{i})\bigr), \quad\delta_{\psi}u(T)= \delta_{\psi}u(1)=0, \end{aligned}$$

is solvable, and its solution is given by

$$ u(y)= I^{\sigma}_{\psi}\phi(y)+ \sum _{i=0}^{m}\lambda_{i} I^{\varrho}_{\psi }h\bigl(\eta_{i}, u( \eta_{i})\bigr). $$


Performing the ψ-Riemann–Liouville fractional integration \(I^{\sigma}_{\psi}\) to both sides of (2.4) and making use of Lemma 2.4, we derive

$$ u(y)= \lambda_{1}+\lambda_{2}\bigl( \psi(y)-\psi(1)\bigr)+ I^{\sigma}_{\psi}\phi(y), $$

where \(\lambda_{1}\), \(\lambda_{2}\) are real constants. Applying the \(\delta _{\psi}\)-differentiation in (2.7) the following equation is formulated:

$$ (\delta_{\psi}u) (y)=\lambda_{2} + I^{\sigma-1}_{\psi}\phi(y). $$

Using the boundary conditions \((\delta_{\psi}u)(T)=(\delta_{\psi }u)(1)=0\) in (2.8), we get \(\lambda_{2}=0\), then using the condition \(u(1)= \sum_{i=0}^{m}\lambda_{i} I^{\varrho}_{\psi}h(\eta_{i}, u(\eta_{i}))\) in (2.7), after inserting \(\lambda_{2}=0\), gives us

$$ \lambda_{1}= \sum_{i=0}^{m} \lambda_{i} I^{\varrho}_{\psi}h\bigl( \eta_{i}, u(\eta_{i})\bigr). $$

Thus by substituting values of \(\lambda_{1}\) and \(\lambda_{2}\) in (2.7), we get the solution (2.6). □

Main results

We introduce in this section the function class Ψ of all mappings \(\varphi: \mathbb{R}^{+} \to\mathbb{R}^{+}\), \(\varphi^{-1}(0)= \{ 0\}\), and \(\varphi(z)< z\) for all \(z>0\), \(\varphi(z_{n})\to0\) when \(z_{n} \to0\)

Definition 3.1


Let \(\mathcal{W}\) be a complete space endowed with a metric ρ. A multivalued operator \(S: \mathcal{W}\to\mathcal{P}_{\mathrm{cl}, \mathrm{bd}}(\mathcal {W})\) is said to be a φ-weak contraction if there exists a function \(\varphi\in\varPsi\), such that

$$H_{\rho}(S z, S w)\leq\rho(z,w)-\varphi\bigl(\rho(z,w)\bigr) $$

for each \(z, w \in\mathcal{W}\), where \(\mathcal{P}_{\mathrm{cl}, \mathrm{bd}}(\mathcal {W})\) is a nonempty collection of all closed and bounded subsets of \(\mathcal{W}\), and \(H_{\rho}(\cdot,\cdot)\) denotes for the Hausdorff metric on \(\mathcal{P}_{\mathrm{cl}, \mathrm{bd}}\) given as

$$H_{\rho}(Q,D):= \max \Bigl\{ \sup_{q\in Q} \rho(q,D), \sup_{d\in D} \rho(d,Q)\Bigr\} , $$

where \(\rho(Q,d)= \inf_{q\in Q}\rho(q,d)\) and \(\rho(q,D)= \inf_{d\in D}\rho(q,d)\). We call an element \(z\in\mathcal{W}\) a fixed point of S, if \(z\in Sz\), and an endpoint or stationary point if \(Sz=\{z\}\). The set of all fixed points of S is denoted by \(\operatorname{Fix}(S)\), and \(\operatorname{End}(S)\) stands for the set of all endpoints of S. We say that S fulfills the approximate endpoint property if \(\inf_{z\in\mathcal{W}} \sup_{w\in S z} \rho(z,w)=0\).

Lemma 3.2


Let\(\mathcal{W}\)be a complete space endowed with a metricρ, and\(S: \mathcal{W}\to\mathcal{P}_{\mathrm{cl}, \mathrm{bd}}\)be a multivaluedφ-weak contractive. IfSverifies the approximate endpoint property, thenShas an endpoint. Moreover, we have\(\operatorname{End}(S)=\operatorname{Fix}(S)\).

Definition 3.3

A function \(u\in \operatorname{AC}^{2}_{\psi} ([1,T], \mathbb{R})\) is called a solution of the inclusion problem (1.1) if there exists a function \(l \in L^{1}([1,T], \mathbb{R})\) with \(l(y) \in Z(y,u(y))\), a.e. \(y\in [1,T]\), such that u satisfies conditions (1.2) and

$$ u(y)= I^{\sigma}_{\psi}l(y)+ \sum _{i=0}^{m}\lambda_{i} I^{\varrho}_{\psi}h\bigl(\eta _{i}, u( \eta_{i})\bigr), \quad y\in[1,T], $$

where \(\psi\in C^{2}(J, \mathbb{R})\) such that \(\psi'>0\) on \([1,T]\).

We set an operator \(\mathcal{L} :\mathcal{W} \to\mathcal{P}(\mathcal {W}) \) associated with the problem (1.1)–(1.2) as

$$ \mathcal{L}(u):\Biggl\{ f\in\mathcal{W}: f(y)= I^{\sigma}_{\psi}l(y)+ \sum_{i=0}^{m} \lambda_{i} I^{\varrho}_{\psi}h\bigl( \eta_{i}, u(\eta_{i})\bigr), l \in S_{Z,u} \Biggr\} , $$

where \(S_{Z,u}\) is the set of selections for Z by

$$S_{Z,u} =\bigl\{ l\in L^{1}\bigl([1,T], \mathbb{R}\bigr), l(y)\in Z\bigl(y,u(y)\bigr), \text{a.e. } y\in [1,T]\bigr\} . $$

Theorem 3.4

Let\(\varphi\in\varPsi\). Assume that the following hypotheses hold:

  1. (H 1)

    \(Z :[1,T]\times\mathbb{R}\to\mathcal{P}_{\mathrm{cp}}(\mathbb {R})\)is a Carathéodory bounded multivalued map, where\(\mathcal {P}_{\mathrm{cp}}(\mathbb{R})\)is the collection of all nonempty compact subsets of\(\mathbb{R}\).

  2. (H 2)

    For\(u, \bar{u}\in\mathbb{R}\), we have

    $$H_{d}\bigl(Z(y,u), Z(y,\bar{u})\bigr)\leq\frac{\varGamma(\sigma+1)}{(\psi (T))^{\sigma}} \bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert - \varphi\bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert \bigr)\bigr). $$
  3. (H 3)

    There exists\(0<\theta< 1\), such that

    $$\bigl\vert h(y,u)-h(y,\bar{u}) \bigr\vert \leq\theta \vert u-\bar{u} \vert . $$

IfZverifies the approximate endpoint property, then the inclusion problem (1.1)(1.2) has a solution on\([1,T]\), provided that

$$ -1< \Biggl(\theta\sum_{i=0}^{m} \lambda_{i} \frac{(\psi(\eta_{i}))^{\varrho}}{\varGamma(\varrho+1)} \Biggr)\leq0. $$


The proof will be given in two steps, where we show that \(\mathcal {L}:\mathcal{W} \to\mathcal{P}(\mathcal{W})\) given in (3.2) has an endpoint.

Step 1:\(\mathcal{L}\) is closed multivalued of \(\mathcal {P}(\mathcal{W})\).

Let \(u_{n} \in\mathcal{W}\) such that \(u_{n}\to u\), and \((f_{n})_{n \geq1} \in\mathcal{L}(u)\) be a sequence such that \(f_{n} \to f^{*} \) whenever \(n\to+\infty\). Then there exists a \(l_{n} \in S_{Z,u_{n}} \) such that, for each \(y\in[1,T]\), we get

$$f_{n}(y)= I^{\sigma}_{\psi}l_{n}(y)+ \sum_{i=0}^{m}\lambda_{i} I^{\varrho}_{\psi }h\bigl(\eta_{i}, u_{n}(\eta_{i})\bigr). $$

Since Z has compact values, the sequence \((l_{n})_{n \geq1}\) has a sub-sequence, still denoted by \((l_{n})_{n \geq1}\), which converges strongly to some \(l \in L^{1}([1,T], \mathbb{R})\), and hence \(l\in S_{Z,u}\). For every \(\nu\in Z(y,u(y))\), we have

$$\bigl\vert l_{n}(y)-l(y) \bigr\vert \leq \bigl\vert l_{n}(y)-\nu \bigr\vert + \bigl\vert \nu-l(y) \bigr\vert , $$

which implies

$$\bigl\vert l_{n}(y)-l(y) \bigr\vert \leq H_{d} \bigl(Z(y,u_{n}), Z(y,u)\bigr) \leq\frac{\varGamma(\sigma +1)}{(\psi(T))^{\sigma}} \bigl( \Vert u_{n}-u \Vert -\varphi\bigl( \Vert u_{n}-u \Vert \bigr)\bigr). $$

Since \(\|u_{n}-u\| \to0\) then \(\varphi(\|u_{n}-u\|) \to0\) and h is a continuous function then, for each \(y\in[1,T]\),

$$f_{n}(y) \to f^{*}(y)=I^{\sigma}_{\psi}l(y)+\sum _{i=0}^{m}\lambda_{i} I^{\varrho}_{\psi}h\bigl(\eta_{i}, u( \eta_{i})\bigr). $$

So \(f^{*} \in\mathcal{L}\) and \(\mathcal{L}\) is closed multivalued.

Step 2: \(\mathcal{L}\) is φ-weak contraction multivalued, i.e. for \(u, \bar{u}\in\mathcal{W}\), we show

$$H_{\rho}\bigl(\mathcal{L}(u),\mathcal{L}(\bar{u})\bigr)\leq \Vert u- \bar{u} \Vert - \varphi \bigl( \Vert u-\bar{u} \Vert \bigr). $$

Let \(u, \bar{u}\in C(J, \mathbb{R})\) and \(f_{1}\in\mathcal{L}(u)\). Then, there exists \(l_{1}(y)\in\mathcal{S}_{Z, u}\) such that, for each \(y\in[1,T]\),

$$f_{1}(y)=I^{\sigma}_{\psi}l_{1}(y)+ \sum_{i=0}^{m}\lambda_{i} I^{\varrho}_{\psi }h\bigl(\eta_{i}, u( \eta_{i})\bigr). $$

From (H 2) it follows that

$$H_{d}\bigl(Z(y,u), Z(y,\bar{u})\bigr)\leq \frac{\varGamma(\sigma+1)}{(\psi (T))^{\sigma}} \bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert - \varphi\bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert \bigr)\bigr). $$

Thus, there exists \(w\in Z(y,\bar{u}(y))\) provided that

$$\bigl\vert l_{1}(y)-w \bigr\vert \leq\frac{\varGamma(\sigma+1)}{(\psi(T))^{\sigma}} \bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert - \varphi\bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert \bigr)\bigr), \quad y\in J. $$

Define \(U: [1, T]\to\mathcal{P}(\mathbb{R})\) given by

$$U(y)=\biggl\{ w\in\mathbb{R}: \bigl\vert l_{1}(y)-w \bigr\vert \leq\frac{\varGamma(\sigma+1)}{(\psi (T))^{\sigma}} \bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert - \varphi\bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert \bigr)\bigr)\biggr\} . $$

Since \(U(y) \cap Z(y, \bar{u})\) is measurable, then we can find a measurable selection \(l_{2}(y)\) for \(U(y) \cap Z(y, \bar{u})\). Thus \(l_{2}(y)\in Z(y,\bar{u}(y))\), and, for each \(y\in[1,T]\), we have

$$\bigl\vert l_{1}(y)-l_{2}(y) \bigr\vert \leq \frac{\varGamma(\sigma+1)}{(\psi(T))^{\sigma }}\bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert - \varphi \bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert \bigr)\bigr). $$

We define \(f_{2}(y)\) for each \(y\in[1,T]\), as follows:

$$f_{2}(y)=I^{\sigma}_{\psi}l_{2}(y)+ \sum_{i=0}^{m}\lambda_{i} I^{\varrho}_{\psi }h\bigl(\eta_{i}, \bar{u}( \eta_{i})\bigr). $$

Then for \(y \in[1,T]\)

$$\begin{aligned} \begin{aligned} \bigl\vert f_{1}(y)-f_{2}(y) \bigr\vert &\leq \frac{1}{\varGamma(\sigma)} \int_{1}^{y} \bigl\vert \bigl(\psi(y)-\psi ( \xi)\bigr)^{\sigma-1}\psi'(\xi) \bigr\vert \bigl\vert l_{1}(\xi)-l_{2}(\xi) \bigr\vert \,d\xi\\&\quad+ \sum _{i=0}^{m} \lambda_{i} I^{\varrho}_{\psi} \bigl\vert h\bigl(\eta_{i}, u( \eta_{i})\bigr)-h\bigl(\eta_{i},\bar{u}(\eta _{i})\bigr) \bigr\vert \\ & \leq\frac{1}{\varGamma(\sigma)} \int_{1}^{y} \bigl\vert \bigl(\psi(y)-\psi(\xi) \bigr)^{\sigma -1}\psi'(\xi) \bigr\vert \, d\xi\\&\quad\times \frac{\varGamma(\sigma+1)}{(\psi(T))^{\sigma}} \bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert - \varphi \bigl( \bigl\vert u(y)-\bar{u}(y) \bigr\vert \bigr)\bigr) \\ &\quad+ \theta\sum_{i=0}^{m} \lambda_{i} \frac{(\psi(\eta_{i}))^{\varrho }}{\varGamma(\varrho+1)} \bigl\vert u( \eta_{i})-\bar{u}(\eta_{i}) \bigr\vert \\ &\leq\frac{(\psi(T))^{\sigma}}{\varGamma(\sigma+1)} \frac{\varGamma (\sigma+1)}{(\psi(T))^{\sigma}} ( \Vert u-\bar{u} \Vert - \varphi\bigl( \Vert u-\bar{u} \Vert \bigr)\\&\quad+\theta\sum _{i=0}^{m} \lambda_{i} \frac{(\psi(\eta_{i}))^{\varrho }}{\varGamma(\varrho+1)} \Vert u-\bar{u} \Vert \\ &\leq \Vert u-\bar{u} \Vert - \varphi\bigl( \Vert u-\bar{u} \Vert \bigr).\end{aligned} \end{aligned}$$


$$\Vert f_{1}-f_{2} \Vert \leq \Vert u-\bar{u} \Vert - \varphi\bigl( \Vert u-\bar{u} \Vert \bigr). $$

It follows that \(H_{\rho}(\mathcal{L}(u), \mathcal{L}(\bar{u})) \leq\| u(y)-\bar{u}(y)\|- \varphi(\|u(y)-\bar{u}(y)\|)\), for all \(u ,\bar{u} \in\mathcal{W}\). By hypothesis, since the operator Z has an approximate endpoint property, then by Lemma 3.2\(\mathcal{L}\) has an endpoint \(u^{*}\in\mathcal{W}\), i.e. \(\mathcal{L}{u^{*}}=\{u^{*}\}\), which is also a fixed point. Consequently, the problem (1.1)–(1.2) has a solution \(u^{*}\) and the proof is now complete. □

An example

Let \(\mathcal{W} = C([1, e], \mathbb{R})\) be the space of all continuous functions defined on \([1, e]\) and \(u\in\mathcal{W}\). Consider the following fractional BVP of differential inclusion:

$$ \textstyle\begin{cases} {^{c}}\mathcal{D}_{\psi}^{\sigma}u(y)\in Z(y,u(y)), \quad y\in[1,e], 1 < \sigma\leq2,\\ u(1) = \frac{1}{4}I^{\frac{1}{3}}_{\psi}h(\frac{3}{4}, u(\frac{3}{4}))- \frac{2}{3} I^{\frac{1}{3}}_{\psi}h(\frac{1}{4}, u(\frac{1}{4})), \quad \delta_{\psi}u(e)=\delta_{\psi}u(1)=0, \end{cases} $$

where \(h(y, u)= \frac{u}{e^{y}(u+1)}\), and \(\psi(y)= y^{3}\). Obviously ψ is differentiable and an increasing function on \([1,e]\) with \(\psi'(y)= 3y^{2}\), which is a continuous function on \([1,e]\). Here \(Z: [1,e]\times \mathbb{R} \to\mathcal{P}(\mathbb{R})\) is a multivalued map given by

$$ Z\bigl(y, u(y)\bigr)= \biggl[ 0, \frac{\sin(u)}{(1+y)} \biggr]. $$

Selecting \(\varphi(x)=\frac{x}{2}\). It is clear that the function \(\varphi\in\varPsi\), indeed \(\varphi(x) < x\) for all \(x \in[1,e]\), \(\varphi^{-1}(\{0\})=0\), \(\varphi(x_{n})\to0\) when \(x_{n}\to0\)

$$\begin{aligned} \begin{aligned} H_{\rho}\bigl(Z(y, \vartheta), Z(y, \bar{\vartheta})\bigr)&\leq \biggl\vert \frac{\sin (\vartheta)-\sin(\bar{\vartheta})}{(1+y)} \biggr\vert \\ & \leq\frac{1}{2} \bigl\vert \vartheta(y)-\bar{\vartheta}(y) \bigr\vert \\ &< \frac{\varGamma(\sigma+1)}{e^{3}} \bigl( \Vert \vartheta-\bar{\vartheta} \Vert - \varphi\bigl( \Vert \vartheta-\bar{\vartheta} \Vert \bigr)\bigr).\end{aligned} \end{aligned}$$

Hence the condition (H 2) holds for \(\vartheta, \bar{\vartheta} \in \mathbb{R}\) a.e \(\sigma\in(1,2]\). On the other hand, we have

$$\begin{aligned} \bigl\vert h(y,\vartheta)-h(y,\bar{\vartheta}) \bigr\vert &\leq \frac{1}{e^{y}} \biggl\vert \frac {\vartheta}{\vartheta+1}-\frac{\bar{\vartheta}}{\bar{\vartheta}+1} \biggr\vert \\ &=\frac{1}{e^{y}} \frac{ \vert \vartheta-\bar{\vartheta} \vert }{(\vartheta+1)(1+\bar {\vartheta})} \\ & \leq\frac{1}{e} \vert \vartheta-\bar{\vartheta} \vert \\ & \leq\theta \vert \vartheta-\bar{\vartheta} \vert . \end{aligned}$$

Therefore condition (H 3) holds. With the given data, it is found that

$$\Biggl(1+\theta\sum_{i=0}^{m} \lambda_{i} \frac{(\psi(\eta_{i}))^{\varrho}}{\varGamma(\varrho+1)} \Biggr)= 1 + e \biggl( \frac{\sqrt [3]{3}}{16\varGamma(\frac{4}{3})} -\frac{1}{6\varGamma(\frac {4}{3})} \biggr), $$


$$-1 < e \biggl( \frac{\sqrt[3]{3}}{16\varGamma(\frac{4}{3})} -\frac {1}{6\varGamma(\frac{4}{3})} \biggr) \approx-0.2329498 < 0. $$

We define an operator \(\mathcal{L} : \mathcal{W}\to\mathcal{P}(\mathcal{W})\)

$$\mathcal{L}(u)= \bigl\{ g\in\mathcal{W}: \text{there exists } l \in S_{Z,u}, g(y)= u(y), \text{for all } y\in[1,e] \bigr\} , $$


$$u(y)= I^{\sigma}_{\psi}l(y)+ \sum _{i=0}^{m}\lambda_{i} I^{\varrho}_{\psi}h\bigl(\eta _{i}, u( \eta_{i})\bigr) . $$

Note that 0 is a unique endpoint of \(\mathcal{L}\), i.e. \(\mathcal {L}(0) = \{0\}\), which implies that \(\sup_{u\in\mathcal{L}(0)} \|u\| =0\), thus \(\inf_{u\in\mathcal{W}} \sup_{g\in\mathcal{L}(u)}\|\vartheta -g\|=0\). The operator \(\mathcal{L}\) as a consequence has the approximate endpoint property. Therefore all conditions of Theorem 3.4 are satisfied, then the inclusion problem (4.1) has at least one solution on \([1,e]\).


In the present work, the endpoint theorem for φ-weak contractive maps was used to establish the existence results of solutions for fractional differential inclusion which involves the ψ-Caputo fractional derivative. Systems of fractional differential inclusions with the ψ-Caputo derivative provide more adaptable models, in the sense that by a proper choice of the function ψ, hidden features of real-world phenomena could be extracted. An illustrative example is presented to point out the applicability of our main results. Our results are not only new in the given configuration but also correspond to some new results associated with the specific choice of the function ψ involved in the given problem.


  1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  2. Belmor, S., Ravichandran, C., Jarad, F.: Nonlinear generalized fractional differential equations with generalized fractional integral conditions. J. Taibah Univ. Sci. 14(1), 114–123 (2020)

    Article  Google Scholar 

  3. Sohail, A., Maqbool, K., Ellahi, R.: Stability analysis for fractional-order partial differential equations by means of space spectral time Adams–Bashforth Moulton method. Numer. Methods Partial Differ. Equ. 34(1), 19–29 (2018)

    MathSciNet  Article  Google Scholar 

  4. Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

    MathSciNet  Article  Google Scholar 

  5. Ahmed, I., Kumam, P., Jarad, F., Borisut, P., Sitthithakerngkiet, K., Ibrahim, A.: Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer–Katugampola fractional derivative. Adv. Differ. Equ. 2020(1), Article ID 225 (2020)

    MathSciNet  Article  Google Scholar 

  6. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    MathSciNet  Article  Google Scholar 

  7. Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst., Ser. S 13(3), 709–722 (2020).

    Article  MATH  Google Scholar 

  8. Sousa, J., da Vanterler, C., de Oliveira, E.C.: On the Ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    MathSciNet  Article  Google Scholar 

  9. Ahmed, I., Kumam, P., Shah, K., Borisut, P., Sitthithakerngkiet, K., Demba, M.A.: Stability results for implicit fractional pantograph differential equations via ϕ-Hilfer fractional derivative with a nonlocal Riemann–Liouville fractional integral condition. Mathematics 8(1), Article ID 94 (2020).

    Article  Google Scholar 

  10. Luo, D., Shah, K., Luo, Z.: On the novel Ulam–Hyers stability for a class of nonlinear ψ-Hilfer fractional differential equation with time-varying delays. Mediterr. J. Math. 16(5), Article ID 112 (2019)

    MathSciNet  Article  Google Scholar 

  11. Harikrishnan, S., Shah, K., Baleanu, D., Kanagarajan, K.: Note on the solution of random differential equations via ψ-Hilfer fractional derivative. Adv. Differ. Equ. 2018, Article ID 224 (2018)

    MathSciNet  Article  Google Scholar 

  12. Borisut, P., Kumam, P., Ahmed, I., Jirakitpuwapat, W.: Existence and uniqueness for ψ-Hilfer fractional differential equation with nonlocal multi-point condition. Math. Methods Appl. Sci. (2020).

    Article  Google Scholar 

  13. Stankovic, S.S.: Stochastic inclusion principle applied to decentralized automatic generation control. Int. J. Control 72(3), 276–288 (1999)

    MathSciNet  Article  Google Scholar 

  14. Alqudah, M.A., Ravichandran, C., Abdeljawad, T., Valliammal, N.: New results on Caputo fractional-order neutral differential inclusions without compactness. Adv. Differ. Equ. 2019(1), Article ID 528 (2019)

    MathSciNet  Article  Google Scholar 

  15. Phung, P., Truong, L.: On a fractional differential inclusion with integral boundary conditions in Banach space. Fract. Calc. Appl. Anal. 16(3), 538–558 (2013)

    MathSciNet  Article  Google Scholar 

  16. Abbas, S., Benchohra, M., Petrusel, A.: Ulam stability for partial fractional differential inclusions via Picard operators theory. Electron. J. Qual. Theory Differ. Equ. 2014, Article ID 51 (2014)

    MathSciNet  Article  Google Scholar 

  17. Rezaigia, A., Kelaiaia, S.: Existence results for third-order differential inclusion with three-point boundary value problems. Acta Math. Univ. Comen. 2, 311–318 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Abbas, S., Benchohra, M., Hamani, S., Henderson, J.: Upper and lower solutions method for Caputo–Hadamard fractional differential inclusions. Math. Morav. 23(1), 107–118 (2019)

    MathSciNet  Article  Google Scholar 

  19. Belmor, S., Jarad, F., Abdeljawad, T., Alqudah, M.A.: On fractional differential inclusion problems involving fractional order derivative with respect to another function. Fractals 20(8), Article ID 2040002 (2020)

    Article  Google Scholar 

  20. Khan, A., Shah, K., Kumam, P., Onsod, W.: An \((\alpha,\vartheta)\)-admissibility and theorems for fixed points of self-maps. In: Econometrics for Financial Applications, pp. 369–380. Springer, Cham (2018)

    Chapter  Google Scholar 

  21. Iqbal, M., Shah, K., Khan, R.A.: On using coupled fixed-point theorems for mild solutions to coupled system of multipoint boundary value problems of nonlinear fractional hybrid pantograph differential equations. Math. Methods Appl. Sci. (2020).

    Article  Google Scholar 

  22. Jarad, F., Harikrishnan, S., Shah, K., Kanagarajan, K.: Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete Contin. Dyn. Syst., Ser. S 13(3), 723–739 (2020).

    Article  MATH  Google Scholar 

  23. Etemad, S., Rezapour, Sh., Samei, M.E.: On fractional hybrid and non-hybrid multi-term integro-differential inclusions with three-point integral hybrid boundary conditions. Adv. Differ. Equ. 2020, Article ID 161 (2020)

    MathSciNet  Article  Google Scholar 

  24. Etemad, S., Ntouyas, S.K.: Application of the fixed point theorems on the existence of solutions for q-fractional boundary value problems. AIMS Math. 4(3), 997–1018 (2019)

    Article  Google Scholar 

  25. Ntouyas, S.K., Etemad, S.: On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 266, 235–243 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham (2017)

    Book  Google Scholar 

  27. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109(3), 973–1033 (2010)

    MathSciNet  Article  Google Scholar 

  28. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Yverdon (1993)

    MATH  Google Scholar 

  29. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivative. Adv. Differ. Equ. 2012, Article ID 142 (2012)

    MathSciNet  Article  Google Scholar 

  30. Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10(5), 2607–2619 (2017)

    MathSciNet  Article  Google Scholar 

  31. Moradi, S., Khojasteh, F.: Endpoints of φ-weak and generalized φ-weak contractive mappings. Filomat 26, 725–732 (2012)

    MathSciNet  Article  Google Scholar 

Download references


The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17. 13

Availability of data and materials

Not applicable.


Not applicable.

Author information

Authors and Affiliations



All the authors have made equal contributions in this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Competing interests

There is no conflict of interest among the authors of the paper regarding the publication.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belmor, S., Jarad, F., Abdeljawad, T. et al. A study of boundary value problem for generalized fractional differential inclusion via endpoint theory for weak contractions. Adv Differ Equ 2020, 348 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • 26A33
  • 34A60
  • 30E25


  • Riemann–Liouville fractional derivative with respect to another function
  • Caputo fractional derivative with respect to another function
  • Fractional differential inclusion
  • φ-Weak contractive