Skip to main content

On Hilfer generalized proportional fractional derivative

Abstract

Motivated by the Hilfer and the Hilfer–Katugampola fractional derivative, we introduce in this paper a new Hilfer generalized proportional fractional derivative, which unifies the Riemann–Liouville and Caputo generalized proportional fractional derivative. Some important properties of the proposed derivative are presented. Based on the proposed derivative, we consider a nonlinear fractional differential equation with nonlocal initial condition and show that this equation is equivalent to the Volterra integral equation. In addition, the existence and uniqueness of solutions are proven using fixed point theorems. Furthermore, we offer two examples to clarify the results.

Introduction

Fractional calculus has been concerned with integrals and derivatives of arbitrary non-integer order of functions. In recent years, several researchers in the field of fractional calculus have brought attention to the search for the best fractional derivative, which will be used to model real world problems. Fractional calculus is as old as the classical calculus whose equations are often considered unable to model certain complex systems and it turned out that the methods used in the fractional calculus are splendid when modeling long-memory processes and many phenomena that occur in physics, chemistry, electricity, mechanics and many other disciplines [10, 13, 17, 21, 31, 32, 34, 35, 3840].

However, scientists felt the need for other types of fractional operators restricted to Riemann–Liouville fractional operators and Caputo fractional derivatives until the turn of this century. Many scientists proposed a variety of new fractional operators which contributed to the growth of the field of fractional calculus [9, 14, 15, 24, 25, 2729, 37]. It is worth noting that the fractional operators proposed in this work are unique instances of fractional integrals/derivatives in relation to another function described in [4, 5, 22, 41]. But all of these operators possess one of the most important peculiarities of fractional operators: nonlocality.

In [30], the authors introduced a local derivative with a non-integer order and called it a conformable derivative. The process of conceptualization of these local derivatives will lead to the rediscovery of the nonlocal fractional operators described in [28, 29]. We explain the key principles of the conformable derivative and suggest a derivative consistent with the left and right versions. Once again, the nonlocal fractional version as proposed in [1, 12] is found in [27].

In all types of fractional calculus or calculus with derivative, the order zero for a function should be equal to the function. The conformable derivative lacks this essential property of every derivative and in fact it is a deficit. In order to circumvent this deficit, the authors in [6, 7] redefined the conformal derivative to yield the function itself when this local derivative is of the order of zero. Following this was work by Jarad et al. [23] where the authors suggested the fractional version of the redefined conformable derivative. The existence and uniqueness of solutions belong to the most important qualitative properties of fractional differential equations. The existence and uniqueness of solutions to fractional differential equations that include different types of fractional derivatives and initial/boundary conditions were tackled by several mathematicians (see [2, 3, 8, 11, 16, 19, 20, 26, 4245] and the references cited therein).

Motivated by [18, 36], we propose a new fractional derivative (simply known as Hilfer generalized proportional fractional derivative). Therefore, in the context of the defined derivative, we discuss the existence and uniqueness of solutions for a certain type of nonlinear fractional differential equations with nonlocal initial condition. The Hilfer generalized proportional fractional differential equation is of the following form:

$$ \textstyle\begin{cases} \mathcal{D}^{p,q,\rho }_{a^{+}}x(t)=f(t, x(t)),\quad t\in J=[a, T], T>a\ge 0,&\\ \mathcal{I}^{1-\gamma , \rho }_{a^{+}}x(a) =\sum_{i=1}^{m}c_{i}x( \tau _{i}), \quad p\leq \gamma =p+q-pq, \tau _{i}\in (a, T), \end{cases} $$
(1.1)

where \(\mathcal{D}^{p,q,\rho }_{a^{+}}(\cdot )\) is the Hilfer generalized proportional fractional derivative of order \((0< p<1)\), \(\mathcal{I}^{1-\gamma , \rho }_{a^{+}}(\cdot )\) is the generalized proportional fractional integral of order \(1-\gamma >0\), \(c_{i}\in \mathbb{R}\), \(f: J\times \mathbb{R}\rightarrow \mathbb{R}\) is a continuous function and \(\tau _{i}\in J\) satisfying \(a<\tau _{1}<\cdots <\tau _{m}<T\) for \(i=1,\ldots, m\). To the best of our knowledge no one has discussed the existence and uniqueness of solutions of (1.1).

The rest of the paper is structured as follows. In Sect. 2, we shall review some basic definitions and theoretical results that we need to proceed. We describe our proposed derivatives in Sect. 3, the Hilfer generalized proportional derivatives along with some of the preliminary properties. In addition, we also investigate the comparability between an initial value problem and an integral equation of Volterra, from which we prove the existence and uniqueness of the solution using fixed point theorems of Banach and Kransnoselskii’s. Moreover, two examples were given to clarify the results. The conclusion of the paper is given in Sect. 4.

Preliminaries and theoretical results

We offer some preliminary details, results and definitions of fractional calculus in this section, which are important throughout this paper.

Let \(-\infty < a< b<\infty \) be finite and infinite intervals on \(\mathbb{R}_{+}\). Denote by \(\mathcal{C}[a, b]\), the spaces of the continuous function f on \([a, b]\) with norm defined by [32]

$$ \Vert f \Vert _{\mathcal{C}[a, b]}= \max_{t\in [a, b]} \bigl\vert f(t) \bigr\vert , $$

and \(\mathcal{AC}^{n}[a, b]\), the space of n times absolutely continuous differentiable functions, given by

$$ {\mathcal{AC}}^{n}[a, b]=\bigl\{ f: (a, b]\rightarrow \mathbb{R}; f^{n-1} \in \mathcal{AC}\bigl([a, b]\bigr)\bigr\} . $$

The weighted space \(\mathcal{C}_{\gamma }[a, b]\) of a functions f on \((a, b]\) is defined by

$$ {\mathcal{C}}_{\gamma }[a, b]=\bigl\{ f: (a, b]\rightarrow \mathbb{R}; (t-a)^{ \gamma }f(t)\in \mathcal{C}\bigl([a, b]\bigr)\bigr\} , \quad 0\leq \gamma < 1, $$

with the norm

$$ \Vert f \Vert _{\mathcal{C}_{\gamma }[a, b]}= \bigl\Vert (t-a)^{\gamma }f(t) \bigr\Vert _{ \mathcal{C}[a, b]}= \max_{t\in [a, b]} \bigl\vert (t-a)^{\gamma }f(t) \bigr\vert . $$

The weighted space \(\mathcal{C}_{\gamma }^{n}[a, b]\) of the functions f on \((a, b]\) is defined by

$$ {\mathcal{C}}_{\gamma }^{n}[a, b]=\bigl\{ f: (a, b]\rightarrow \mathbb{R}; f(t) \in \mathcal{C}^{n-1}\bigl([a, b]\bigr); f^{n}(t)\in \mathcal{C}_{\gamma }\bigl([a, b]\bigr) \bigr\} ,\quad 0 \leq \gamma < 1, $$

with the norm

$$ \Vert f \Vert _{\mathcal{C}^{n}_{\gamma }[a, b]}= \sum_{k=0}^{n-1} \bigl\Vert f^{k} \bigr\Vert _{\mathcal{C}[a, b]}+ \bigl\Vert f^{n} \bigr\Vert _{\mathcal{C}_{\gamma }[a, b]}. $$

Clearly, \(\mathcal{C}^{0}_{\gamma }[a, b]=\mathcal{C}_{\gamma }[a, b]\), if \(n=0\).

Definition 2.1

([32])

Suppose \(f\in L^{1}([a, b], \mathbb{R})\). Then the fractional operator

$$ I^{p}_{a^{+}}f(t)=\frac{1}{\varGamma (p)} \int _{a}^{t}(t-\mu )^{p-1}f( \mu )\,d\mu , \quad p>0, t>a, n\in \mathbb{N}, $$

is referred to as the Riemann–Liouville integral of order p with the lower limit \(a^{+}\) of the function f, where \(\varGamma (\cdot )\) denotes the classical gamma function.

Definition 2.2

([32])

Let \(f\in \mathcal{C}([a, b])\). Then the fractional operator

$$ {}^{L}D^{p}_{a+}f(t)=\frac{1}{\varGamma (n-p)} \frac{d^{n}}{dt^{n}} \int _{a}^{t}(t- \mu )^{n-p-1}f(\mu )\,d\mu , \quad p>0, t>a, n-1< p< n, n\in \mathbb{N}, $$

is called the Riemann–Liouville fractional derivative of order p with the lower limit \(a^{+}\) of the function f, where \(\varGamma (\cdot )\) denotes the gamma function.

Definition 2.3

([32])

Let \(f\in \mathcal{C}^{n}([a, b])\). Then the fractional operator

$$ {}^{C}D^{p}_{a+}f(t)=\frac{1}{\varGamma (n-p)} \int _{a}^{t}(t-\mu )^{n-p-1}f^{n}( \mu )\,d\mu , \quad p>0, n-1< p< n, n\in \mathbb{N}, $$

is referred to the Caputo fractional derivative of order p with the lower limit \(a^{+}\) of the function f.

Definition 2.4

([23])

If \(\rho \in (0, 1]\) and \(p\in \mathbb{C}\), \(\operatorname{Re}(p)>0\). Then the fractional operator

$$ I_{a^{+}}^{p, \rho }f(t)=\frac{1}{\rho ^{p}\varGamma (p)} \int _{a}^{t}e^{{ \frac{\rho -1}{\rho }}(t-\mu )}(t-\mu )^{p-1}f(\mu )\,d\mu , \quad t>a, $$
(2.1)

is called the left-sided generalized proportional integral of order p of the function f.

Definition 2.5

([23])

The left generalized proportional fractional derivative of order p and \(\rho \in (0, 1]\) of a function f is defined by

$$ D_{a^{+}}^{p, \rho }f(t)=\frac{D^{n, \rho }}{\rho ^{n-p}\varGamma (n-p)} \int _{a}^{t}e^{{\frac{\rho -1}{\rho }}(t-\mu )}(t-\mu )^{n-p-1}f(\mu )\,d \mu , \quad p\in \mathbb{C}, \operatorname{Re}(p)>0, $$
(2.2)

where \(\varGamma (\cdot )\) is the Gamma function and \(n=[p]+1\).

Definition 2.6

([23])

Let \(\rho \in (0, 1]\). Then the fractional operator

$$ \begin{aligned}[b] {}^{C}D_{a^{+}}^{p, \rho }f(t)&= \frac{1}{\rho ^{n-p}\varGamma (n-p)}\\ &\quad {}\times \int _{a}^{t}e^{{ \frac{\rho -1}{\rho }}(t-\mu )}(t-\mu )^{n-p-1}\bigl(D^{n, \rho }f\bigr) (\mu )\,d \mu , \quad p\in \mathbb{C}, \operatorname{Re}(p)>0, \end{aligned} $$
(2.3)

is referred to as the left-sided generalized proportional fractional derivative in the sense of Caputo of order p of the function f, where \(\varGamma (\cdot )\) is the gamma function and \(n=[p]+1\).

Remark 2.7

Note that if \(\rho =1\) Definitions 2.4, 2.5 and 2.6 coincide with the classical definitions of the Riemann–Liouville fractional integral, the Riemann–Liouville fractional derivative and the Caputo fractional derivative (see Definitions 2.1, 2.2 and 2.3).

The following are certain important properties of the generalized proportional fractional integral and derivative.

Proposition 2.8

([23])

Let\(p, \delta \in \mathbb{C}\)such that\(\operatorname{Re}(p)\ge 0\)and\(\operatorname{Re}(\delta )>0\). Then for any\(\rho \in (0,1]\)we have

$$ \begin{gathered} \bigl( I_{a^{+}}^{p, \rho }e^{{\frac{\rho -1}{\rho }}s}(s-a)^{ \delta -1} \bigr) (t)= \frac{\varGamma (\delta )}{\rho ^{p}\varGamma (\delta +p)}e^{{ \frac{\rho -1}{\rho }}t}(t-a)^{\delta +p-1}, \\ \bigl( D_{a^{+}}^{p, \rho }e^{{\frac{\rho -1}{\rho }}s}(s-a)^{\delta -1} \bigr) (t)=\frac{\rho ^{p}\varGamma (\delta )}{\varGamma (\delta -p)}e^{{ \frac{\rho -1}{\rho }}t}(t-a)^{\delta -p-1}, \\ \bigl( I_{b}^{p, \rho }e^{{\frac{\rho -1}{\rho }}(b-s)}(b-s)^{\delta -1} \bigr) (t)=\frac{\varGamma (\delta )}{\rho ^{p}\varGamma (\delta +p)}e^{{ \frac{\rho -1}{\rho }}(b-t)}(b-t)^{\delta +p-1}, \\ \bigl( D_{b}^{p, \rho }e^{{\frac{\rho -1}{\rho }}(b-s)}(b-s)^{q-1} \bigr) (t)=\frac{\rho ^{p}\varGamma (\delta )}{\varGamma (\delta -p)}e^{{ \frac{\rho -1}{\rho }}(b-t)}(b-t)^{\delta -p-1}. \end{gathered} $$
(2.4)

Theorem 2.9

([23])

Let\(\rho \in (0, 1]\), \(\operatorname{Re}(p)>0\)and\(\operatorname{Re}(q)>0\). If\(f\in \mathcal{C}([a, b], \mathbf{R})\), then

$$ I^{p, \rho }_{a^{+}}\bigl(I_{a^{+}}^{q, \rho }f\bigr) (t)=I_{a^{+}}^{q, \rho }\bigl(I_{a^{+}}^{p, \rho }f\bigr) (t)=\bigl(I_{a^{+}}^{p+q, \rho }f\bigr) (t),\quad t\ge a. $$
(2.5)

Theorem 2.10

([23])

Suppose\(\rho \in (0, 1]\)and\(0\leq m<[\operatorname{Re}(p)]+1\). If\(f\in L^{1}([a, b])\). Then

$$ D_{a^{+}}^{m, \rho }\bigl(I_{a^{+}}^{p, \rho }f\bigr) (t) =\bigl(I_{a^{+}}^{p-m, \rho }f\bigr) (t), \quad t>a. $$
(2.6)

Corollary 2.11

([23])

If\(0<\operatorname{Re}(q)<\operatorname{Re}(p)\)and\(m-1<\operatorname{Re}(q)\leq m\). Then we get

$$ D_{a^{+}}^{q, \rho }I_{a^{+}}^{p, \rho }f(t) =I_{a^{+}}^{p-q, \rho }f(t). $$

Theorem 2.12

([23])

Let\(f\in L^{1}([a, b])\), \(\operatorname{Re}(p)>0\)and\(\rho \in (0, 1]\). Then

$$ D_{a^{+}}^{p, \rho }I_{a^{+}}^{p, \rho }f(t)=f(t),\quad t\ge a, n=\bigl[\operatorname{Re}(p)\bigr]+1. $$

Lemma 2.13

([23])

If\(p>0\), \(\rho \in (0, 1]\)and\(m\in \mathbb{Z}_{+}\). Then

$$ \bigl(I_{a^{+}}^{p, \rho }D_{a^{+}}^{m, \rho }f\bigr) (t)=\bigl(D_{a^{+}}^{m, \rho }I_{a^{+}}^{p, \rho }f\bigr) (t)- \sum_{k=0}^{m-1} \frac{e^{{\frac{\rho -1}{\rho }}(t-a)}(t-a)^{p-m+k}}{\rho ^{p-m+k}\varGamma (p+k-m+1)} \bigl(D_{a^{+}}^{k, \rho }f\bigr) (a). $$
(2.7)

In particular, if\(m=1\), we obtain

$$ \bigl(I_{a^{+}}^{p, \rho }D_{a^{+}}^{\rho }f\bigr) (t)=\bigl(D_{a^{+}}^{\rho }I_{a^{+}}^{p, \rho }f\bigr) (t)- \frac{e^{{\frac{\rho -1}{\rho }}(t-a)}(t-a)^{p-1}}{\rho ^{p-1}\varGamma (p)}f(a). $$
(2.8)

Theorem 2.14

([23])

Let\(\operatorname{Re}(p)>0\), \(n=-[-\operatorname{Re}(p)]\), \(f\in L_{1}(a, b)\)and\((I_{a^{+}}^{p, \rho }f)(t)\in AC^{n}[a, b]\). Then

$$ \bigl(I_{a^{+}}^{p, \rho }D_{a^{+}}^{p, \rho }f\bigr) (t)=f(t)-e^{{ \frac{\rho -1}{\rho }}(t-a)} \sum_{j=1}^{n} \frac{(t-a)^{p-j}}{\rho ^{p-j}\varGamma (p-j+1)}\bigl(I_{a}^{j-p, \rho }f\bigr) \bigl(a^{+}\bigr). $$
(2.9)

Main results

We introduce the Hilfer generalized proportional fractional derivative in this section and discuss some of its properties. Additionally, we demonstrate the equivalence between the proposed problem (1.1) and the integral equation of Volterra type. In addition, we prove the existence and uniqueness of solutions of problem (1.1) by employing the fixed point theorems.

Definition 3.1

Let \(n-1< p< n\), \(\rho \in (0, 1]\) and \(0\le q\le 1\), with \(n\in \mathbb{N}\). The left-sided/right-sided Hilfer generalized proportional fractional derivative of order p and type q of a function f is defined by

$$ \bigl( \mathcal{D}_{a^{\pm }}^{p,q,\rho }f \bigr) (x)= \mathcal{I}_{a^{\pm }}^{q(n-p),\rho } \bigl[D^{\rho } \bigl( \mathcal{I}_{a^{\pm }}^{(1-q)(n-p), \rho }f \bigr) \bigr](x), $$
(3.1)

where \(D^{\rho }f(x)=(1-\rho )f(x)+\rho f^{\prime }(x)\) and \(\mathcal{I}\) is the generalized proportional fractional integral defined in Eq. (2.1).

In particular, if \(n=1\), Definition 3.1 is equivalent with

$$ \bigl( \mathcal{D}_{a^{\pm }}^{p,q,\rho }f \bigr) (x)= \mathcal{I}_{a^{\pm }}^{q(1-p),\rho } \bigl[D^{\rho } \bigl( \mathcal{I}_{a^{\pm }}^{(1-q)(1-p), \rho }f \bigr) \bigr](x). $$
(3.2)

Thus, throughout this paper, we discuss the case where \(n=1\), \(0< p<1\), \(0\le q\le 1\) and \(\gamma =p+q-pq\).

Remark 3.2

It is worthwhile to specify that:

  • The derivative is used as an interpolator between the Riemann–Liouville and Caputo generalized proportional fractional derivative, respectively, since

    $$ \mathcal{D}^{p,q,\rho }_{a^{\pm }}f= \textstyle\begin{cases} {D^{\rho }}\mathcal{I}_{a^{\pm }}^{(1-p),\rho }f,\quad q=0 \text{ ({see Definition 2.5})}, \\ \mathcal{I}_{a^{\pm }}^{(1-p),\rho }D^{\rho }f, \quad q=1\text{ ({see Definition 2.6})}. \end{cases} $$
    (3.3)
  • The parameter γ satisfies

    $$ 0< \gamma \le 1,\qquad \gamma \ge p,\qquad \gamma >q, \qquad 1-\gamma < 1-q(1-p). $$

Property 3.3

The operator \(\mathcal{D}_{a^{+}}^{p,q,\rho }\) can be simplified as

$$ \mathcal{D}_{a^{+}}^{p,q,\rho }f=\mathcal{I}_{a^{+}}^{q(1-p),\rho } D^{\rho}\mathcal{I}_{a^{+}}^{(1-\gamma ),\rho }f= \mathcal{I}_{a^{+}}^{q(1-p), \rho }\mathcal{D}^{\gamma ,\rho }_{a^{+}}f, \quad \gamma =p+q-pq. $$

Proof

In view of Equation (3.2) and Definition 2.5,

$$ \begin{aligned}[b] \bigl( \mathcal{D}_{a^{+}}^{p,q,\rho }f \bigr) (x) &= \mathcal{I}_{a^{+}}^{q(1-p),\rho } \bigl[ \mathcal{D}^{\rho } \bigl( \mathcal{I}_{a^{+}}^{(1-q)(1-p),\rho }f \bigr) \bigr](x) \\ &=\mathcal{I}_{a^{+}}^{q(1-p),\rho } \biggl\lbrace \frac{D^{\rho}}{\rho ^{(1-\gamma )}\varGamma ((1-\gamma ))} \int _{a}^{t}e^{\frac{\rho -1}{\rho }(t-\tau )}(t-\tau )^{(1-\gamma )-1}f( \tau )\,d\tau \biggr\rbrace \\ &= \bigl( \mathcal{I}_{a^{+}}^{q(1-p),\rho }\mathcal{D}^{\gamma ,\rho }f \bigr) (x). \end{aligned} $$

 □

We consider the following weighted spaces of continuous function on \((a, b]\):

$$ \mathcal{C}_{1-\gamma }^{p,q}[a, b]=\bigl\{ f\in \mathcal{C}_{1-\gamma }[a, b], \mathcal{D}_{a^{+}}^{p,q,\rho }f\in \mathcal{C}_{1-\gamma }[a, b]\bigr\} $$

and

$$ \mathcal{C}_{1-\gamma }^{\gamma }[a, b]=\bigl\{ f\in \mathcal{C}_{1-\gamma }[a, b], \mathcal{D}_{a^{+}}^{\gamma ,\rho }f\in \mathcal{C}_{1-\gamma }[a, b] \bigr\} . $$

Since \(\mathcal{D}_{a^{+}}^{p,q,\rho }=\mathcal{I}_{a^{+}}^{q(1-p),\rho } \mathcal{D}^{\gamma ,\rho }_{a^{+}}\),

$$ \mathcal{C}_{1-\gamma }^{\gamma }[a, b]\subset \mathcal{C}_{1-\gamma }^{p,q}[a, b]. $$

Lemma 3.4

Suppose\(0< p<1\), \(\rho \in (0, 1]\)and\(0\le \gamma <1\). If\(f\in \mathcal{C}_{\gamma }[a, b]\)then

$$ \mathcal{I}_{a^{+}}^{p,\rho }f(a)=\lim_{x\rightarrow a^{+}} \mathcal{I}_{a^{+}}^{p,\rho }f(x)=0,\quad 0\le \gamma < p. $$

Proof

Considering \(f\in \mathcal{C}[a, b]\), it implies that \(f\in \mathcal{C}_{\gamma }[a, b]\) and \((x-a)^{\gamma }\in \mathcal{C}[a, b]\). Therefore, there exists \(M>0\) for which

$$ (x-a)^{\gamma }f(x)< M, \quad \text{for all } x\in [a, b], $$

and

$$ \bigl\vert \mathcal{I}_{a^{+}}^{p,\rho }e^{\frac{\rho -1}{\rho }x}f(x) \bigr\vert < M \bigl[ \mathcal{I}_{a^{+}}^{p,\rho }e^{\frac{\rho -1}{\rho }t}(t-a)^{-\gamma } \bigr](x). $$

It follows from Proposition 2.8, that

$$ \bigl\vert \mathcal{I}_{a^{+}}^{p,\rho }e^{\frac{\rho -1}{\rho }x}f(x) \bigr\vert < M \biggl[ \frac{\varGamma (1-\gamma )}{\varGamma (p+1-\gamma )}e^{ \frac{\rho -1}{\rho }x}(x-a)^{p-\gamma } \biggr], $$

which implies that the right-hand side →0 as \(x\rightarrow a^{+}\). □

Lemma 3.5

Let\(0< p<1\), \(\rho \in (0, 1]\), \(0\le q\le 1\)and\(\gamma =p+q-pq\). If\(f\in \mathcal{C}_{1-\gamma }^{\gamma }[a, b]\)then

$$ \mathcal{I}_{a^{+}}^{\gamma ,\rho }\mathcal{D}_{a^{+}}^{\gamma ,\rho }f= \mathcal{I}_{a^{+}}^{p,\rho }\mathcal{D}_{a^{+}}^{p,q,\rho }f $$

and

$$ \mathcal{D}_{a^{+}}^{\gamma ,\rho }\mathcal{I}_{a^{+}}^{p,\rho }f= \mathcal{D}_{a^{+}}^{q(1-p),\rho }f. $$

Proof

Making use of Theorem 2.9 and Property 3.3,

$$ \begin{aligned}[b] \mathcal{I}_{a^{+}}^{\gamma ,\rho } \mathcal{D}_{a^{+}}^{ \gamma ,\rho }f&=\mathcal{I}_{a^{+}}^{\gamma ,\rho } \bigl(\mathcal{I}_{a^{+}}^{-q(1-p), \rho }\mathcal{D}_{a^{+}}^{p,q,\rho }f \bigr) \\ &=\mathcal{I}_{a^{+}}^{p+q-pq,\rho }\mathcal{I}_{a^{+}}^{-q(1-p),\rho } \mathcal{D}_{a^{+}}^{p,q,\rho }f \\ &=\mathcal{I}_{a^{+}}^{p,\rho }\mathcal{D}_{a^{+}}^{p,q,\rho }f. \end{aligned} $$

Furthermore, in view of Theorem 2.9 and Eq. (3.2), we can see that

$$ \begin{aligned}[b] \mathcal{D}_{a^{+}}^{\gamma ,\rho } \mathcal{I}_{a^{+}}^{p, \rho }f&=\mathcal{D}_{a^{+}}^{\rho } \mathcal{I}_{a^{+}}^{1-\gamma ,\rho } \mathcal{I}_{a^{+}}^{p,\rho }f \\ &=\mathcal{D}_{a^{+}}^{\rho }\mathcal{I}_{a^{+}}^{1-q+pq,\rho }f \\ &=\mathcal{D}_{a^{+}}^{q(1-p),\rho }f. \end{aligned} $$

 □

Lemma 3.6

Suppose\(f\in L^{1}(a, b)\)such that\(\mathcal{D}_{a^{+}}^{q(1-p),\rho }f\)exists in\(L^{1}(a, b)\). Then

$$ \mathcal{D}_{a^{+}}^{p,q,\rho }\mathcal{I}_{a^{+}}^{p,\rho }f= \mathcal{I}_{a^{+}}^{q(1-p),\rho }\mathcal{D}_{a^{+}}^{q(1-p),\rho }f. $$

Proof

It follows from Definition 2.5 and Eq. (3.2) that

$$ \begin{aligned}[b] \mathcal{D}_{a^{+}}^{p,q,\rho } \mathcal{I}_{a^{+}}^{p, \rho }f&=\mathcal{I}_{a^{+}}^{q(1-p),\rho } \mathcal{D}_{a^{+}}^{\rho } \mathcal{I}_{a^{+}}^{(1-q)(1-p),\rho } \\ &=\mathcal{I}_{a^{+}}^{q(1-p),\rho }\mathcal{D}_{a^{+}}^{\rho } \mathcal{I}_{a^{+}}^{1-q(1-p),\rho } \\ &=\mathcal{I}_{a^{+}}^{q(1-p),\rho }\mathcal{D}_{a^{+}}^{q(1-p),\rho }f. \end{aligned} $$

 □

Lemma 3.7

Let\(0< p<1\), \(\rho \in (0, 1]\), and\(0\le \gamma <1\). If\(f\in \mathcal{C}_{\gamma }[a, b]\)and\(\mathcal{I}_{a^{+}}^{1-p,\rho }f\in \mathcal{C}^{1}_{\gamma }[a, b] \), then

$$ \mathcal{I}_{a^{+}}^{p,\rho }\mathcal{D}_{a^{+}}^{p,\rho }f(x)=f(x)-e^{{ \frac{\rho -1}{\rho }}(x-a)} \frac{(x-a)^{p-1}}{\rho ^{p-1}\varGamma (p)}\bigl(I_{a}^{1-p, \rho }f\bigr) \bigl(a^{+}\bigr), $$

for all\(x\in (a, b]\).

Proof

The proof is similar to the ones in [23]. □

Lemma 3.8

Let\(0< p<1\), \(\rho \in (0, 1]\), \(0\le q\le 1\)and\(\gamma =p+q-pq\). If\(f\in \mathcal{C}_{1-\gamma }[a, b]\)and\(\mathcal{D}_{a^{+}}^{p,q,\rho }f\)then\(\mathcal{D}_{a^{+}}^{p,q,\rho }\mathcal{I}_{a^{+}}^{p,\rho }f\)exists in\((a, b)\)and

$$ \mathcal{D}_{a^{+}}^{p,q,\rho }\mathcal{I}_{a^{+}}^{p,\rho }f(x)=f(x), \quad x\in (a, b]. $$

Proof

Now, using Lemmas 3.4, 3.6 and 3.7, we have

$$ \begin{aligned}[b] \bigl( \mathcal{D}_{a^{+}}^{p,q,\rho } \mathcal{I}_{a^{+}}^{p, \rho }f \bigr) (x)&= \bigl( \mathcal{I}_{a^{+}}^{q(1-p),\rho } \mathcal{D}_{a^{+}}^{q(1-p),\rho }f \bigr) (x) \\ &=f(x)-e^{{\frac{\rho -1}{\rho }}(x-a)} \frac{(x-a)^{q(1-p)-1}}{\rho ^{q(1-p)-1}\varGamma (q(1-p))}\bigl(I_{a}^{1-q(1-p), \rho }f \bigr) \bigl(a^{+}\bigr) \\ &=f(x). \end{aligned} $$

 □

Lemma 3.9

Let\(0< p<1\), \(\rho \in (0, 1]\), \(0\le q\le 1\)and\(0<\gamma <1\). If\(f\in \mathcal{C}_{1-\gamma }[a, b]\)and\(\mathcal{I}_{a^{+}}^{1-\gamma ,\rho }f\), then

$$ \mathcal{I}_{a^{+}}^{p,\rho }\mathcal{D}_{a^{+}}^{p,q,\rho }f(x)=f(x)-e^{{ \frac{\rho -1}{\rho }}(x-a)} \frac{(x-a)^{\gamma -1}}{\rho ^{\gamma -1}\varGamma (\gamma )}\bigl(I_{a}^{1- \gamma , \rho }f\bigr) \bigl(a^{+}\bigr), \quad x\in (a, b]. $$

Proof

It follows from Definition 3.1 and Lemma 3.7 that

$$ \begin{aligned}[b] \bigl(\mathcal{I}_{a^{+}}^{p,\rho } \mathcal{D}_{a^{+}}^{p,q, \rho }f \bigr) (x)&=\mathcal{I}_{a^{+}}^{p,\rho } \bigl( \mathcal{I}_{a^{+}}^{ \gamma -p,\rho }\mathcal{D}_{a^{+}}^{\gamma ,\rho }f \bigr) (x) \\ &=\mathcal{I}_{a^{+}}^{\gamma ,\rho }\mathcal{D}_{a^{+}}^{\gamma ,\rho }f(x) \\ &=f(x)-e^{{\frac{\rho -1}{\rho }}(x-a)} \frac{(x-a)^{\gamma -1}}{\rho ^{\gamma -1}\varGamma (\gamma )}\bigl(I_{a}^{1- \gamma , \rho }f \bigr) \bigl(a^{+}\bigr). \end{aligned} $$

 □

Equivalent mixed-type Volterra integral equation

The following lemma shows the equivalence between the proposed problem (1.1) and the Volterra integral equation.

Lemma 3.10

Let\(0< p<1\), \(0\le q\leq 1\)and\(\gamma =p+q-pq\)and let\(f:J\times \mathbb{R}\rightarrow \mathbb{R}\)be a function such that\(f\in \mathcal{C}_{1-\gamma }[J, \mathbb{R}]\)for any\(x\in \mathcal{C}_{1-\gamma }[J, \mathbb{R}]\). If\(x\in \mathcal{C}_{1-\gamma }^{\gamma }[J, \mathbb{R}]\)thenxsatisfies problem (1.1) if and only ifxsatisfies the mixed-type integral equation:

$$ \begin{aligned}[b] x(t)&=\frac{\varLambda }{\rho ^{p}\varGamma (p)}e^{ \frac{(\rho -1)}{\rho }(t-a)}(t-a)^{\gamma -1} \sum_{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-s)}( \tau _{i}-s)^{p-1}f\bigl(s, x(s)\bigr)\,ds \\ &\quad{}+\frac{1}{\rho ^{p}\varGamma (p)} \int _{a^{+}}^{t}e^{ \frac{(\rho -1)}{\rho }(t-s)}(t-s)^{p-1}f \bigl(s, x(s)\bigr)\,ds, \end{aligned} $$
(3.4)

where

$$ \varLambda = \frac{1}{\rho ^{\gamma -1}\varGamma (\gamma )- \sum_{i=1}^{m}c_{i}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-a)}(\tau _{i}-a)^{\gamma -1}}. $$
(3.5)

Proof

Suppose, \(x\in \mathcal{C}_{1-\gamma }^{\gamma }[J, \mathbb{R}]\) be a solution of (1.1). We show that x is also a solution of (3.4). In view of Lemma 3.9, we have

$$ \begin{aligned}[b] x(t)&=\frac{(t-a)^{\gamma -1}}{\rho ^{\gamma -1}\varGamma (\gamma )}e^{ \frac{(\rho -1)}{\rho }(t-a)}\mathcal{I}_{a^{+}}^{1-\gamma ,\rho }x \bigl(a^{+}\bigr)\\ &\quad {}+ \frac{1}{\rho ^{p}\varGamma (p)} \int _{a^{+}}^{t}e^{ \frac{(\rho -1)}{\rho }(t-s)}(t-s)^{p-1}f \bigl(s,x(s)\bigr)\,ds. \end{aligned} $$
(3.6)

Now, substituting \(t=\tau _{i}\) and multiplying both sides by \(c_{i}\) in (3.6), we get

$$ c_{i}x(\tau _{i})= \frac{(\tau _{i}-a)^{\gamma -1}}{\rho ^{\gamma -1}\varGamma (\gamma )}e^{ \frac{(\rho -1)}{\rho }(\tau _{i}-a)}c_{i} \mathcal{I}_{a^{+}}^{1- \gamma ,\rho }x\bigl(a^{+} \bigr)+c_{i}\mathcal{I}^{p,\rho }_{a^{+}}f(\tau _{i}), $$
(3.7)

which implies that

$$ \begin{aligned}[b] \sum_{i=1}^{m}c_{i}x( \tau _{i})&=\frac{1}{\rho ^{\gamma -1}\varGamma (\gamma )} \sum_{i=1}^{m}c_{i}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-a)}( \tau _{i}-a)^{\gamma -1}\mathcal{I}_{a^{+}}^{1-\gamma ,\rho }x \bigl(a^{+}\bigr) \\ &\quad{}+\frac{1}{\rho ^{p}\varGamma (p)} \sum_{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-s)}( \tau _{i}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds. \end{aligned} $$
(3.8)

From the initial condition \(\mathcal{I}^{1-\gamma , \rho }_{a^{+}}x(a) =\sum_{i=1}^{m}c_{i}x( \tau _{i})\), we get

$$ \mathcal{I}_{a^{+}}^{1-\gamma , \rho }x\bigl(a^{+} \bigr)= \frac{\rho ^{\gamma -1}\varGamma (\gamma )}{\rho ^{p}\varGamma (p)}\varLambda \sum_{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{ \frac{(\rho -1)}{\rho }(\tau _{i}-s)}(\tau _{i}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds. $$
(3.9)

Therefore, the result follows by substituting (3.9) in (3.6). This shows that \(x(t)\) satisfies (3.4).

Conversely, suppose that \(x\in \mathcal{C}_{1-\gamma }^{\gamma }\) satisfies Eq. (3.4), then we show that x also satisfies Eq. (1.1). Applying \(\mathcal{D}_{a^{+}}^{\gamma ,\rho }\) to both sides of (3.4) and in view of Proposition 2.8, Lemma 2.10 and Definition 3.1, we have

$$ \begin{aligned}[b] &\mathcal{D}_{a^{+}}^{\gamma ,\rho }x(t)\\ &\quad = \mathcal{D}_{a^{+}}^{ \gamma ,\rho } \Biggl(\frac{\varLambda }{\rho ^{p}\varGamma (p)}e^{ \frac{(\rho -1)}{\rho }(t-a)}(t-a)^{\gamma -1} \sum_{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-s)}( \tau _{i}-s)^{p-1}f\bigl(s, x(s)\bigr)\,ds \Biggr) \\ &\qquad{}+\mathcal{D}_{a^{+}}^{\gamma ,\rho } \biggl( \frac{1}{\rho ^{p}\varGamma (p)} \int _{a^{+}}^{t}e^{ \frac{(\rho -1)}{\rho }(t-s)}(t-s)^{p-1}f \bigl(s, x(s)\bigr)\,ds \biggr) \\ &\quad = \bigl( \mathcal{D}_{a^{+}}^{q(1-p),\rho }f\bigl(t,x(t)\bigr) \bigr) (x). \end{aligned} $$
(3.10)

Since \(\mathcal{D}_{a^{+}}^{p,q,\rho }x\in \mathcal{C}_{1-\gamma }[J, \mathbb{R}]\), by the definition of \(\mathcal{C}_{1-\gamma }^{\gamma }[J, \mathbb{R}]\) Eq. (3.10) implies that

$$ \mathcal{D}_{a^{+}}^{q(1-p),\rho }f=D^{\rho } \mathcal{I}_{a^{+}}^{1-q(1- \rho ),\rho }f\in \mathcal{C}_{1-\gamma ,\rho }[J, \mathbb{R}]. $$

For \(f\in \mathcal{C}_{1-\gamma }[J, \mathbb{R}]\) and from Lemma 2.12, we can see that \(\mathcal{I}_{a^{+}}^{1-q(1-p),\rho }f\in \mathcal{C}_{1-\gamma ,\rho }[J, \mathbb{R}]\), this implies that \(\mathcal{I}_{a^{+}}^{1-q(1-p),\rho }f\in \mathcal{C}^{1}_{1-\gamma }[J, \mathbb{R}]\) from the definition of \(\mathcal{C}^{n}_{\gamma }[J, \mathbb{R}]\).

Applying \(\mathcal{I}_{a^{+}}^{q(1-p),\rho }\) on both sides of (3.10) and in view of Proposition 2.8, Lemma 3.7 and Definition 3.1,

$$ \begin{aligned}[b] \mathcal{I}_{a^{+}}^{q(1-p),\rho } \mathcal{D}_{a^{+}}^{ \gamma ,\rho }x(t)&=\mathcal{I}_{a^{+}}^{q(1-p),\rho } \mathcal{D}_{a^{+}}^{q(1-p), \rho }f\bigl(t,x(t)\bigr). \\ &=f\bigl(t,x(t)\bigr)- \frac{ ( \mathcal{I}_{a^{+}}^{1-q(1-p),\rho }f ) (a)}{\varGamma (q(1-p))}(t-a)^{q(p-1)-1} \\ &=f\bigl(t,x(t)\bigr). \end{aligned} $$
(3.11)

Hence, its remains to show that if \(x\in \mathcal{C}_{1-\gamma }^{\gamma }[J, \mathbb{R}]\) satisfies (3.4), it also satisfies the initial condition. So, by applying \(\mathcal{I}_{a^{+}}^{1-\gamma ,\rho }\) to both sides of (3.4) and using Proposition 2.8, Theorem 2.9 and 2.11, we obtain

$$ \begin{aligned}[b] &\mathcal{I}_{a^{+}}^{1-\gamma ,\rho }x(t)\\ &\quad = \mathcal{I}_{a^{+}}^{1- \gamma ,\rho } \Biggl(\frac{\varLambda }{\rho ^{p}\varGamma (p)}e^{ \frac{(\rho -1)}{\rho }(t-a)}(t-a)^{\gamma -1} \sum_{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-s)}( \tau _{i}-s)^{p-1}f(s)\,ds \Biggr) \\ &\qquad{}+\mathcal{I}_{a^{+}}^{1-\gamma ;\varphi } \biggl( \frac{1}{\rho ^{p}\varGamma (p)} \int _{a^{+}}^{t}e^{ \frac{(\rho -1)}{\rho }(t-s)}(t-s)^{p-1}f(s) \,ds \biggr) \\ &\quad =\frac{\rho ^{\gamma -1}\varGamma (\gamma )}{\rho ^{p}\varGamma (p)} \varLambda e^{\frac{(\rho -1)}{\rho }(t-a)} \sum _{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-s)}( \tau _{i}-s)^{p-1}f(s)\,ds \\ &\qquad{}+\mathcal{I}_{a^{+}}^{1-q(1-p),\rho }f(t). \end{aligned} $$
(3.12)

Taking the limit as \(t\rightarrow a^{+}\) in Eq. (3.12) and the fact that \(1-q<1-p(1-r)\) give

$$ \mathcal{I}_{a^{+}}^{1-\gamma ,\rho }x\bigl(a^{+} \bigr)= \frac{\rho ^{\gamma -1}\varGamma (\gamma )}{\rho ^{p}\varGamma (p)}\varLambda \sum_{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{ \frac{(\rho -1)}{\rho }(\tau _{i}-s)}(\tau _{i}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds. $$
(3.13)

Substituting \(t=\tau _{i}\) and multiplying through by \(c_{i}\) in (3.4),

$$ \begin{aligned}[b] c_{i}x(\tau _{i})&=\frac{\varLambda }{\rho ^{p}\varGamma (p)}e^{ \frac{(\rho -1)}{\rho }(\tau _{i}-a)}(\tau _{i}-a)^{\gamma -1} \sum_{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{ \frac{(\rho -1)}{\rho }(\tau _{i}-s)}(\tau _{i}-s)^{p-1}f(s)\,ds \\ &\quad{}+\frac{c_{i}}{\rho ^{p}\varGamma (p)} \int _{a^{+}}^{\tau _{i}}e^{ \frac{(\rho -1)}{\rho }(\tau _{i}-s)}(\tau _{i}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds, \end{aligned} $$
(3.14)

which implies that

$$ \begin{aligned}[b] \sum_{i=1}^{m}c_{i}x( \tau _{i})&=\varLambda \sum_{i=1}^{m}c_{i} \mathcal{I}^{p,\rho }_{a^{+}}f(\tau _{i}) \sum _{i=1}^{m}c_{i}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-a)}( \tau _{i}-a)^{\gamma -1}+ \sum_{i=1}^{m}c_{i} \mathcal{I}^{p,\rho }_{a^{+}}f(\tau _{i}) \\ &= \sum_{i=1}^{m}c_{i} \mathcal{I}^{p,\rho }_{a^{+}}f( \tau _{i}) \Biggl( 1+ \varLambda \sum_{i=1}^{m}c_{i}e^{ \frac{(\rho -1)}{\rho }(\tau _{i}-a)}( \tau _{i}-a)^{\gamma -1} \Biggr). \end{aligned} $$
(3.15)

Thus

$$ \sum_{i=1}^{m}c_{i}x( \tau _{i})= \frac{\rho ^{\gamma -1}\varGamma (\gamma )}{\rho ^{p}\varGamma (p)}\varLambda \sum _{i=1}^{m}c_{i} \int _{a^{+}}^{\tau _{i}}e^{ \frac{(\rho -1)}{\rho }(\tau _{i}-s)}(\tau _{i}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds. $$
(3.16)

So, in view of (3.13) and (3.16), we have

$$ \mathcal{I}_{a^{+}}^{1-\gamma , \rho }x\bigl(a^{+}\bigr)= \sum _{i=1}^{m}c_{i}x( \tau _{i}). $$
(3.17)

Hence, the proof is completed. □

Remark 3.11

As shown below, the proposed Hilfer generalized proportional fractional derivative (see Definition 3.1) unifies the existing ones of Riemann–Liouville, the generalized proportional and the Hilfer fractional derivatives. We present the approximate numerical solution of Eq. (3.4) and present these solutions in Figs. 13.

Figure 1
figure1

Graph of \(x(t)\), for the Hilfer fractional derivatives (\(\rho =1\)) and Hilfer generalized proportional fractional derivatives (\(\rho \in (0,1)\))

Uniqueness result

This subsection will a detailed proof of the uniqueness of solutions of the proposed problem (1.1) using the concepts of the Banach contraction principle. Thus, we need the following assumptions.

\((H_{1})\):

Let \(f:J\times \mathbb{R}\rightarrow \mathbb{R}\) be a function such that \(f\in \mathcal{C}^{q(1-p)}_{1-\gamma }[J, \mathbb{R}]\) for any \(x\in \mathcal{C}^{\gamma }_{1-\gamma }[J, \mathbb{R}]\).

\((H_{2})\):

There exists a constant \(K>0\) such that

$$ \bigl\vert f(t,u)-f(t,\bar{u}) \bigr\vert \leq K \vert u-\bar{u} \vert , $$

for any \(u,\bar{u}\in \mathbb{R}\) and \(t\in J\).

\((H_{3})\):

Suppose that

$$ K\psi < 1, $$

where

$$ \psi =\frac{\mathcal{B}(\gamma , p)}{\rho ^{p}\varGamma (p)} \Biggl( \vert \varLambda \vert \sum _{i=1}^{m}c_{i}(\tau _{i}-a)^{p+\gamma -1} +(T-a)^{p} \Biggr) $$
(3.18)

and \(\mathcal{B}(\gamma , p)\) is the Beta function defined by [32]

$$ \mathcal{B}(\gamma , p)= \int _{0}^{1}x^{\gamma -1}(1-x)^{p-1} \,dx,\quad \operatorname{Re}( \gamma ),\operatorname{Re}(p)>0. $$

Theorem 3.12

Let\(0< p<1\), \(0\leq q\leq 1\)and\(\gamma =p+q-pq\). Suppose that the assumptions\((H_{1})\)\((H_{3})\)are satisfied. Then problem (1.1) has a unique solution in the space\(\mathcal{C}^{\gamma }_{1-\gamma }[J, \mathbb{R}]\).

Proof

Define the operator \(T:\mathcal{C}_{1-\gamma }[J, \mathbb{R}]\rightarrow \mathcal{C}_{1- \gamma }[J, \mathbb{R}]\) by

$$ \begin{aligned}[b] (Tx) (t)&=\frac{\varLambda }{\rho ^{p}\varGamma (p)}e^{ \frac{(\rho -1)}{\rho }(t-a)}(t-a)^{\gamma -1} \sum_{i=1}^{m}c_{i} \int _{a}^{\tau _{i}}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-s)}(\tau _{i}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds \\ &\quad{}+\frac{1}{\rho ^{p}\varGamma (p)} \int _{a}^{t}e^{\frac{(\rho -1)}{\rho }(t-s)}(t-s)^{p-1}f \bigl(s,x(s)\bigr)\,ds. \end{aligned} $$
(3.19)

It follows that the operator T is well defined. Now for any \(x_{1},x_{2}\in \mathcal{C}_{1-\gamma }[J, \mathbb{R}]\) and \(t\in J\), this gives

$$ \begin{aligned}[b] \bigl\vert \bigl((&Tx_{1}) (t)-(Tx_{2}) (t)\bigr) (t-a)^{1-\gamma } \bigr\vert \\ &\leq \frac{ \vert \varLambda \vert }{\rho ^{p}\varGamma (p)} \bigl\vert e^{ \frac{(\rho -1)}{\rho }(t-a)} \bigr\vert \sum _{i=1}^{m}b_{i} \int _{a}^{\tau _{i}} \bigl\vert e^{\frac{(\rho -1)}{\rho }(\tau _{i}-s)} \bigr\vert (\tau _{i}-s)^{p-1} \bigl\vert f \bigl(s,x_{1}(s)\bigr)-f\bigl(s,x_{2}(s)\bigr) \bigr\vert \,ds \\ &\quad{}+\frac{1}{\rho ^{p}\varGamma (p)} \int _{a}^{t} \bigl\vert e^{ \frac{(\rho -1)}{\rho }(t-s)} \bigr\vert (t-s)^{p-1} \bigl\vert f\bigl(s,x_{1}(s)\bigr)-f \bigl(s,x_{2}(s)\bigr) \bigr\vert \,ds. \end{aligned} $$
(3.20)

Since \(|e^{\frac{(\rho -1)}{\rho }t}|<1\), we get

$$ \begin{aligned}[b] \bigl\vert \bigl((&Tx_{1}) (t)-(Tx_{2}) (t)\bigr) (t-a)^{1-\gamma } \bigr\vert \\ &\leq \frac{K \vert \varLambda \vert }{\rho ^{p}\varGamma (p)} \Biggl( \sum_{i=1}^{m}b_{i} \int _{a^{+}}^{\tau _{i}}(\tau _{i}-s)^{p-1}(s-a)^{ \gamma -1} \,ds \Biggr) \Vert x_{1}-x_{2} \Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]} \\ &\quad{}+\frac{K}{\rho ^{p}\varGamma (p)}(t-a)^{1-\gamma } \biggl( \int _{a^{+}}^{t}(t-s)^{p-1}(s-a)^{ \gamma -1} \,ds \biggr) \Vert x_{1}-x_{2} \Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]} \\ &\leq \frac{K \vert \varLambda \vert }{\rho ^{p}\varGamma (p)}\mathcal{B}(\gamma , p) \sum _{i=1}^{m}c_{i}(\tau _{i}-a)^{p+\gamma -1} \Vert x_{1}-x_{2} \Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]} \\ &\quad{}+\frac{K}{\rho ^{p}\varGamma (p)}(T-a)^{p}\mathcal{B}(\gamma , p) \Vert x_{1}-x_{2} \Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]}. \end{aligned} $$
(3.21)

Therefore,

$$ \begin{aligned}[b] \bigl\Vert (&Tx_{1})-(Tx_{2}) \bigr\Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]} \\ &\leq \frac{K}{\rho ^{p}\varGamma (p)}\mathcal{B}(\gamma ,p) \Biggl( \vert \varLambda \vert \sum_{i=1}^{m}c_{i}(\tau _{i}-a)^{p+\gamma -1} +(T-a)^{p} \Biggr) \Vert x_{1}-x_{2} \Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]} \\ &\le K\psi \Vert x_{1}-x_{2} \Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]}. \end{aligned} $$
(3.22)

Hence, it follows from (3.18) that T is a contraction map. Thus, as a consequence of the Banach contraction principle, problem (1.1) has a unique solution. □

Existence result

In this subsection, we prove the existence of solutions of problem (1.1) using the concepts of Kransnoselskii’s fixed point theorem [33].

\((H_{4})\):

Suppose that

$$ K\Delta < 1, $$

where

$$ \Delta =\frac{\mathcal{B}(\gamma , p)}{\rho ^{p}\varGamma (p)} \vert \varLambda \vert \sum _{i=1}^{m}c_{i}(\tau _{i}-a)^{p+\gamma -1}. $$
(3.23)

Theorem 3.13

Let\(0< p<1\), \(0\leq q\leq 1\)and\(\gamma =p+q-pq\). Suppose that the hypotheses\((H_{1})\), \((H_{2})\)and\((H_{4})\)are satisfied. Then problem (1.1) has at least one solution in the space\(\mathcal{C}^{\gamma }_{1-\gamma }[J, \mathbb{R}]\).

Proof

We have \(\|\eta \|_{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]}=\sup_{t\in J}|(t-a)^{1-\gamma }\eta (t)|\) and choose \(\kappa \ge M\|\eta \|_{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]}\), where

$$ M=\frac{\mathcal{B}(\gamma , p)}{\rho ^{p}\varGamma (p)} \Biggl( \vert \varLambda \vert \sum _{i=1}^{m}c_{i}(\tau _{i}-a)^{p+\gamma -1} +(T-a)^{p} \Biggr), $$
(3.24)

we consider \(\mathbf{B}_{\kappa }=\{x\in \mathbb{C}[J, \mathbb{R}]: \|x\|_{ \mathcal{C}_{1-\gamma }[J, \mathbb{R}]}\le \kappa \}\). Define the operators \(\mathbb{T}_{1}\) and \(\mathbb{T}_{2}\) on \(\mathbf{B}_{\kappa }\) by

$$ \begin{aligned}[b] \mathbb{T}_{1}x(t)&=\frac{1}{\rho ^{p}\varGamma (p)} \int _{a}^{t}e^{ \frac{(\rho -1)}{\rho }(t-s)}(t-s)^{p-1}f \bigl(s,x(s)\bigr)\,ds, \\ \mathbb{T}_{2}x(t)&=\frac{\varLambda }{\rho ^{p}\varGamma (p)}e^{ \frac{(\rho -1)}{\rho }(t-a)}(t-a)^{\gamma -1} \sum_{i=1}^{m}c_{i} \int _{a}^{\tau _{i}}e^{\frac{(\rho -1)}{\rho }(\tau _{i}-s)}(\tau _{i}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds, \end{aligned} $$

for all \(t\in [a, T]\). Now, for every \(x,y\in \mathbf{B}_{\kappa }\),

$$ \begin{aligned}[b] &\bigl\vert \bigl(\mathbb{T}_{1}x(t)+ \mathbb{T}_{2}y(t)\bigr)(t-a)^{1-\gamma } \bigr\vert \\ &\quad \leq \frac{(t-a)^{1-\gamma }}{\rho ^{p}\varGamma (p)} \int _{a}^{t}(t-s)^{p-1}(s-a)^{ \gamma -1} \bigl\vert f\bigl(s,x(s)\bigr) (s-a)^{1-\gamma } \bigr\vert \,ds \\ &\qquad{}+\frac{ \vert \varLambda \vert }{\rho ^{p}\varGamma (p)} \sum_{i=1}^{m}c_{i} \int _{a}^{\tau _{i}}(\tau _{i}-s)^{p-1}( \tau _{i}-a)^{\gamma -1} \bigl\vert f\bigl(s,y(s)\bigr) ( \tau _{i}-a)^{1-\gamma } \bigr\vert \,ds \\ &\quad \leq \Vert \eta \Vert \Biggl[ \frac{\mathcal{B}(\gamma , p)}{\rho ^{p}\varGamma (p)} \vert \varLambda \vert \sum_{i=1}^{m}c_{i}(\tau _{i}-a)^{p+\gamma -1} + \frac{\mathcal{B}(\gamma , p)}{\rho ^{p}\varGamma (p)}(T-a)^{p} \Biggr] \\ &\quad \le \Vert \eta \Vert M \\ &\quad \leq \kappa < \infty . \end{aligned} $$
(3.25)

This implies that \(\mathbb{T}_{1}x+\mathbb{T}_{2}y\in \mathbf{B}_{\kappa }\).

Step 2. We show that \(\mathbb{T}_{2}\) is a contraction.

Now, let \(x,y\in \mathcal{C}_{1-\gamma }[J, \mathbb{R}]\) and \(t\in J\), then

$$ \begin{aligned}[b] &\bigl\vert \bigl(\mathbb{T}_{2}x(t)- \mathbb{T}_{2}y(t)\bigr) (t-a)^{1- \gamma } \bigr\vert \\ &\quad = \Biggl\vert \varLambda e^{\frac{(\rho -1)}{\rho }(t-a)} \sum_{i=1}^{m}c_{i} \mathcal{I}^{p,\rho }_{a^{+}}\bigl(f\bigl(s,x(s)\bigr)-f\bigl(s,y(s) \bigr)\bigr) (\tau _{i}) \Biggr\vert \\ &\quad \le \frac{K \vert \varLambda \vert }{\rho ^{p}\varGamma (p)} \sum_{i=1}^{m}c_{i} \int _{a}^{\tau _{i}}(\tau _{i}-s)^{p-1}( \tau _{i}-s)^{\gamma -1} \bigl\vert x(s)-y(s) \bigr\vert \,ds \\ &\quad \leq \Biggl[ \frac{K \vert \varLambda \vert }{\rho ^{p}\varGamma (p)}\mathcal{B}( \gamma ,p) \sum _{i=1}^{m}c_{i}(\tau _{i}-a)^{p+\gamma -1} \Biggr] \Vert x-y \Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]} \\ &\quad \le K\Delta \Vert x-y \Vert _{\mathcal{C}_{1-\gamma }[J, \mathbb{R}]}. \end{aligned} $$
(3.26)

Hence, it follows from \((H_{4})\) that \(\mathbb{T}_{2}\) is a contraction.

Step 3. We show that the operator \(\mathbb{T}_{1}\) is continuous and compact.

Clearly, the operator \(\mathbb{T}_{1}\) is continuous, due to the fact that the function f is continuous. Thus, for any \(x\in \mathcal{C}_{1-\gamma }[J, \mathbb{R}]\), we have

$$ \Vert \mathbb{T}_{1}x \Vert \leq \Vert \eta \Vert \frac{\mathcal{B}( \gamma , p)}{\rho ^{p}\varGamma (p)}(T-a)^{p}< \infty . $$

This shows that the operator \(\mathbb{T}_{1}\) is uniformly bounded on \(\mathbf{B}_{\kappa }\). Thus, it remains to shows that \(\mathbb{T}_{1}\) is compact. Denoting \(\sup_{(t, x)\in J\times \mathbf{B}_{\kappa }}|f(t, x(t))|= \delta <\infty \) and for any \(a<\tau _{1}<\tau _{2}<T\),

$$ \begin{aligned}[b] &\bigl\vert (\tau _{2}-a)^{1-\gamma } \bigl(\mathbb{T}_{1}x(\tau _{2})\bigr)+( \tau _{1}-a)^{1-\gamma }\bigl(\mathbb{T}_{1}x(\tau _{1})\bigr) \bigr\vert \\ &\quad = \biggl\vert \frac{(\tau _{2}-a)^{1-\gamma }}{\rho ^{p}\varGamma (p)} \int _{a}^{ \tau _{2}}e^{\frac{(\rho -1)}{\rho }(\tau _{2}-s)}(\tau _{2}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds \\ &\qquad{}-\frac{(\tau _{1}-a)^{1-\gamma }}{\rho ^{p}\varGamma (p)} \int _{a}^{ \tau _{1}}e^{\frac{(\rho -1)}{\rho }(\tau _{1}-s)}(\tau _{1}-s)^{p-1}f\bigl(s,x(s)\bigr)\,ds \biggr\vert \\ &\quad \leq \frac{1}{\rho ^{p}\varGamma (p)} \int _{a}^{\tau _{2}}\bigl[(\tau _{2}-a)^{1- \gamma }( \tau _{2}-s)^{p-1}-(\tau _{1}-a)^{1-\gamma }( \tau _{1}-s)^{p-1}\bigr] \bigl\vert f\bigl(s,x(s)\bigr) \bigr\vert \,ds \\ &\qquad{}+\frac{1}{\rho ^{p}\varGamma (p)} \int _{\tau _{1}}^{\tau _{2}}(\tau _{2}-a)^{1- \gamma }( \tau _{2}-s)^{p-1} \bigl\vert f\bigl(s,x(s)\bigr) \bigr\vert \,ds \\ &\quad \longrightarrow 0, \quad \text{as } \tau _{2}\rightarrow \tau _{1}. \end{aligned} $$
(3.27)

As a consequences of Arzelá–Ascoli theorem, the operator \(\mathbb{T}_{1}\) is compact on \(\mathbf{B}_{\kappa }\). Thus, problem (1.1) has at least one solution. □

Examples

Example 3.14

Consider the fractional differential equation which involves the Hilfer generalized proportional derivative of the form

$$ \textstyle\begin{cases} \mathcal{D}^{\frac{2}{3},\frac{1}{2},1}_{0^{+}}x(t)= \frac{1}{25e^{2t}} ( \frac{\cos 2t}{1+ \vert x(t) \vert } ) + \frac{3}{2},\quad t\in J=[0, 2],&\\ \mathcal{I}^{1-\gamma ,1}_{0^{+}}x(0) =2x(\frac{2}{5}). \end{cases} $$
(3.28)

By comparing (1.1) with (3.28), we get \(p=\frac{2}{3}\), \(q=\frac{1}{2}\), \(\rho =1\), \(\gamma =\frac{5}{6}\), \(a=0\), \(T=2\), \(c_{1}=2\) since \(m=1\), \(\tau _{1}=\frac{2}{5}\in J\) and \(f: J\times \mathbb{R}\rightarrow \mathbb{R}\) is a function defined by

$$ f(t, u)=\frac{1}{25e^{2t}} \biggl( \frac{\cos 2t}{1+ \vert u \vert } \biggr) + \frac{3}{2}, \quad t\in J, u\in \mathbb{R}_{+}. $$

Thus, f is continuous and for all \(u,v\in \mathbb{R}_{+}\) and \(t\in J\), we have \(|f(t, u)-f(t, v)|\leq \frac{1}{25}|u-v|\). Thus, it follows that conditions \((H_{1})\) and \((H_{3})\) are true with \(K=\frac{1}{25}\). Therefore, by simple calculation, we can see that \(|\varLambda |\approx 0.8325\) and \(\psi \approx 3.3628\), which implies that

$$ K\psi \approx 0.1345< 1. $$

Hence, all the assumptions of Theorem 3.12 are satisfied. So, problem (1.1) has a unique solution on J.

Similarly, we find that \(\Delta \approx 1.3413>0\) and \(K\Delta \approx 0.0537<1\). Since all the hypotheses of Theorem 3.13 hold, we conclude that problem (1.1) has at least one solution on J.

Example 3.15

Consider the Hilfer generalized proportional fractional differential equation described by

$$ \textstyle\begin{cases} \mathcal{D}^{\frac{2}{3},\frac{1}{2},\frac{1}{5}}_{0^{+}}x(t)= \frac{1}{25e^{2t}} ( \frac{\cos 2t}{1+ \vert x(t) \vert } ) + \frac{3}{2},\quad t\in J=[0, 2],&\\ \mathcal{I}^{1-\gamma ,\frac{1}{5}}_{0^{+}}x(0) =2x(\frac{2}{5}). \end{cases} $$
(3.29)

Repeating application of the same procedure as Example 3.14 above, we get the values \(|\varLambda |\approx 0.9943\), \(\psi \approx 10.5950\) and \(\Delta \approx 4.6839\). Thus

$$ K\psi \approx 0.4238< 1. $$

According to Theorem 3.12, problem (1.1) has a unique solution on J. In addition,

$$ K\Delta \approx 0.1874< 1, $$

hence, by Theorem 3.13, problem (1.1) has at least one solution on J.

It should be noted here that the proposed Hilfer generalized proportional derivative (3.1) unifies the existing ones in the sense of Riemann–Liouville and Caputo generalized proportional fractional derivative, respectively. In addition:

  • If \(\rho \rightarrow 1\) and \(q\in [0, 1]\), the formulation for this problem, reduce to Hilfer fractional derivative [18, 32, 44] (see Fig. 1).

  • If \(\rho \in (0, 1)\) and \(q\in [0, 1]\), we obtain the proposed Hilfer generalized proportional fractional derivative, which we can see that it covers the classical Hilfer fractional derivative, as shown in Fig. 1.

  • If \(\rho \rightarrow 1\) and \(q=0\), the formulation for this problem reduces to the Riemann–Liouville fractional derivative [32] (see Fig. 2).

    Figure 2
    figure2

    Graph of \(x(t)\), for the Riemann–Liouville fractional derivatives (\(q=0\), \(\rho =1\)), and generalized proportional fractional derivatives (\(q=0\), \(\rho \in (0,1)\))

  • If \(\rho \rightarrow 1\) and \(q=1\), we obtain the Caputo fractional derivative [32].

  • If \(\rho \in (0, 1)\) and \(q=0\), we obtain the Riemann–Liouville generalized proportional fractional derivative [23], which we can see from Fig. 2 to cover the Riemann–Liouville fractional derivative.

  • If \(\rho \in (0, 1)\) and \(q=1\), we obtain the Caputo generalized proportional fractional derivative [23].

  • If \(q,\rho \in (0, 1)\), it is easily to observe from Fig. 3 that the newly proposed derivative unifies the ones in the setting of the Hilfer, Riemann–Liouville and generalized proportional fractional derivatives.

    Figure 3
    figure3

    Graph of \(x(t)\), for the Riemann–Liouville fractional derivatives (\(q=0\), \(\rho =1\)), generalized proportional fractional derivatives (\(q=0\), \(\rho =0.8\)) and Hilfer generalized proportional fractional derivatives (\(q\in (0,1)\), \(\rho \in (0,1)\))

Conclusions

In this paper, we defined the proportional fractional derivatives in the Hilfer setting. We used some known theorems from the fixed point theory that enabled us to prove the existence and uniqueness of solutions to a specific type of fractional initial value problem involving the Hilfer proportional fractional derivative. Furthermore, to show the effectiveness of our results, we presented some examples. In fact, the Hilfer proportional derivative contains three parameters. The existence of more parameters is useful especially when one considers the stability and other qualitative aspects of differential equations involving fractional derivative.

References

  1. 1.

    Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Ahmed, I., Kumam, P., Jarad, F., Borisut, P., Sitthithakerngkiet, K., Ibrahim, A.: Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer–Katugampola fractional derivative. Adv. Differ. Equ. 2020(1), 225 (2020)

    MathSciNet  Google Scholar 

  3. 3.

    Ahmed, I., Kumam, P., Shah, K., Borisut, P., Sitthithakerngkiet, K., Demba, M.A.: Stability results for implicit fractional pantograph differential equations via ϕ-Hilfer fractional derivative with a nonlocal Riemann–Liouville fractional integral condition. Mathematics 8(1), 94 (2020)

    Google Scholar 

  4. 4.

    Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    MathSciNet  Google Scholar 

  5. 5.

    Anatoly, A.K.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(6), 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Anderson, D.: Second-order self-adjoint differential equations using a proportional-derivative controller. Commun. Appl. Nonlinear Anal. 24(1), 17–48 (2017)

    MathSciNet  Google Scholar 

  7. 7.

    Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 10(2), 109–137 (2015)

    MathSciNet  Google Scholar 

  8. 8.

    Asawasamrit, S., Kijjathanakorn, A., Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for Hilfer fractional differential equations. Bull. Korean Math. Soc. 55(6), 1639–1657 (2018)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Atangana, A.: Derivative with a New Parameter: Theory, Methods and Applications. Academic Press, San Diego (2015)

    Google Scholar 

  10. 10.

    Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, San Diego (2017)

    Google Scholar 

  11. 11.

    Atangana, A., Baleanu, D.: Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo–Liouville derivative. Filomat 31(8), 2243–2248 (2017)

    MathSciNet  Google Scholar 

  12. 12.

    Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 889–898 (2015)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Atangana, A., Goufo, E.F.D.: Cauchy problems with fractal-fractional operators and applications to groundwater dynamics. Fractals (2020, in press). https://doi.org/10.1142/S0218348X20400435

  14. 14.

    Atangana, A., Koca, I.: New direction in fractional differentiation. Math. Nat. Sci. 1, 18–25 (2017)

    Google Scholar 

  15. 15.

    Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. In: Abstract and Applied Analysis, vol. 2013. Hindawi (2013)

    Google Scholar 

  16. 16.

    Borisut, P., Kumam, P., Ahmed, I., Sitthithakerngkiet, K.: Nonlinear Caputo fractional derivative with nonlocal Riemann–Liouville fractional integral condition via fixed point theorems. Symmetry 11(6), 829 (2019)

    Google Scholar 

  17. 17.

    Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci., 54, 3413–3442 (2003)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Furati, K.M., Kassim, M.D., et al.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6), 1616–1626 (2012)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 10 (2014)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Harikrishnan, S., Shah, K., Baleanu, D., Kanagarajan, K.: Note on the solution of random differential equations via ψ-Hilfer fractional derivative. Adv. Differ. Equ., 2018, 224 (2018)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Hilfer, R., et al.: Applications of Fractional Calculus in Physics, vol. 35. World Scientific, Singapore (2000)

    Google Scholar 

  22. 22.

    Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst., Ser. S 13(3), 709–722 (2020)

    MATH  Google Scholar 

  23. 23.

    Jarad, F., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 226(16–18), 3457–3471 (2017)

    Google Scholar 

  24. 24.

    Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012(1), 142 (2012)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10(5), 2607–2619 (2017)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Jarad, F., Harikrishnan, S., Shah, K., Kanagarajan, K.: Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete Contin. Dyn. Syst., Ser. S 13(3), 723 (2020)

    MATH  Google Scholar 

  27. 27.

    Jarad, F., Uğurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, 247 (2017)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218(3), 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Khan, M.A., Atangana, A.: Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative. Alex. Eng. J. (2020, in press). https://doi.org/10.1016/j.aej.2020.02.033

  32. 32.

    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Derivatial Equations. North-Holland Mathematics Studies, vol. 204. North-Holland, Amsterdam (2006)

    Google Scholar 

  33. 33.

    Krasnoselskii, M.: Two remarks about the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)

    Google Scholar 

  34. 34.

    Magin, R.L.: Fractional Calculus in Bioengineering, vol. 2. Begell House, Redding (2006)

    Google Scholar 

  35. 35.

    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Google Scholar 

  36. 36.

    Oliveira, D., de Oliveira, E.C.: Hilfer–Katugampola fractional derivatives. Comput. Appl. Math. 37(3), 3672–3690 (2018)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Osler, T.J.: The fractional derivative of a composite function. SIAM J. Math. Anal. 1(2), 288–293 (1970)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Owolabi, K.M., Atangana, A., Akgul, A.: Modelling and analysis of fractal-fractional partial differential equations: application to reaction–diffusion model. Alex. Eng. J. (2020, in press). https://doi.org/10.1016/j.aej.2020.03.022

  39. 39.

    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

    Google Scholar 

  40. 40.

    Riaz, M.B., Atangana, A., Abdeljawad, T.: Local and nonlocal differential operators: a comparative study of heat and mass transfer in mhd oldroyd-b fluid with ramped wall temperature. Fractals (2020, in press). https://doi.org/10.1142/S0218348X20400332

  41. 41.

    Samko, S.G., Kilbas, A.A., Marichev, O.I., et al.: Fractional Integrals and Derivatives, vol. 1993. Gordon & Breach, Yverdon (1993)

    Google Scholar 

  42. 42.

    Shah, K., Vivek, D., Kanagarajan, K.: Dynamics and stability of ψ-fractional pantograph equations with boundary conditions. Bol. Soc. Parana. Mat. 22(2), 1–13 (2018)

    Google Scholar 

  43. 43.

    Shammakh, W., Alzumi, H.Z.: Existence results for nonlinear fractional boundary value problem involving generalized proportional derivative. Adv. Differ. Equ. 2019, 94 (2019)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Vivek, D., Kanagarajan, K., Elsayed, E.: Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions. Mediterr. J. Math. 15(1), 15 (2018)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Vivek, D., Shah, K., Kanagarajan, K.: Existence theory and continuation analysis of nonlinear pantograph equations via Hilfer–Hadamard fractional derivative. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 25, 397–417 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT. The first and last authors were supported by the “Petchra Pra Jom Klao Ph.D. Research Scholarship from King Mongkut’s University of Technology Thonburi”. (For Ph.D. Petchra Pra Jom Klao Doctoral Scholarship) (Grant No. 13/2561). Moreover, this research work was financially supported by King Mongkut’s University of Technology Thonburi through the KMUTT 55th Anniversary Commemorative Fund.

Availability of data and materials

Data sharing is not applicable to this paper, as no data set was generated or analyzed during the current study.

Funding

Petchra Pra Jom Klao Doctoral Scholarship for Ph.D. program of King Mongkut’s University of Technology Thonburi (KMUTT). The Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT.

Author information

Affiliations

Authors

Contributions

In writing this article the authors have contributed equally. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Poom Kumam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, I., Kumam, P., Jarad, F. et al. On Hilfer generalized proportional fractional derivative. Adv Differ Equ 2020, 329 (2020). https://doi.org/10.1186/s13662-020-02792-w

Download citation

MSC

  • 26A33
  • 34A12
  • 34A43
  • 34D20

Keywords

  • Existence
  • Proportional fractional derivative
  • Fixed point theorems
  • Nonlocal condition
  • Volterra integral equation