Skip to main content

Theory and Modern Applications

Quantum Hermite–Hadamard inequality by means of a Green function

Abstract

The purpose of this work is to present the quantum Hermite–Hadamard inequality through the Green function approach. While doing this, we deduce some novel quantum identities. Using these identities, we establish some new inequalities in this direction. We contemplate the possibility of expanding the method, outlined herein, to recast the proofs of some known inequalities in the literature.

1 Introduction

Let \(\psi:[b_{1},b_{2}]\to \mathbb{R}\) be a convex function. Then the following double inequality holds:

$$ \psi \biggl(\frac{b_{1}+b_{2}}{2} \biggr)\leq \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x) \,dx\leq \frac{\psi (b_{1})+\psi (b_{2})}{2}. $$
(1.1)

It is known in the literature as the Hermite–Hadamard inequality. This inequality has instigated pletora of papers. Results concerning generalization, refinement, and extension of (1.1) are also found; see [19, 12, 14, 15, 1720, 23, 2730] and the references therein.

In the early 16th century, the concept of q-calculus was introduced. Ever since, integral inequalities of the trapeziod, Ostrowski, Cauchy–Bunyakovsky–Schwarz, Grüss, Hölder, Grüss–C̆ebys̆ev, and other types have been established in the q-calculus sense. In 2014, Tariboon and Ntouyas [33] obtained the following q-calculus version of (1.1).

Theorem 1.1

Let\(\psi :[b_{1},b_{2}]\to \mathbb{R}\)be a convex continuous function on\((b_{1},b_{2})\), and let\(0< q<1\). Then

$$ \psi \biggl(\frac{b_{1}+b_{2}}{2} \biggr)\leq \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x) _{b_{1}} \,d_{q}x\leq \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}. $$
(1.2)

In 2016, Kunt and Isçan [21] observed, via a counterexample, that the left-hand side of inequality (1.2) is not necessarily true. Subsequently, Alp et al. [11] proved the following correct version of (1.2).

Theorem 1.2

([11])

Let\(\psi :[b_{1},b_{2}]\to \mathbb{R}\)be a convex differentiable function on\((b_{1},b_{2})\), and let\(0< q<1\). Then

$$ \psi \biggl(\frac{qb_{1}+b_{2}}{1+q} \biggr)\leq \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x) _{b_{1}} \,d_{q}x \leq \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}. $$
(1.3)

Remark 1.3

It is important to note that the inequality in Theorem 1.2 was first established by Marinković et al. [24, Theorem 5.3].

The aim of this work is to recast inequality (1.3) in Theorem 1.2 via another approach different from that presented in [11]. Specifically, we do this using a Green function. In the process, we establish some identities that are also used to obtain more results in this direction.

We organize this paper as follows. Section 2 contains a brief introduction of the quantum calculus. Our main results are then framed and proved in Sect. 3.

2 Preliminaries

Quantum calculus is known as the calculus without limits. In this section, we present a quick overview of the theory of q-calculus. The interested reader is invited to the book [16] for an in-depth study of this subject. We begin with these basic definitions.

Definition 2.1

([32])

Let \(\psi :[b_{1},b_{2}]\to \mathbb{R}\) be a continuous function, and let \(w\in [b_{1},b_{2}]\). Then the expression

$$ {_{b_{1}}}D_{q}\psi (w)= \frac{\psi (w)-\psi (qw+(1-q)b_{1} )}{(1-q)(w-b_{1})},\quad w \neq b_{1}, {_{b_{1}}}D_{q}\psi (b_{1})= \lim_{w\to b_{1}}{_{b_{1}}}D_{q} \psi (w) $$
(2.1)

is called the q-derivative on \([b_{1},b_{2}]\) of the function at w.

We call ψq-differentiable on \([b_{1},b_{2}]\) if \({_{b_{1}}}D_{q}\psi (w)\) exists for all \(w\in [b_{1},b_{2}]\).

Definition 2.2

([32])

Let \(\psi :[b_{1},b_{2}]\to \mathbb{R}\) be a continuous function. Then the q-integral on \([b_{1},b_{2}]\) is defined as

$$ \int _{b_{1}}^{w}\psi (x) _{b_{1}} \,d_{q}x=(1-q) (w-b_{1})\sum_{k=0}^{ \infty }q^{k} \psi \bigl(q^{k}w+\bigl(1-q^{k}\bigr)b_{1} \bigr) $$
(2.2)

for \(w\in [b_{1},b_{2}]\). Moreover, if \(c\in (b_{1},w)\), then the q-integral on \([b_{1},b_{2}]\) is defined as

$$ \int _{c}^{w}\psi (x) _{b_{1}} \,d_{q}x= \int _{b_{1}}^{w}\psi (x) _{b_{1}} \,d_{q}x- \int _{b_{1}}^{c}\psi (x) _{b_{1}} \,d_{q}x. $$
(2.3)

Remark 2.3

In light of Definitions 2.1 and 2.2, we make the following remarks:

  1. 1.

    By taking \(b_{1}=0\) expression (2.1) boils down to the well-known q-derivative \(D_{q}\psi (w)\) of the function \(\psi (w)\) defined by

    $$ D_{q}\psi (w)=\frac{\psi (w)-\psi (qw)}{(1-q)w}. $$
  2. 2.

    Also, if \(b_{1}=0\), then (2.2) reduces to the classical q-integral of a function \(\psi :[0,\infty )\to \mathbb{R}\) defined by

    $$ \int _{0}^{w}\psi (x) _{0} \,d_{q}x=(1-q)w\sum_{k=0}^{\infty }q^{k} \psi \bigl(q^{k}w\bigr). $$

Some known results in continuous calculus have been extended to the q-calculus framework as follows.

Theorem 2.4

([32])

Let\(\psi :[b_{1},b_{2}]\to \mathbb{R}\)be a continuous function. Then we have

$$ \int _{\delta }^{w}{_{b_{1}}}D_{q}\psi (w) _{b_{1}}\,d_{q}x=\psi (w)- \psi (\delta ) \quad\textit{for } \delta \in (b_{1},w). $$

Theorem 2.5

([13])

Let\(\psi ,\phi :[b_{1},b_{2}]\to \mathbb{R}\)be two continuous functions and suppose\(\psi (x)\leq \phi (x)\)for all\(x\in [b_{1},b_{2}]\). Then

$$ \int _{b_{1}}^{w}\psi (x) _{b_{1}} \,d_{q}x\leq \int _{b_{1}}^{w}\phi (x) _{b_{1}} \,d_{q}x. $$

Theorem 2.6

([32])

Let\(\psi :[b_{1},b_{2}]\to \mathbb{R}\)be a continuous function. Then

$$\begin{aligned} &{}_{b_{1}} D_{q} \int _{b_{1}}^{w}\psi (x) _{b_{1}} \,d_{q}x=\psi (w); \\ &\int _{c}^{w}{_{b_{1}} D_{q}}\psi (x) _{b_{1}} \,d_{q}x=\psi (w)-\psi (c),\quad \textit{for } c\in (b_{1},w). \end{aligned}$$

Theorem 2.7

([32])

Let\(\psi ,\phi :[b_{1},b_{2}]\to \mathbb{R}\)be continuous functions, and let\(\alpha \in \mathbb{R}\). Then, for\(w\in [b_{1},b_{2}]\)and\(c\in (b_{1},w)\), we have

$$\begin{aligned} &\int _{b_{1}}^{w} \bigl[\psi (x)+\phi (x) \bigr] _{b_{1}} \,d_{q}x= \int _{b_{1}}^{w}\psi (x) _{b_{1}} \,d_{q}x+ \int _{b_{1}}^{w}\phi (x) _{b_{1}} \,d_{q}x; \\ &\int _{b_{1}}^{w}\alpha \psi (x) _{b_{1}} \,d_{q}x=\alpha \int _{b_{1}}^{w} \psi (x) _{b_{1}} \,d_{q}x; \\ &\int _{c}^{w}\psi (x){_{b_{1}} D_{q}}\phi (x) _{b_{1}} \,d_{q}x\\ &\quad =\psi (w) \phi (w)- \psi (c)\phi (c)- \int _{c}^{w}\phi \bigl(qx+(1-q)b_{1} \bigr){_{b_{1}} D_{q}} \psi (x) _{b_{1}} \,d_{q}x. \end{aligned}$$

3 Main results

We will prove our fundamental results with the help of the following lemma.

Lemma 3.1

([10, 25])

Let G be the Green function defined on \([b_{1},b_{2}]\times [b_{1},b_{2}]\) by

$$ G(x,u)= \textstyle\begin{cases} b_{1}-u , & b_{1}\leq u\leq x; \\ b_{1}-x, & x\leq u\leq b_{2}. \end{cases} $$

Then any \(\psi \in C^{2}([b_{1},b_{2}])\) can be expressed as

$$ \psi (x)= \psi (b_{1})+(x-b_{1})\psi '(b_{2})+ \int _{b_{1}}^{b_{2}} G(x, \mu )\psi ''( \mu ) \,d\mu. $$
(3.1)

We now state and justify our main results.

Theorem 3.2

Let\(\psi :[b_{1},b_{2}]\to \mathbb{R}\)be a convex twice differentiable function on\((b_{1},b_{2})\). If\(0< q<1\), then

$$ \psi \biggl(\frac{qb_{1}+b_{2}}{q+1} \biggr)\leq \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)_{b_{1}} \,d_{q}x\leq \frac{q\psi (b_{1})+\psi (b_{2})}{q+1}. $$
(3.2)

Proof

If we set \(x=\frac{qb_{1}+b_{2}}{q+1}\) in (3.1), then we get

$$\begin{aligned} \psi \biggl(\frac{qb_{1}+b_{2}}{q+1} \biggr)&=\psi (b_{1})+ \biggl( \frac{qb_{1}+b_{2}}{q+1}-b_{1} \biggr) \psi '(b_{2})+ \int _{b_{1}}^{b_{2}}G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr) \psi ''(u)\,du \\ &=\psi (b_{1})+\frac{b_{2}-b_{1}}{q+1} \psi '(b_{2})+ \int _{b_{1}}^{b_{2}}G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr) \psi ''(u)\,du. \end{aligned}$$
(3.3)

By computing we obtain that

$$\begin{aligned} &\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)_{b_{1}} \,d_{q}x \\ &\quad=\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}} \biggl\{ \psi (b_{1})+(x-b_{1}) \psi '(b_{2})+ \int _{b_{1}}^{b_{2}}G(x,u) \psi ''(u) \,du \biggr\} ~_{b_{1}}\,d_{q}x \\ &\quad=\psi (b_{1})+\frac{b_{2}-b_{1}}{q+1}\psi '(b_{2})+ \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}} \int _{b_{1}}^{b_{2}}G(x,u) \psi ''(u) \,du _{b_{1}}\,d_{q}x. \end{aligned}$$
(3.4)

Subtracting (3.4) from (3.3), we get:

$$\begin{aligned} &\psi \biggl(\frac{qb_{1}+b_{2}}{q+1} \biggr)-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}} \psi (x)_{b_{1}} \,d_{q}x \\ &\quad=\psi (b_{1})+\frac{b_{2}-b_{1}}{q+1}\psi '(b_{2})+ \int _{b_{1}}^{b_{2}}G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr) \psi ''(u)\,du \\ &\qquad{} -\psi (b_{1})-\frac{b_{2}-b_{1}}{q+1}\psi '(b_{2})- \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}} \int _{b_{1}}^{b_{2}}G(x,u) \psi ''(u) \,du _{b_{1}}\,d_{q}x \\ &\quad= \int _{b_{1}}^{b_{2}}G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr) \psi ''(u)\,du -\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}} \int _{b_{1}}^{b_{2}}G(x,u) \psi ''(u) \,du _{b_{1}}\,d_{q}x \\ &\quad= \int _{b_{1}}^{b_{2}} \biggl\{ G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr) - \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}G(x,u)~ _{b_{1}} \,d_{q}x \biggr\} \psi ''(u)\,du \\ &\quad= \int _{b_{1}}^{b_{2}} \biggl[G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr) + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du. \end{aligned}$$
(3.5)

Next, we consider the function

$$\begin{aligned} f(u)=G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr)+\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} . \end{aligned}$$
(3.6)

For this, the following cases are possible.

Case 1. If \(b_{1}\leq u\leq \frac{qb_{1}+b_{2}}{q+1}\), then

$$\begin{aligned} f(u)&=b_{1}-u+\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} . \end{aligned}$$

Therefore

$$\begin{aligned} &f'(u)=-1+\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{2(u-b_{1})}{q+1}+(b_{2}-u)-(u-b_{1}) \biggr\} ; \\ &f''(u)=\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{2}{q+1}-2 \biggr\} = \frac{-2q}{(1+q)(b_{2}-b_{1})}< 0. \end{aligned}$$

This implies that \(f'\) is decreasing and \(f'(b_{1})=0\), which shows that \(f'(u)\leq 0\). Thus f is also decreasing, and \(f(b_{1})=0\), that is, \(f(u)\leq 0\) for all \(u\in [b_{1},\frac{qb_{1}+b_{2}}{q+1} ]\).

Case 2. If \(\frac{qb_{1}+b_{2}}{q+1}\leq u\leq b_{2} \), then

$$\begin{aligned} &f(u)=\frac{b_{1}-b_{2}}{q+1}+\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} ; \\ &f'(u)=\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{u-b_{1}}{q+1} (1-q )+(b_{2}-u) \biggr\} > 0. \end{aligned}$$

Hence f is increasing and \(f(b_{2})=0\). So, \(f(u)\leq 0\) for all \(u\in [\frac{qb_{1}+b_{2}}{q+1},b_{2} ]\).

Now, using (3.5) and the fact that \(\psi ''(u)\geq 0\) for all \(u\in [b_{1},b_{2}]\), since ψ is convex, we obtain the first inequality:

$$ \psi \biggl(\frac{qb_{1}+b_{2}}{q+1} \biggr)\leq \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)_{b_{1}} \,d_{q}x. $$

For the right-hand side inequality, we recall that

$$\begin{aligned} &\psi (x)=\psi (b_{1})+(x-b_{1})\psi '(b_{2})+ \int _{b_{1}}^{b_{2}}G(x,u) \psi ''(u) \,du; \\ &\psi (b_{2})=\psi (b_{1})+(b_{2}-b_{1}) \psi '(b_{2})+ \int _{b_{1}}^{b_{2}}G(b_{2},u) \psi ''(u)\,du; \\ &\frac{q\psi (b_{1})+\psi (b_{2})}{q+1}=\psi (b_{1})+ \frac{b_{2}-b_{1}}{q+1}\psi '(b_{2})+\frac{1}{q+1} \int _{b_{1}}^{b_{2}} G(b_{2},u)\psi ''(u)\,du. \end{aligned}$$
(3.7)

Subtracting (3.4) from (3.7), we get

$$\begin{aligned} &\frac{q\psi (b_{1})+\psi (b_{2})}{q+1}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}} \psi (x)_{b_{1}} \,d_{q}x \\ &\quad= \int _{b_{1}}^{b_{2}} \biggl[\frac{G(b_{2},u)}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du. \end{aligned}$$
(3.8)

Let

$$ F(u)=\frac{G(b_{2},u)}{q+1}+\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} . $$

Then

$$\begin{aligned} &F(u)=\frac{b_{1}-u}{q+1}+\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} ; \\ &F'(u)=\frac{-1}{q+1}+\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{2(u-b_{1})}{q+1}+(b_{2}-u)-(u-b_{1}) \biggr\} ; \\ &F''(u)=\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{2}{q+1}-2 \biggr\} = \frac{-2q}{(1+q)(b_{2}-b_{1})}< 0. \end{aligned}$$

Here we also observe two cases.

Case 3. If \(b_{1}\leq u\leq \frac{b_{1}+b_{2}}{2}\), then \(F''(u)<0\). Therefore \(F'\) is decreasing, and also \(F' (\frac{b_{1}+b_{2}}{2} )=0\), which shows that \(F'(u)\geq 0\). Moreover, F is increasing, and \(F(b_{1})=0\). Hence \(F(u)\geq 0\) for all \(u\in [b_{1},\frac{b_{1}+b_{2}}{2} ]\).

Case 4. Also, if \(\frac{b_{1}+b_{2}}{2}\leq u\leq b_{2}\), then \(F''(u)<0\). So, \(F'\) is decreasing, and \(F' (\frac{b_{1}+b_{2}}{2} )=0\), which implies that \(F'(u)\leq 0\). Hence F is decreasing, and \(F(b_{2})=0\), and then \(F(u)\geq 0\) for all \(u\in [\frac{b_{1}+b_{2}}{2},b_{2} ]\).

Combining these two cases, we conclude that \(F(u)\geq 0\) for all \(u\in [b_{1},b_{2}]\). Applying (3.8) and the convexity of ψ, we establish the right-hand side of the desired inequality. The proof is complete. □

Next, we prove new quantum Hermite–Hadamard inequalities for the class of monotone and convex functions.

Theorem 3.3

Let\(\psi \in C^{2}([b_{1},b_{2}])\)and\(0< q<1\). Then:

  1. (i).

    If\(|\psi ''|\)is an increasing function, then

    $$\begin{aligned} \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q}x \biggr\vert \leq \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{q(b_{2}-b_{1})^{2}}{6(1+q)} \biggr]. \end{aligned}$$
  2. (ii).

    If\(|\psi ''|\)is a decreasing function, then

    $$\begin{aligned} \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q}x \biggr\vert \leq \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[\frac{q(b_{2}-b_{1})^{2}}{6(1+q)} \biggr]. \end{aligned}$$
  3. (iii).

    If\(|\psi ''|\)is a convex function, then

    $$\begin{aligned} & \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q}x \biggr\vert \\ &\quad \leq \max \bigl\{ \bigl\vert \psi ''(b_{1}) \bigr\vert , \bigl\vert \psi ''(b_{2}) \bigr\vert \bigr\} \biggl[\frac{q(b_{2}-b_{1})^{2}}{6(1+q)} \biggr]. \end{aligned}$$

Proof

To prove (i), by (3.8) we get:

$$\begin{aligned} & \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q}x \biggr\vert \\ &\quad= \biggl\vert \int _{b_{1}}^{b_{2}} \biggl[\frac{G(b_{2},u)}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du \biggr\vert \\ &\quad= \biggl\vert \int _{b_{1}}^{b_{2}} \biggl[\frac{b_{1}-u}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}-b_{1}b_{2}+(b_{1}+b_{2})u-u^{2} \biggr\} \biggr]\psi ''(u)\,du \biggr\vert \\ &\quad\leq \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{b_{1}}{1+q} \int _{b_{1}}^{b_{2}}1\,du- \frac{1}{1+q} \int _{b_{1}}^{b_{2}}u \,du +\frac{1}{b_{2}-b_{1}} \biggl\{ \int _{b_{1}}^{b_{2}}\frac{(u-b_{1})^{2}}{1+q}\,du \\ &\qquad{} -b_{1}b_{2} \int _{b_{1}}^{b_{2}}1\,du+(b_{1}+b_{2}) \int _{b_{1}}^{b_{2}}u \,du- \int _{b_{1}}^{b_{2}}u^{2} \,du \biggr\} \biggr] \\ &\quad= \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{b_{1}(b_{2}-b_{1})}{1+q}- \frac{u^{2}}{2(1+q)}\bigg|_{b_{1}}^{b_{2}} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{3}}{3(1+q)}\bigg|_{b_{1}}^{b_{2}}-b_{1}b_{2}(b_{2}-b_{1}) \\ &\qquad{} +(b_{1}+b_{2})\frac{u^{2}}{2}\bigg|_{b_{1}}^{b_{2}}- \frac{u^{3}}{3}\bigg|_{b_{1}}^{b_{2}} \biggr\} \biggr] \\ &\quad = \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{b_{1}(b_{2}-b_{1})}{1+q}- \frac{b_{2}^{2}-b_{1}^{2}}{2(1+q)} +\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{3}}{3(1+q)}-b_{1}b_{2}(b_{2}-b_{1}) \\ &\qquad{} +(b_{1}+b_{2})\frac{b_{2}^{2}-b_{1}^{2}}{2}- \frac{b_{2}^{3}-b_{1}^{3}}{3} \biggr\} \biggr] \\ &\quad= \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{q(b_{2}-b_{1})^{2}}{6(1+q)} \biggr], \end{aligned}$$

which proves the inequality in (i).

Part (ii) can be proved in a similar fashion. For part (iii), using (3.8) and the fact that \(|\psi ''|\) is bounded above, on the interval \([b_{1},b_{2}]\), by \(\max \{ |\psi ''(b_{1}) |, |\psi ''(b_{2}) | \}\) as a convex function, we obtain:

$$\begin{aligned} & \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q}x \biggr\vert \\ &\quad \leq \max \bigl\{ \bigl\vert \psi ''(b_{1}) \bigr\vert , \bigl\vert \psi ''(b_{2}) \bigr\vert \bigr\} \biggl[\frac{q(b_{2}-b_{1})^{2}}{6(1+q)} \biggr]. \end{aligned}$$

 □

Theorem 3.4

Let\(\psi \in C^{2}([b_{1},b_{2}])\), and let\(\vert \psi '' \vert \)be a concave function. Then, for\(0< q<1\),

$$\begin{aligned} & \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad\leq (b_{2}-b_{1})^{2} \biggl[ \frac{1}{2(q+1)} \biggl\vert \psi '' \biggl( \frac{b_{1}+2b_{2}}{3} \biggr) \biggr\vert \\ &\qquad{} +\frac{1}{3(q+1)} \biggl\vert \psi '' \biggl( \frac{b_{1}+3b_{2}}{4} \biggr) \biggr\vert +\frac{1}{6} \biggl\vert \psi '' \biggl(\frac{b_{1}+b_{2}}{2} \biggr) \biggr\vert \biggr]. \end{aligned}$$

Proof

Employing identity (3.8), we have:

$$\begin{aligned} & \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad= \biggl\vert \int _{b_{1}}^{b_{2}} \biggl[\frac{G(b_{2},u)}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du \biggr\vert \\ &\quad= \biggl\vert \int _{b_{1}}^{b_{2}} \biggl[\frac{b_{1}-u}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du \biggr\vert . \end{aligned}$$

Suppose \(u=(1-t)b_{1}+tb_{2}\) with \(t\in [0,1]\). Then

$$\begin{aligned} ={}& \biggl\vert \int _{0}^{1} \biggl[\frac{b_{1}-(1-t)b_{1}-tb_{2}}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{((1-t)b_{1}+tb_{2}-b_{1})^{2}}{q+1} \\ &{} + \bigl(b_{2}-(1-t)b_{1}-tb_{2} \bigr) (-tb_{1}+tb_{2} ) \biggr\} \biggr]\psi '' \bigl((1-t)b_{1}+tb_{2}\bigr) (b_{2}-b_{1}) \,dt \biggr\vert \\ ={}& \biggl\vert \int _{0}^{1} \biggl[\frac{-t(b_{2}-b_{1})}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{2}(b_{2}-b_{1})^{2}}{q+1} \\ &{} +t(1-t) (b_{2}-b_{1}) (b_{2}-b_{1} ) \biggr\} \biggr]\psi ''\bigl((1-t)b_{1}+tb_{2} \bigr) (b_{2}-b_{1})\,dt \biggr\vert \\ \leq{}& (b_{2}-b_{1})^{2} [\frac{1}{q+1} \biggl\vert \int _{0}^{1}t\psi '' \bigl((1-t)b_{1}+tb_{2} \bigr)\,dt \biggr\vert \\ &{} +\frac{1}{q+1} \biggl\vert \int _{0}^{1}t^{2}\psi '' \bigl((1-t)b_{1}+tb_{2} \bigr) \,dt \biggr\vert + \biggl\vert \int _{0}^{1}t(1-t)\psi '' \bigl((1-t)b_{1}+tb_{2} \bigr)\,dt \biggr\vert ]. \end{aligned}$$
(3.9)

Now, using the Jensen integral inequality, we get the following estimates:

$$\begin{aligned} & \biggl\vert \int _{0}^{1}t\psi '' \bigl((1-t)b_{1}+tb_{2} \bigr)\,dt \biggr\vert \\ &\quad\leq \int _{0}^{1}t\,dt \biggl\vert \psi '' \biggl( \frac{\int _{0}^{1}t ((1-t)b_{1}+tb_{2} )\,dt}{\int _{0}^{1}t\,dt} \biggr) \biggr\vert \\ &\quad=\frac{1}{2} \biggl\vert \psi '' \biggl( \frac{b_{1}\int _{o}^{1}(t-t^{2})\,dt+b_{2}\int _{0}^{1}t^{2}\,dt}{\frac{1}{2}} \biggr) \biggr\vert \\ &\quad =\frac{1}{2} \biggl\vert \psi '' \biggl( \frac{b_{1}+2b_{2}}{3} \biggr) \biggr\vert , \end{aligned}$$
(3.10)
$$\begin{aligned} & \biggl\vert \int _{0}^{1}t^{2}\psi '' \bigl((1-t)b_{1}+tb_{2} \bigr) \,dt \biggr\vert \\ &\quad\leq \int _{0}^{1}t^{2}\,dt \biggl\vert \psi '' \biggl( \frac{\int _{0}^{1}t^{2} ((1-t)b_{1}+tb_{2} )\,dt}{\int _{0}^{1}t^{2}\,dt} \biggr) \biggr\vert \\ &\quad=\frac{1}{3} \biggl\vert \psi '' \biggl( \frac{b_{1}\int _{0}^{1}(t^{2}-t^{3})\,dt+b_{2}\int _{0}^{1}t^{3}\,dt}{\frac{1}{3}} \biggr) \biggr\vert \\ &\quad =\frac{1}{3} \biggl\vert \psi '' \biggl( \frac{b_{1}+3b_{2}}{4} \biggr) \biggr\vert , \end{aligned}$$
(3.11)

and

$$\begin{aligned} & \biggl\vert \int _{0}^{1}\bigl(t-t^{2}\bigr)\psi '' \bigl((1-t)b_{1}+tb_{2} \bigr) \,dt \biggr\vert \\ &\quad \leq \int _{0}^{1}\bigl(t-t^{2}\bigr)\,dt \biggl\vert \psi '' \biggl( \frac{\int _{0}^{1}(t-t^{2}) ((1-t)b_{1}+tb_{2} )\,dt}{\int _{0}^{1}(t-t^{2})\,dt} \biggr) \biggr\vert \\ &\quad =\frac{1}{6} \biggl\vert \psi '' \biggl( \frac{b_{1}\int _{0}^{1}(t-t^{2})(1-t)\,dt+b_{2}\int _{0}^{1}(t^{2}-t^{3})\,dt}{\frac{1}{6}} \biggr) \biggr\vert \\ &\quad =\frac{1}{6} \biggl\vert \psi '' \biggl( \frac{b_{1}+b_{2}}{2} \biggr) \biggr\vert . \end{aligned}$$
(3.12)

Putting (3.10), (3.11), and (3.12) into (3.9), we get

$$\begin{aligned} & \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad\leq (b_{2}-b_{1})^{2} \biggl[ \frac{1}{2(q+1)} \biggl\vert \psi '' \biggl( \frac{b_{1}+2b_{2}}{3} \biggr) \biggr\vert \\ &\qquad{} +\frac{1}{3(q+1)} \biggl\vert \psi '' \biggl( \frac{b_{1}+3b_{2}}{4} \biggr) \biggr\vert +\frac{1}{6} \biggl\vert \psi '' \biggl(\frac{b_{1}+b_{2}}{2} \biggr) \biggr\vert \biggr]. \end{aligned}$$

 □

Theorem 3.5

Suppose\(\psi \in C^{2}([b_{1},b_{2}])\)and\(q\in (0,1)\). Then:

  1. (i).

    If\(|\psi ''|\)is an increasing function, then

    $$\begin{aligned} & \biggl\vert \psi '' \biggl(\frac{q b_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad \leq \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\frac{qb_{1}+b_{2}}{1+q}+ \frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}-\frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr] \\ &\qquad{}-\frac{ \vert \psi ''(b_{2}) \vert }{6(b_{2}-b_{1})} \bigl[2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2} \bigr]. \end{aligned}$$
  2. (ii).

    If\(|\psi ''|\)is a decreasing function, then

    $$\begin{aligned} & \biggl\vert \psi '' \biggl(\frac{q b_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad \leq \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\frac{qb_{1}+b_{2}}{1+q}+ \frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}-\frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr] \\ &\qquad{}-\frac{ \vert \psi ''(b_{2}) \vert }{6(b_{2}-b_{1})} \bigl[2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2} \bigr]. \end{aligned}$$
  3. (iii).

    If\(|\psi ''|\)is a convex function, then

    $$\begin{aligned} &\biggl\vert \psi '' \biggl(\frac{q b_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad \leq \max \bigl\{ \bigl\vert \psi ''(b_{2}) \bigr\vert , \bigl\vert \psi ''(b_{1}) \bigr\vert \bigr\} \biggl[\frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1} \frac{qb_{1}+b_{2}}{1+q}+\frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}} \\ &\qquad{}-\frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr]-\min \bigl\{ \bigl\vert \psi ''(b_{1}) \bigr\vert , \bigl\vert \psi ''(b_{2}) \bigr\vert \bigr\} \biggl[ \frac{2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2}}{6(b_{2}-b_{1})} \biggr]. \end{aligned}$$

Proof

To prove item (i), we use (3.5) and the fact that \(|\psi ''|\) is an increasing function to obtain:

$$\begin{aligned} & \biggl\vert \psi '' \biggl(\frac{q b_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad = \biggl\vert \int _{b_{1}}^{b_{2}} \biggl[G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr) +\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du \biggr\vert \\ &\quad\leq \bigl\vert \psi ''(b_{2}) \bigr\vert \int _{b_{1}}^{b_{2}} \biggl\vert G \biggl( \frac{qb_{1}+b_{2}}{q+1},u \biggr) +\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr\vert \,du \\ &\quad \leq \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \int _{b_{1}}^{ \frac{qb_{1}+b_{2}}{1+q}} \biggl\vert b_{1}-u + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}-u^{2}+(b_{1}+b_{2})u-b_{1}b_{2} \biggr\} \biggr\vert \,du \\ &\qquad{}+ \int _{\frac{qb_{1}+b_{2}}{1+q}}^{b_{2}} \biggl\vert \frac{b_{1}-b_{2}}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}-u^{2}+(b_{1}+b_{2})u-b_{1}b_{2} \biggr\} \biggr\vert \,du \biggr] \\ &\quad = \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \int _{b_{1}}^{ \frac{qb_{1}+b_{2}}{1+q}} \biggl\{ u-b_{1} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}-u^{2}+(b_{1}+b_{2})u-b_{1}b_{2} \biggr\} \biggr\} \,du \\ &\qquad{}+ \int _{\frac{qb_{1}+b_{2}}{1+q}}^{b_{2}} \biggl\{ \frac{b_{2}-b_{1}}{q+1} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}-u^{2}+(b_{1}+b_{2})u-b_{1}b_{2} \biggr\} \biggr\} \,du \biggr] \\ &\quad = \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \biggl(\frac{u^{2}}{2}-b_{1}u \biggr) \bigg|_{b_{1}}^{\frac{qb_{1}+b_{2}}{1+q}}- \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{3}}{3(q+1)}\bigg|_{b_{1}}^{ \frac{qb_{1}+b_{2}}{1+q}} - \frac{u^{3}}{3}\bigg|_{b_{1}}^{ \frac{qb_{1}+b_{2}}{1+q}} \\ &\qquad{}+(b_{1}+b_{2})\frac{u^{2}}{2}\bigg|_{b_{1}}^{ \frac{qb_{1}+b_{2}}{1+q}}-b_{2}b_{1}u\bigg|_{b_{1}}^{ \frac{qb_{1}+b_{2}}{1+q}} \biggr\} +\frac{b_{2}-b_{1}}{1+q} \biggl(b_{2}- \frac{qb_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \\ &\qquad{}\times \biggl\{ \frac{(u-b_{1})^{3}}{3(q+1)}|^{b_{2}}_{ \frac{qb_{1}+b_{2}}{1+q}} - \frac{u^{3}}{3}|^{b_{2}}_{ \frac{qb_{1}+b_{2}}{1+q}}+(b_{1}+b_{2}) \frac{u^{2}}{2}|^{b_{2}}_{ \frac{qb_{1}+b_{2}}{1+q}} -b_{2}b_{1}u|^{b_{2}}_{ \frac{qb_{1}+b_{2}}{1+q}} \biggr\} \biggr] \\ &\quad = \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \biggl( \frac{(\frac{qb_{1}+b_{2}}{1+q})^{2}}{2}- b_{1}\biggl( \frac{qb_{1}+b_{2}}{1+q} \biggr)-\frac{b_{1}^{2}}{2}+b_{1}^{2} \biggr)- \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{ (\frac{qb_{1}+b_{2}}{1+q}-b_{1} )^{3}}{3(q+1)} \\ &\qquad{}-\frac{ (qb_{1}+b_{2} )^{3}}{3(1+q)^{3}} +\frac{b_{1}^{3}}{3}+(b_{1}+b_{2}) \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}-(b_{1}+b_{2}) \frac{b_{1}^{2}}{2}-b_{2}b_{1} \biggl(\frac{qb_{1}+b_{2}}{1+q}-b_{1}\biggr) \biggr\} \\ &\qquad{}+\frac{b_{2}-b_{1}}{1+q} \biggl(b_{2}-\frac{qb_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{3}}{3(q+1)} - \frac{ (\frac{qb_{1}+b_{2}}{1+q}-b_{1} )^{3}}{3(q+1)}- \frac{b_{2}^{3}}{3} \\ &\qquad{}+\frac{(qb_{1}+b_{2})^{3}}{3(1+q)^{3}}+(b_{1}+b_{2}) \frac{b_{2}^{2}}{2}-(b_{1}+b_{2}) \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}-b_{2}b_{1} \biggl(b_{2}- \frac{qb_{1}+b_{2}}{1+q} \biggr) \biggr\} \biggr] \\ &\quad = \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \biggl( \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\biggl(\frac{qb_{1}+b_{2}}{1+q} \biggr)+ \frac{b_{1}^{2}}{2} \biggr)-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{ (b_{2}-b_{1} )^{3}}{3(q+1)^{4}} \\ &\qquad{}-\frac{ (qb_{1}+b_{2} )^{3}}{3(1+q)^{3}} +\frac{b_{1}^{3}}{3}+(b_{1}+b_{2}) \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}-(b_{1}+b_{2}) \frac{b_{1}^{2}}{2} -b_{2}b_{1}\biggl(\frac{b_{2}-b_{1}}{1+q}\biggr) \biggr\} \\ &\qquad{}+\frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{3}}{3(q+1)} - \frac{ (b_{2}-b_{1} )^{3}}{3(q+1)^{4}}-\frac{b_{2}^{3}}{3}+ \frac{(qb_{1}+b_{2})^{3}}{3(1+q)^{3}} \\ &\qquad{}+(b_{1}+b_{2})\frac{b_{2}^{2}}{2}-(b_{1}+b_{2}) \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}-b_{2}b_{1}\frac{q(b_{2}-b_{1})}{1+q} \biggr\} \biggr] \\ &\quad = \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\biggl(\frac{qb_{1}+b_{2}}{1+q}\biggr)+ \frac{b_{1}^{2}}{2}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{b_{1}^{3}}{3}- \frac{(b_{1}+b_{2})b_{1}^{2}}{2} \\ &\qquad{}-b_{2}b_{1}\biggl(\frac{b_{2}-b_{1}}{1+q}\biggr) \biggr\} + \frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}-\frac{1}{b_{2}-b_{1}} \biggl\{ - \frac{b_{2}^{3}}{3}+ \frac{(b_{1}+b_{2})b_{2}^{2}}{2}+ \frac{(b_{2}-b_{1})^{3}}{3(q+1)} \\ &\qquad{}-b_{2}b_{1}\frac{q(b_{2}-b_{1})}{1+q} \biggr\} \biggr] \\ &\quad = \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}-b_{1}\frac{qb_{1}+b_{2}}{1+q}+ \frac{b_{1}^{2}}{2} +\frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}- \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{b_{1}^{3}}{3}- \frac{b_{2}^{3}}{3} \\ &\qquad{}-\frac{(b_{1}+b_{2})b_{1}^{2}}{2}-b_{2}b_{1}\biggl( \frac{b_{2}-b_{1}}{1+q} \biggr)+\frac{(b_{1}+b_{2})b_{2}^{2}}{2}+ \frac{(b_{2}-b_{1})^{3}}{3(q+1)}-b_{2}b_{1} \frac{q(b_{2}-b_{1})}{1+q} \biggr\} \biggr] \\ &\quad = \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\frac{qb_{1}+b_{2}}{1+q}+ \frac{b_{1}^{2}}{2}+\frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}- \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{b_{1}^{3}}{3} \\ &\qquad{}-\frac{(b_{1}+b_{2})b_{1}^{2}}{2}-\frac{b_{2}^{3}}{3}+ \frac{(b_{1}+b_{2})b_{2}^{2}}{2}+\frac{(b_{2}-b_{1})^{3}}{3(q+1)} -b_{2}b_{1}(b_{2}-b_{1}) \biggr\} \biggr] \\ &\quad=\frac{ \vert \psi ''(b_{2}) \vert }{b_{2}-b_{1}} \biggl[ \frac{(qb_{1}+b_{2})^{2}(b_{2}-b_{1})}{2(1+q)^{2}}- b_{1} \frac{(qb_{1}+b_{2})(b_{2}-b_{1})}{1+q}+ \frac{b_{1}^{2}(b_{2}-b_{1})}{2}-\frac{b_{1}^{3}}{3} \\ &\qquad{}+\frac{q(b_{2}-b_{1})^{3}}{(1+q)^{2}}+ \frac{(b_{1}+b_{2})b_{1}^{2}}{2}+\frac{b_{2}^{3}}{3}- \frac{(b_{1}+b_{2})b_{2}^{2}}{2} -\frac{(b_{2}-b_{1})^{3}}{3(q+1)}+b_{2}^{2}b_{1}-b_{2}b_{1}^{2} \biggr] \\ &\quad= \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\frac{qb_{1}+b_{2}}{1+q}+ \frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}-\frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr] \\ &\qquad{}+\frac{ \vert \psi ''(b_{2}) \vert }{b_{2}-b_{1}} \\ &\qquad{}\times \biggl[ \frac{3b_{1}^{2}b_{2}-3b_{1}^{3}-2b_{1}^{3}+3b_{1}^{3}+3b_{1}^{2}b_{2}+2b_{2}^{3} -3b_{1}b_{2}^{2}-3b_{2}^{3}+6b_{2}^{2}b_{1}-6b_{2}b_{1}^{2}}{6} \biggr] \\ &\quad= \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\frac{qb_{1}+b_{2}}{1+q}+ \frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}-\frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr] \\ &\qquad{}-\frac{ \vert \psi ''(b_{2}) \vert }{6(b_{2}-b_{1})} \bigl[2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2} \bigr]. \end{aligned}$$

Part (ii) can be proved in a similar way. For part (iii), using (3.5) and the fact that \(|\psi ''|\) is bounded above, on the interval \([b_{1},b_{2}]\), by \(\max \{ |\psi ''(b_{1}) |, |\psi ''(b_{2}) | \}\) as a convex function, we obtain:

$$\begin{aligned} & \biggl\vert \psi '' \biggl(\frac{q b_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad \leq \max \biggl\{ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\frac{qb_{1}+b_{2}}{1+q}+ \frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}-\frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr] \\ &\qquad{}-\frac{ \vert \psi ''(b_{2}) \vert }{6(b_{2}-b_{1})} \bigl[2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2} \bigr], \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}-b_{1}\frac{qb_{1}+b_{2}}{1+q} \\ &\qquad{}+\frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}- \frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr]- \frac{ \vert \psi ''(b_{1}) \vert }{6(b_{2}-b_{1})} \bigl[2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2} \bigr] \biggr\} \\ &\quad=\max \biggl\{ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\frac{qb_{1}+b_{2}}{1+q}+ \frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}-\frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr], \\ & \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[\frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1}\frac{qb_{1}+b_{2}}{1+q}+\frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}- \frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr] \biggr\} \\ &\qquad{}+\max \biggl\{ - \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2}}{6(b_{2}-b_{1})} \biggr], \\ &\qquad{}- \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2}}{6(b_{2}-b_{1})} \biggr] \biggr\} \\ &\quad =\max \bigl\{ \bigl\vert \psi ''(b_{2}) \bigr\vert , \bigl\vert \psi ''(b_{1}) \bigr\vert \bigr\} \biggl[\frac{(qb_{1}+b_{2})^{2}}{2(1+q)^{2}}- b_{1} \frac{qb_{1}+b_{2}}{1+q}+\frac{q(b_{2}-b_{1})^{2}}{(1+q)^{2}}- \frac{(b_{2}-b_{1})^{2}}{3(q+1)} \biggr] \\ &\qquad{}-\min \bigl\{ \bigl\vert \psi ''(b_{1}) \bigr\vert , \bigl\vert \psi ''(b_{2}) \bigr\vert \bigr\} \biggl[ \frac{2b_{1}^{3}+b_{2}^{3}-3b_{1}b_{2}^{2}}{6(b_{2}-b_{1})} \biggr], \end{aligned}$$

which gives the inequality in item (iii). □

Theorem 3.6

Let\(\psi \in C^{2}([b_{1},b_{2}])\), and let\(|\psi '' |\)be a convex function. Then for\(q\in (0,1)\), the following inequality holds:

$$\begin{aligned} & \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q}x \biggr\vert \\ &\quad \leq \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{4b_{1}b_{2}+q(b_{1}+b_{2})^{2}}{12(q+1)} \biggr] + \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{q(b_{2}-b_{1})^{2}-2(q+1)b_{1}b_{2}}{12(q+1)} \biggr]. \end{aligned}$$

Proof

Employing (3.8), we get:

$$\begin{aligned} & \biggl\vert \frac{q\psi (b_{1})+\psi (b_{2})}{1+q}-\frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q}x \biggr\vert \\ &\quad = \biggl\vert \int _{b_{1}}^{b_{2}} \biggl[\frac{G(b_{2},u)}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du \biggr\vert \\ &\quad = \biggl\vert \int _{b_{1}}^{b_{2}} \biggl[\frac{b_{1}-u}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du \biggr\vert . \\ &\quad \leq \int _{b_{1}}^{b_{2}} \biggl[\frac{b_{1}-u}{q+1} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}-u^{2}+(b_{1}+b_{2})u-b_{1}b_{2} \biggr\} \biggr] \bigl\vert \psi ''(u) \bigr\vert \,du. \end{aligned}$$

Putting \(u=(1-t)b_{1}+tb_{2}\) with \(t\in [0,1]\), we get

$$\begin{aligned} ={}& \int _{0}^{1} \biggl[\frac{b_{1}-(1-t)b_{1}-tb_{2}}{q+1}+ \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{((1-t)b_{1}+tb_{2}-b_{1})^{2}}{q+1}-\bigl((1-t)b_{1}+tb_{2} \bigr)^{2} \\ &{}+(b_{1}+b_{2}) \bigl((1-t)b_{1}+tb_{2} \bigr)-b_{1}b_{2} \biggr\} \biggr] \bigl\vert \psi ''\bigl((1-t)b_{1}+tb_{2}\bigr) \bigr\vert (b_{2}-b_{1})\,dt \\ \leq{} & \int _{0}^{1} \biggl[\frac{t(b_{1}-b_{2})}{q+1}+ \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{2}(b_{2}-b_{1})^{2}}{q+1} -(1-t)^{2}b_{1}^{2}-t^{2}b_{2}^{2}-2(1-t)tb_{1}b_{2} \\ &{}+(b_{1}+b_{2})b_{1}(1-t)+(b_{1}+b_{2})b_{2}t-b_{1}b_{2} \biggr\} \biggr] \bigl[(1-t) \bigl\vert \psi ''(b_{1}) \bigr\vert +t \bigl\vert \psi ''(b_{2}) \bigr\vert \bigr](b_{2}-b_{1})\,dt \\ ={}&(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \int _{0}^{1} \biggl[ \frac{t(1-t)(b_{1}-b_{2})}{q+1}+ \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{2}(1-t)(b_{2}-b_{1})^{2}}{q+1} \\ &{}-(1-t)^{3}b_{1}^{2}-t^{2}(1-t)b_{2}^{2}-2(1-t)^{2}tb_{1}b_{2}+(b_{1}+b_{2})b_{1}(1-t)^{2} \\ &{}+(b_{1}+b_{2})b_{2}t(1-t)-b_{1}b_{2}(1-t) \biggr\} \biggr]\,dt+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \int _{0}^{1} \biggl[ \frac{t^{2}(b_{1}-b_{2})}{q+1} \\ &{}+\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{3}(b_{2}-b_{1})^{2}}{q+1}-t(1-t)^{2}b_{1}^{2}+t^{3}b_{2}^{2}+2(1-t)t^{2}b_{1}b_{2} \\ &{}+(b_{1}+b_{2})b_{1}t(1-t)+(b_{1}+b_{2})b_{2}t^{2}-b_{1}b_{2}t \biggr\} \biggr]\,dt \\ ={}& \bigl\vert \psi ''(b_{1}) \bigr\vert \int _{0}^{1} \biggl[ \frac{(t^{2}-t)(b_{2}-b_{1})^{2}}{q+1}+ \frac{(t^{2}-t^{3})(b_{2}-b_{1})^{2}}{q+1}-(1-t)^{3}b_{1}^{2}- \bigl(t^{2}-t^{3}\bigr)b_{2}^{2} \\ &{}-2(1-t)^{2}tb_{1}b_{2}+(b_{1}+b_{2})b_{1}(1-t)^{2}+(b_{1}+b_{2})b_{2} \bigl(t-t^{2}\bigr)-b_{1}b_{2}(1-t) \biggr]\,dt \\ &{}+ \bigl\vert \psi ''(b_{2}) \bigr\vert \int _{0}^{1} \biggl[ \frac{-t^{2}(b_{2}-b_{1})^{2}}{q+1}+ \frac{t^{3}(b_{2}-b_{1})^{2}}{q+1} -t(1-t)^{2}b_{1}^{2}-t^{3}b_{2}^{2}-2 \bigl(t^{2}-t^{3}\bigr)b_{1}b_{2} \\ &{}+(b_{1}+b_{2})b_{1}\bigl(t-t^{2} \bigr)+(b_{1}+b_{2})b_{2}t^{2}-b_{1}b_{2}t \} \biggr]\,dt \\ ={}& \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{ (\frac{t^{3}}{3}-\frac{t^{2}}{2} )(b_{2}-b_{1})^{2}}{q+1} +\frac{(\frac{t^{3}}{3}-\frac{t^{4}}{4})(b_{2}-b_{1})^{2}}{q+1}+ \frac{(1-t)^{4}}{4}b_{1}^{2}- \biggl(\frac{t^{3}}{3} -\frac{t^{4}}{4} \biggr)b_{2}^{2} \\ &{}+b_{1}b_{2} \biggl(t^{2}+\frac{t^{4}}{2}- \frac{4t^{3}}{3} \biggr)-(b_{1}+b_{2})b_{1} \frac{(1-t)^{3}}{3}+(b_{1}+b_{2})b_{2} \biggl( \frac{t^{2}}{2}- \frac{t^{3}}{3} \biggr) \\ &{}-b_{1}b_{2} \biggl(t-\frac{t^{2}}{2} \biggr) \biggr]_{0}^{1}+ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{-t^{3}(b_{2}-b_{1})^{2}}{3(q+1)}+\frac{t^{4}(b_{2}-b_{1})^{2}}{4(q+1)}- \biggl( \frac{t^{2}}{2}+ \frac{t^{4}}{4}-\frac{2t^{3}}{3} \biggr)b_{1}^{2} \\ &{}-\frac{t^{4}}{4}b_{2}^{2}-2 \biggl(\frac{t^{3}}{3}- \frac{t^{4}}{4} \biggr)b_{1}b_{2}+(b_{1}+b_{2})b_{1} \biggl(\frac{t^{2}}{2} - \frac{t^{3}}{3} \biggr)+(b_{1}+b_{2})b_{2} \frac{t^{3}}{3}-b_{1}b_{2} \frac{t^{2}}{2} \biggr]_{0}^{1} \\ ={}& \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[\frac{-(b_{2}-b_{1})^{2}}{6(q+1)} + \frac{(b_{2}-b_{1})^{2}}{12(q+1)}-\frac{b_{1}^{2}}{4}- \frac{b_{2}^{2}}{12}+b_{1}b_{2} \biggl(1+\frac{1}{2}- \frac{4}{3} \biggr) \\ &{}+\frac{(b_{1}+b_{2})b_{1}}{3}+\frac{(b_{1}+b_{2})b_{2}}{6}- \frac{b_{1}b_{2}}{2} \biggr] + \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[- \frac{(b_{2}-b_{1})^{2}}{3(q+1)}+\frac{(b_{2}-b_{1})^{2}}{4(q+1)} \\ &{}- \biggl(\frac{1}{2}+\frac{1}{4}-\frac{2}{3} \biggr)b_{1}^{2}- \frac{b_{2}^{2}}{4}-\frac{b_{1}b_{2}}{3} + \frac{(b_{1}+b_{2})b_{1}}{6}+\frac{(b_{1}+b_{2})b_{2}}{3}- \frac{b_{1}b_{2}}{2} \biggr] \\ ={}& \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{4b_{1}b_{2}+q(b_{1}+b_{2})^{2}}{12(q+1)} \biggr] + \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{q(b_{2}-b_{1})^{2}-2(q+1)b_{1}b_{2}}{12(q+1)} \biggr]. \end{aligned}$$

 □

We now present our last result.

Theorem 3.7

Let\(\psi \in ([b_{1},b_{2}] )\)be such that\(|\psi '' |\)is a convex function. Then for any\(q\in (0,1)\), the following inequality holds:

$$\begin{aligned} & \biggl\vert \psi '' \biggl(\frac{q b_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad\leq \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{(b_{2}-b_{1})^{2} (5q^{2}+4q+1 )-4(b_{1}+b_{2})b_{1}}{12(1+q)^{3}} +\frac{3b_{1}^{2}-b_{2}^{2}+6b_{1}b_{2}}{12} \biggr] \\ &\qquad {}+ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(b_{2}-b_{1})^{2} (3(1+q)^{2}+10 )}{12(1+q)^{3}}-\frac{(b_{2}-b_{1})^{2}}{12} \biggr]. \end{aligned}$$

Proof

Using (3.5), we get:

$$\begin{aligned} & \biggl\vert \psi '' \biggl(\frac{q b_{1}+b_{2}}{1+q} \biggr)- \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\psi (x)~_{b_{1}} \,d_{q} x \biggr\vert \\ &\quad= \biggl\vert \int _{b_{1}}^{b_{2}} \biggl[G \biggl(\frac{qb_{1}+b_{2}}{q+1},u \biggr) +\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr]\psi ''(u)\,du \biggr\vert \\ &\quad \leq \int _{b_{1}}^{\frac{qb_{1}+b_{2}}{1+q}} \biggl\vert b_{1}-u + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr\vert \bigl\vert \psi ''(u) \bigr\vert \,du \\ &\qquad{}+ \int _{\frac{qb_{1}+b_{2}}{1+q}}^{b_{2}} \biggl\vert \frac{b_{1}-b_{2}}{1+q} + \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}+(b_{2}-u) (u-b_{1}) \biggr\} \biggr\vert \bigl\vert \psi ''(u) \bigr\vert \,du \\ &\quad = \int _{b_{1}}^{\frac{qb_{1}+b_{2}}{1+q}} \biggl[u-b_{1} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}-u^{2}+(b_{1}+b_{2})u-b_{1}b_{2} \biggr\} \biggr] \bigl\vert \psi ''(u) \bigr\vert \,du \\ &\qquad{}+ \int _{\frac{qb_{1}+b_{2}}{1+q}}^{b_{2}} \biggl[ \frac{b_{2}-b_{1}}{1+q} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(u-b_{1})^{2}}{q+1}-u^{2}+(b_{1}+b_{2})u-b_{1}b_{2} \biggr\} \biggr] \bigl\vert \psi ''(u) \bigr\vert \,du \\ &\quad =(b_{2}-b_{1}) \int _{0}^{\frac{1}{1+q}} \biggl[(1-t)b_{1}+tb_{2}-b_{1} -\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{((1-t)b_{1}+tb_{2}-b_{1})^{2}}{q+1} \\ &\qquad{}-\bigl((1-t)b_{1}+tb_{2}\bigr)^{2}+(b_{1}+b_{2}) \bigl((1-t)b_{1}+tb_{2}\bigr)-b_{1}b_{2} \biggr\} \biggr] \bigl\vert \psi '' \bigl((1-t)b_{1}+tb_{2}\bigr) \bigr\vert \,dt \\ &\qquad{}+ \int _{\frac{1}{1+q}}^{1} \biggl[\frac{b_{2}-b_{1}}{1+q} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{((1-t)b_{1}+tb_{2}-b_{1})^{2}}{q+1}-\bigl((1-t)b_{1}+tb_{2} \bigr)^{2} \\ &\qquad{}+(b_{1}+b_{2}) \bigl((1-t)b_{1}+tb_{2} \bigr)-b_{1}b_{2} \biggr\} \biggr] \bigl\vert \psi ''\bigl((1-t)b_{1}+tb_{2}\bigr) \bigr\vert (b_{2}-b_{1})\,dt \\ &\quad \leq (b_{2}-b_{1}) \int _{0}^{\frac{1}{1+q}} \biggl[t(b_{2}-b_{1}) - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{2}(b_{2}-b_{1})^{2}}{q+1}-(1-t)^{2}b_{1}^{2}-t^{2}b_{2}^{2} \\ &\qquad{}-2t(1-t)b_{1}b_{2}+(b_{1}+b_{2})b_{1}(1-t)+t(b_{1}+b_{2})b_{2}-b_{1}b_{2} \biggr\} \biggr] \bigl[(1-t) \bigl\vert \psi ''(b_{1}) \bigr\vert \\ &\qquad{}+t \bigl\vert \psi ''(b_{2}) \bigr\vert \bigr]\,dt+ \int _{\frac{1}{1+q}}^{1} \biggl[ \frac{b_{2}-b_{1}}{1+q} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{2}(b_{2}-b_{1})^{2}}{q+1}-(1-t)^{2}b_{1}^{2} \\ &\qquad{}-t^{2}b_{2}^{2}-2t(1-t)b_{1}b_{2}+(b_{1}+b_{2})b_{1}(1-t)+t(b_{1}+b_{2})b_{2}-b_{1}b_{2} \biggr\} \biggr] \\ &\qquad{}\times \bigl[(1-t) \bigl\vert \psi ''(b_{1}) \bigr\vert +t \bigl\vert \psi ''(b_{2}) \bigr\vert \bigr](b_{2}-b_{1})\,dt \\ &\quad =(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \int _{0}^{\frac{1}{1+q}} \biggl[t(1-t) (b_{2}-b_{1}) -\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{2}(1-t)(b_{2}-b_{1})^{2}}{q+1} \\ &\qquad{}-(1-t)^{3}b_{1}^{2}-t^{2}(1-t)b_{2}^{2}-2t(1-t)^{2}b_{1}b_{2}+(b_{1}+b_{2})b_{1}(1-t)^{2} \\ &\qquad{}+t(1-t) (b_{1}+b_{2})b_{2}-b_{1}b_{2}(1-t) \biggr\} \biggr]+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \int _{0}^{\frac{1}{1+q}} \biggl[t^{2}(b_{2}-b_{1}) \\ &\qquad{}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{3}(b_{2} -b_{1})^{2}}{q+1}-t(1-t)^{2}b_{1}^{2}-t^{3}b_{2}^{2}-2t^{2}(1-t) b_{1}b_{2}\\ &\qquad{}+(b_{1}+b_{2})b_{1}t(1-t) \end{aligned}$$
$$\begin{aligned} &\qquad{}+t^{2}(b_{1}+b_{2})b_{2}-tb_{1}b_{2} \biggr\} \biggr]\,dt+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \int _{\frac{1}{1+q}}^{1} \biggl[ \frac{b_{2}-b_{1}}{1+q}(1-t) \\ &\qquad{}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{2}(1-t)(b_{2}-b_{1})^{2}}{q+1}-(1-t)^{3}b_{1}^{2}-t^{2}(1-t)b_{2}^{2}-2t(1-t)^{2}b_{1}b_{2} \\ &\qquad{}+(b_{1}+b_{2})b_{1}(1-t)^{2}+t(1-t) (b_{1}+b_{2})b_{2}-b_{1}b_{2}(1-t) \biggr\} \biggr]\,dt+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \\ &\qquad{}\times \int _{\frac{1}{1+q}}^{1} \biggl[\frac{b_{2}-b_{1}}{1+q}t - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{3}(b_{2}-b_{1})^{2}}{q+1}-t(1-t)^{2}b_{1}^{2}-t^{3}b_{2}^{2}-2t^{2}(1-t)b_{1}b_{2} \\ &\qquad{}+(b_{1}+b_{2})b_{1}t(1-t)+t^{2}(b_{1}+b_{2})b_{2}-tb_{1}b_{2} \biggr\} \biggr]\,dt \\ &\quad =(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \int _{0}^{\frac{1}{1+q}} \biggl[\bigl(t-t^{2}\bigr) (b_{2}-b_{1}) -\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(t^{2}-t^{3})(b_{2}-b_{1})^{2}}{q+1} \\ &\qquad{}-(1-t)^{3}b_{1}^{2}-\bigl(t^{2}-t^{3} \bigr)b_{2}^{2}-2\bigl(t+t^{3}-2t^{2} \bigr)b_{1}b_{2}+(b_{1}+b_{2})b_{1}(1-t)^{2} \\ &\qquad{}+\bigl(t-t^{2}\bigr) (b_{1}+b_{2})b_{2}-b_{1}b_{2}(1-t) \biggr\} \biggr]+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \int _{0}^{\frac{1}{1+q}} \biggl[t^{2}(b_{2}-b_{1}) \\ &\qquad{}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{3}(b_{2}-b_{1})^{2}}{q+1}-\bigl(t+t^{3}-2t^{2} \bigr)b_{1}^{2}-t^{3}b_{2}^{2}-2 \bigl(t^{2}-t^{3}\bigr)b_{1}b_{2} \\ &\qquad{}+(b_{1} +b_{2})b_{1}\bigl(t-t^{2}\bigr) \\ &\qquad{}+t^{2}(b_{1}+b_{2})b_{2}-tb_{1}b_{2} \biggr\} \biggr]\,dt+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \int _{\frac{1}{1+q}}^{1} \biggl[ \frac{b_{2}-b_{1}}{1+q}(1-t) \\ &\qquad{}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(t^{2}-t^{3})(b_{2}-b_{1})^{2}}{q+1}-(1-t)^{3}b_{1}^{2}- \bigl(t^{2}-t^{3}\bigr)b_{2}^{2}-2 \bigl(t+t^{3}-t^{2}\bigr)b_{1}b_{2} \\ &\qquad{}+(b_{1}+b_{2})b_{1}(1-t)^{2}+ \bigl(t-t^{2}\bigr) (b_{1}+b_{2})b_{2}-b_{1}b_{2}(1-t) \biggr\} \biggr]\,dt+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \\ &\qquad{}\times \int _{\frac{1}{1+q}}^{1} \biggl[\frac{b_{2}-b_{1}}{1+q}t - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{3}(b_{2}-b_{1})^{2}}{q+1}-\bigl(t+t^{3}-2t^{2} \bigr)b_{1}^{2}-t^{3}b_{2}^{2}-2 \bigl(t^{2}-t^{3}\bigr)b_{1}b_{2} \\ &\qquad{}+(b_{1}+b_{2})b_{1}\bigl(t-t^{2} \bigr)+t^{2}(b_{1}+b_{2})b_{2}-tb_{1}b_{2} \biggr\} \biggr]\,dt \\ &\quad =(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \biggl(\frac{t^{2}}{2}- \frac{t^{3}}{3} \biggr) (b_{2}-b_{1}) -\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(\frac{t^{3}}{3}-\frac{t^{4}}{4})(b_{2}-b_{1})^{2}}{q+1} \\ &\qquad{}+\frac{(1-t)^{4}}{4}b_{1}^{2}- \biggl(\frac{t^{3}}{3}- \frac{t^{4}}{4} \biggr)b_{2}^{2}-2 \biggl( \frac{t^{2}}{2}+\frac{t^{4}}{4} -2 \frac{t^{3}}{3} \biggr)b_{1}b_{2}-(b_{1}+b_{2})b_{1} \frac{(1-t)^{3}}{3} \\ &\qquad{}+ \biggl(\frac{t^{2}}{2}-\frac{t^{3}}{3} \biggr) (b_{1}+b_{2})b_{2}-b_{1}b_{2} \biggl(t-\frac{t^{2}}{2} \biggr) \biggr\} \biggr]_{0}^{\frac{1}{1+q}}+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \\ &\qquad{}\times \biggl[\frac{t^{3}}{3}(b_{2}-b_{1})- \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{4}(b_{2}-b_{1})^{2}}{4(q+1)}- \biggl(\frac{t^{2}}{2} + \frac{t^{4}}{4}-\frac{2t^{3}}{3} \biggr)b_{1}^{2}-2 \biggl(\frac{t^{3}}{3} - \frac{t^{4}}{4} \biggr)b_{1}b_{2} \\ &\qquad{}-\frac{t^{4}}{4}b_{2}^{2}+(b_{1}+b_{2})b_{1} \biggl(\frac{t^{2}}{2}- \frac{t^{3}}{3} \biggr) +\frac{t^{3}}{3}(b_{1}+b_{2})b_{2}- \frac{t^{2}}{2}b_{1}b_{2} \biggr\} \biggr]_{0}^{\frac{1}{1+q}}\\ &\qquad{}+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \end{aligned}$$
$$\begin{aligned} &\qquad{}\times \biggl[\frac{b_{2}-b_{1}}{1+q} \biggl(t-\frac{t^{2}}{2} \biggr) - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{ (\frac{t^{3}}{3}-\frac{t^{4}}{4} )(b_{2}-b_{1})^{2}}{q+1}+ \frac{(1-t)^{4}}{4}b_{1}^{2} - \biggl(\frac{t^{3}}{3}-\frac{t^{4}}{4} \biggr)b_{2}^{2} \\ &\qquad{}-2 \biggl(\frac{t^{2}}{2}+\frac{t^{4}}{4}-\frac{2t^{3}}{3} \biggr)b_{1}b_{2}-(b_{1}+b_{2})b_{1} \frac{(1-t)^{3}}{3}+ \biggl(\frac{t^{2}}{2} -\frac{t^{3}}{3} \biggr) (b_{1}+b_{2})b_{2} \\ &\qquad{}-b_{1}b_{2} \biggl(t-\frac{t^{2}}{2} \biggr) \biggr\} \biggr]_{\frac{1}{1+q}}^{1}+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{b_{2}-b_{1}}{2(1+q)}t^{2} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{t^{4}(b_{2}-b_{1})^{2}}{4(q+1)} \\ &\qquad{}- \biggl(\frac{t^{2}}{2}+\frac{t^{4}}{4}-\frac{2t^{3}}{3} \biggr)b_{1}^{2}- \frac{t^{4}}{4}b_{2}^{2}-2 \biggl(\frac{t^{3}}{3} -\frac{t^{4}}{4} \biggr)b_{1}b_{2}+(b_{1}+b_{2})b_{1} \biggl(\frac{t^{2}}{2}-\frac{t^{3}}{3} \biggr) \\ &\qquad{}+\frac{t^{3}}{3}(b_{1}+b_{2})b_{2}- \frac{t^{2}}{2}b_{1}b_{2} \biggr\} \biggr]_{\frac{1}{1+q}}^{1} \\ &\quad =(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \biggl( \frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) (b_{2}-b_{1}) - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{q^{4}b_{1}^{2}}{4(1+q)^{4}} \\ &\qquad{}-\frac{b_{1}^{2}}{4}+ \frac{ (\frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} )(b_{2}-b_{1})^{2}}{q+1} - \biggl(\frac{1}{3(1+q)^{3}}- \frac{1}{4(1+q)^{4}} \biggr)b_{2}^{2} \\ &\qquad{}-2 \biggl(\frac{1}{2(1+q)^{2}}+\frac{1}{4(1+q)^{4}}- \frac{2}{3(1+q)^{3}} \biggr)b_{1}b_{2}- \frac{q^{3}(b_{1}+b_{2})b_{1}}{3(1+q)^{3}} + \frac{(b_{1}+b_{2})b_{1}}{3(1+q)^{3}} \\ &\qquad{}+ \biggl(\frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) (b_{1}+b_{2})b_{2}- \frac{(1+2q)b_{1}b_{2}}{2(1+q)^{2}} \biggr\} \biggr] \\ &\qquad{}+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{b_{2}-b_{1}}{3(1+q)^{3}}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{2}}{4(q+1)^{5}}- \biggl(\frac{1}{2(1+q)^{2}} \\ &\qquad{}+\frac{1}{4(1+q)^{4}}-\frac{2}{3(1+q)^{3}} \biggr)b_{1}^{2}- \frac{1}{4(1+q)^{4}}b_{2}^{2} -2 \biggl(\frac{1}{3(1+q)^{3}}- \frac{1}{4(1+q)^{4}} \biggr)b_{1}b_{2} \\ &\qquad{}+(b_{1}+b_{2})b_{1} \biggl( \frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr)+\frac{(b_{1}+b_{2})b_{2}}{3(1+q)^{3}} - \frac{b_{1}b_{2}}{2(1+q)^{2}} \biggr\} \biggr] \\ &\qquad{}+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{b_{2}-b_{1}}{2(1+q)}-\frac{(b_{2}-b_{1})(1+2q)}{2(1+q)^{3}} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{2}}{12(q+1)} \\ &\qquad{}- \frac{ (\frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} )(b_{2}-b_{1})^{2}}{q+1}- \frac{q^{4}b_{1}^{2}}{4(1+q)^{4}} - \biggl(\frac{1}{3}- \frac{1}{4} \biggr)b_{2}^{2} \\ &\qquad{}+ \biggl(\frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} \biggr)b_{2}^{2} -2 \biggl(\frac{1}{2}+\frac{1}{4}-\frac{2}{3} \biggr)b_{1}b_{2}+2 \biggl( \frac{1}{2(1+q)^{2}} \\ &\qquad{}+\frac{1}{4(1+q)^{4}}-\frac{2}{3(1+q)^{3}} \biggr)b_{1}b_{2}+ \frac{q^{3}(b_{1}+b_{2})b_{1}}{3(1+q)^{3}}+ \biggl(\frac{1}{2} - \frac{1}{3} \biggr) (b_{1}+b_{2})b_{2} \\ &\qquad{}- \biggl(\frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) (b_{1}+b_{2})b_{2}- \frac{b_{1}b_{2}}{2}+\frac{b_{1}b_{2}(1+2q)}{2(1+q)^{2}} \biggr\} \biggr] \\ &\qquad{}+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{b_{2}-b_{1}}{2(1+q)}-\frac{b_{2}-b_{1}}{2(1+q)^{3}} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{2}}{4(q+1)}- \frac{(b_{2}-b_{1})^{2}}{4(q+1)^{5}} \\ &\qquad{}- \biggl(\frac{1}{2}+\frac{1}{4}-\frac{2}{3} \biggr)b_{1}^{2}+ \biggl( \frac{1}{2(1+q)^{2}}+ \frac{1}{4(1+q)^{4}} -\frac{2}{3(1+q)^{3}} \biggr)b_{1}^{2}- \frac{b_{2}^{2}}{4}+\frac{b_{2}^{2}}{4(1+q)^{4}} \\ &\qquad{}-2 \biggl(\frac{1}{3}-\frac{1}{4} \biggr)b_{1}b_{2}+2 \biggl( \frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} \biggr)b_{1}b_{2} +(b_{1}+b_{2})b_{1} \biggl(\frac{1}{2}- \frac{1}{3} \biggr) \end{aligned}$$
$$\begin{aligned} &\qquad-(b_{1}+b_{2})b_{1} \biggl( \frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) +\frac{(b_{1}+b_{2})b_{2}}{3}- \frac{(b_{1}+b_{2})b_{2}}{3(1+q)^{3}}-\frac{b_{1}b_{2}}{2} \\ &\qquad{}+\frac{b_{1}b_{2}}{2(1+q)^{2}} \biggr\} \biggr] \\ &\quad =(b_{2}-b_{1}) \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \biggl( \frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) (b_{2}-b_{1}) - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{q^{4}b_{1}^{2}}{4(1+q)^{4}} \\ &\qquad{}-\frac{b_{1}^{2}}{4}+ \frac{ (\frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} )(b_{2}-b_{1})^{2}}{q+1} - \biggl(\frac{1}{3(1+q)^{3}}- \frac{1}{4(1+q)^{4}} \biggr)b_{2}^{2} \\ &\qquad{}-2 \biggl(\frac{1}{2(1+q)^{2}}+\frac{1}{4(1+q)^{4}}- \frac{2}{3(1+q)^{3}} \biggr)b_{1}b_{2}- \frac{q^{3}(b_{1}+b_{2})b_{1}}{3(1+q)^{3}} + \frac{(b_{1}+b_{2})b_{1}}{3(1+q)^{3}} \\ &\qquad{}+ \biggl(\frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) (b_{1}+b_{2})b_{2}- \frac{(1+2q)b_{1}b_{2}}{2(1+q)^{2}} \biggr\} + \frac{b_{2}-b_{1}}{2(1+q)} \\ &\qquad{}-\frac{(b_{2}-b_{1})(1+2q)}{2(1+q)^{3}}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{2}}{12(q+1)} - \frac{ (\frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} )(b_{2}-b_{1})^{2}}{q+1} \\ &\qquad{}-\frac{q^{4}b_{1}^{2}}{4(1+q)^{4}}- \biggl(\frac{1}{3}-\frac{1}{4} \biggr)b_{2}^{2}+ \biggl(\frac{1}{3(1+q)^{3}} - \frac{1}{4(1+q)^{4}} \biggr)b_{2}^{2}-2 \biggl( \frac{1}{2}+\frac{1}{4}-\frac{2}{3} \biggr)b_{1}b_{2} \\ &\qquad{}+2 \biggl(\frac{1}{2(1+q)^{2}}+\frac{1}{4(1+q)^{4}}- \frac{2}{3(1+q)^{3}} \biggr)b_{1}b_{2} + \frac{q^{3}(b_{1}+b_{2})b_{1}}{3(1+q)^{3}}\\ &\qquad{}+ \biggl( \frac{1}{2}- \frac{1}{3} \biggr) (b_{1}+b_{2})b_{2} \\ &\qquad{}- \biggl(\frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) (b_{1}+b_{2})b_{2}- \frac{b_{1}b_{2}}{2}+\frac{b_{1}b_{2}(1+2q)}{2(1+q)^{2}}\biggr\} \biggr] \\ &\qquad{}+(b_{2}-b_{1}) \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{b_{2}-b_{1}}{3(1+q)^{3}}-\frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{2}}{4(q+1)^{5}}- \biggl(\frac{1}{2(1+q)^{2}} \\ &\qquad{}+\frac{1}{4(1+q)^{4}}-\frac{2}{3(1+q)^{3}} \biggr)b_{1}^{2}- \frac{1}{4(1+q)^{4}}b_{2}^{2} -2 \biggl(\frac{1}{3(1+q)^{3}}- \frac{1}{4(1+q)^{4}} \biggr)b_{1}b_{2} \\ &\qquad{}+(b_{1}+b_{2})b_{1} \biggl( \frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr)+\frac{(b_{1}+b_{2})b_{2}}{3(1+q)^{3}} - \frac{b_{1}b_{2}}{2(1+q)^{2}} \biggr\} \\ &\qquad{}+\frac{b_{2}-b_{1}}{2(1+q)}-\frac{b_{2}-b_{1}}{2(1+q)^{3}} - \frac{1}{b_{2}-b_{1}} \biggl\{ \frac{(b_{2}-b_{1})^{2}}{4(q+1)}- \frac{(b_{2}-b_{1})^{2}}{4(q+1)^{5}} - \biggl(\frac{1}{2}+ \frac{1}{4}- \frac{2}{3} \biggr)b_{1}^{2} \\ &\qquad{}+ \biggl(\frac{1}{2(1+q)^{2}}+\frac{1}{4(1+q)^{4}} - \frac{2}{3(1+q)^{3}} \biggr)b_{1}^{2}-\frac{b_{2}^{2}}{4}+ \frac{b_{2}^{2}}{4(1+q)^{4}}-2 \biggl(\frac{1}{3}-\frac{1}{4} \biggr)b_{1}b_{2} \\ &\qquad{}+2 \biggl(\frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} \biggr)b_{1}b_{2} +(b_{1}+b_{2})b_{1} \biggl(\frac{1}{2}- \frac{1}{3} \biggr)-(b_{1}+b_{2})b_{1} \biggl( \frac{1}{2(1+q)^{2}} \\ &\qquad{}-\frac{1}{3(1+q)^{3}} \biggr) +\frac{(b_{1}+b_{2})b_{2}}{3}- \frac{(b_{1}+b_{2})b_{2}}{3(1+q)^{3}}- \frac{b_{1}b_{2}}{2}+ \frac{b_{1}b_{2}}{2(1+q)^{2}} \biggr\} \biggr] \\ &\quad = \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \biggl(\frac{1}{2(1+q)^{2}}- \frac{1}{3(1+q)^{3}} \biggr) (b_{2}-b_{1})^{2} - \frac{q^{4}b_{1}^{2}}{4(1+q)^{4}} \\ &\qquad{}+\frac{b_{1}^{2}}{4}- \frac{ (\frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} )(b_{2}-b_{1})^{2}}{q+1} + \biggl(\frac{1}{3(1+q)^{3}}+ \frac{1}{4(1+q)^{4}} \biggr)b_{2}^{2} \\ &\qquad{}+2 \biggl(\frac{1}{2(1+q)^{2}}+\frac{1}{4(1+q)^{4}}- \frac{2}{3(1+q)^{3}} \biggr)b_{1}b_{2}+ \frac{q^{3}(b_{1}+b_{2})b_{1}}{3(1+q)^{3}} - \frac{(b_{1}+b_{2})b_{1}}{3(1+q)^{3}} \end{aligned}$$
$$\begin{aligned} &\qquad{}- \biggl(\frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) (b_{1}+b_{2})b_{2}+ \frac{(1+2q)b_{1}b_{2}}{2(1+q)^{2}} +\frac{(b_{2}-b_{1})^{2}}{2(1+q)} \\ &\qquad{}-\frac{(b_{2}-b_{1})^{2}(1+2q)}{2(1+q)^{3}}- \frac{(b_{2}-b_{1})^{2}}{12(q+1)} + \frac{ (\frac{1}{3(1+q)^{3}}-\frac{1}{4(1+q)^{4}} )(b_{2}-b_{1})^{2}}{q+1} \\ &\qquad{}+\frac{q^{4}b_{1}^{2}}{4(1+q)^{4}}+ \biggl(\frac{1}{3}-\frac{1}{4} \biggr)b_{2}^{2}- \biggl(\frac{1}{3(1+q)^{3}} - \frac{1}{4(1+q)^{4}} \biggr)b_{2}^{2}+2 \biggl( \frac{1}{2}+\frac{1}{4}-\frac{2}{3} \biggr)b_{1}b_{2} \\ &\qquad{}-2 \biggl(\frac{1}{2(1+q)^{2}}+\frac{1}{4(1+q)^{4}}- \frac{2}{3(1+q)^{3}} \biggr)b_{1}b_{2} - \frac{q^{3}(b_{1}+b_{2})b_{1}}{3(1+q)^{3}}\\ &\qquad{}- \biggl( \frac{1}{2}- \frac{1}{3} \biggr) (b_{1}+b_{2})b_{2} \\ &\qquad{}+ \biggl(\frac{1}{2(1+q)^{2}}-\frac{1}{3(1+q)^{3}} \biggr) (b_{1}+b_{2})b_{2}+ \frac{b_{1}b_{2}}{2}-\frac{b_{1}b_{2}(1+2q)}{2(1+q)^{2}} \biggr] \\ &\qquad{}+ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{(b_{2}-b_{1})^{2}}{3(1+q)^{3}}- \frac{(b_{2}-b_{1})^{2}}{4(q+1)^{5}}+ \biggl(\frac{1}{2(1+q)^{2}}+ \frac{1}{4(1+q)^{4}}- \frac{2}{3(1+q)^{3}} \biggr)b_{1}^{2} \\ &\qquad{}+\frac{1}{4(1+q)^{4}}b_{2}^{2}+2 \biggl( \frac{1}{3(1+q)^{3}}- \frac{1}{4(1+q)^{4}} \biggr)b_{1}b_{2} -(b_{1}+b_{2})b_{1} \biggl( \frac{1}{2(1+q)^{2}} \\ &\qquad{}-\frac{1}{3(1+q)^{3}} \biggr)-\frac{(b_{1}+b_{2})b_{2}}{3(1+q)^{3}} + \frac{b_{1}b_{2}}{2(1+q)^{2}}+ \frac{(b_{2}-b_{1})^{2}}{2(1+q)}+ \frac{(b_{2}-b_{1})^{2}}{2(1+q)^{3}} \\ &\qquad{}-\frac{(b_{2}-b_{1})^{2}}{4(q+1)}+ \frac{(b_{2}-b_{1})^{2}}{4(q+1)^{5}} + \biggl(\frac{1}{2}+ \frac{1}{4}- \frac{2}{3} \biggr)b_{1}^{2}- ( \frac{1}{2(1+q)^{2}}+ \frac{1}{4(1+q)^{4}} \\ &\qquad{}-\frac{2}{3(1+q)^{3}} )b_{1}^{2}+\frac{b_{2}^{2}}{4}- \frac{b_{2}^{2}}{4(1+q)^{4}} +2 \biggl(\frac{1}{3}-\frac{1}{4} \biggr)b_{1}b_{2}-2 \biggl(\frac{1}{3(1+q)^{3}} \\ &\qquad{}-\frac{1}{4(1+q)^{4}} \biggr)b_{1}b_{2}-(b_{1}+b_{2})b_{1} \biggl( \frac{1}{2}-\frac{1}{3} \biggr)+(b_{1}+b_{2})b_{1} \biggl( \frac{1}{2(1+q)^{2}} \\ &\qquad{}-\frac{1}{3(1+q)^{3}} \biggr)-\frac{(b_{1}+b_{2})b_{2}}{3}+ \frac{(b_{1}+b_{2})b_{2}}{3(1+q)^{3}} + \frac{b_{1}b_{2}}{2}- \frac{b_{1}b_{2}}{2(1+q)^{2}} \biggr] \\ &\quad= \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \biggl(\frac{1}{2(1+q)^{2}}- \frac{1}{3(1+q)^{3}} \biggr) (b_{2}-b_{1})^{2} +\frac{b_{1}^{2}}{4}- \frac{(b_{1}+b_{2})b_{1}}{3(1+q)^{3}}+ \frac{(b_{2}-b_{1})^{2}}{2(1+q)} \\ &\qquad{}-\frac{(b_{2}-b_{1})^{2}(1+2q)}{2(1+q)^{3}}- \frac{(b_{2}-b_{1})^{2}}{12(q+1)} + \biggl(\frac{1}{3}- \frac{1}{4} \biggr)b_{2}^{2}+2 \biggl( \frac{1}{2}+\frac{1}{4}-\frac{2}{3} \biggr)b_{1}b_{2} \\ &\qquad{}- \biggl(\frac{1}{2}-\frac{1}{3} \biggr) (b_{1}+b_{2})b_{2} + \frac{b_{1}b_{2}}{2} \biggr]+ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(b_{2}-b_{1})^{2}}{3(1+q)^{3}} +\frac{(b_{2}-b_{1})^{2}}{2(1+q)} \\ &\qquad{}+\frac{(b_{2}-b_{1})^{2}}{2(1+q)^{3}}- \frac{(b_{2}-b_{1})^{2}}{4(q+1)} + \biggl(\frac{1}{2}+ \frac{1}{4}- \frac{2}{3} \biggr)b_{1}^{2}+ \frac{b_{2}^{2}}{4}+2 \biggl(\frac{1}{3}- \frac{1}{4} \biggr)b_{1}b_{2} \\ &\qquad{}-(b_{1}+b_{2})b_{1} \biggl(\frac{1}{2}- \frac{1}{3} \biggr) - \frac{(b_{1}+b_{2})b_{2}}{3}+\frac{b_{1}b_{2}}{2} \biggr] \\ &\quad= \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{(1+3q)(b_{2}-b_{1})^{2}}{6(1+q)^{3}} +\frac{b_{1}^{2}}{4}- \frac{(b_{1}+b_{2})b_{1}}{3(1+q)^{3}}+ \frac{(b_{2}-b_{1})^{2}}{2(1+q)} \\ &\qquad{}-\frac{(b_{2}-b_{1})^{2}(1+2q)}{2(1+q)^{3}}- \frac{(b_{2}-b_{1})^{2}}{12(q+1)} +\frac{b_{2}^{2}}{12}+ \frac{b_{1}b_{2}}{6}-\frac{(b_{1}+b_{2})b_{2}}{6} + \frac{b_{1}b_{2}}{2} \biggr] \\ &\qquad{}+ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{(b_{2}-b_{1})^{2}}{3(1+q)^{3}}+ \frac{(b_{2}-b_{1})^{2}}{2(1+q)} + \frac{(b_{2}-b_{1})^{2}}{2(1+q)^{3}}- \frac{(b_{2}-b_{1})^{2}}{4(q+1)} + \frac{b_{1}^{2}}{12}+\frac{b_{2}^{2}}{4} \end{aligned}$$
$$\begin{aligned} &\qquad{}+\frac{b_{1}b_{2}}{6}-\frac{(b_{1}+b_{2})b_{1}}{6} - \frac{(b_{1}+b_{2})b_{2}}{3}+ \frac{b_{1}b_{2}}{2} \biggr] \\ &\quad = \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{(1+3q)(b_{2}-b_{1})^{2}}{6(1+q)^{3}} - \frac{(b_{1}+b_{2})b_{1}}{3(1+q)^{3}}+ \frac{(b_{2}-b_{1})^{2}}{2(1+q)}- \frac{(b_{2}-b_{1})^{2}(1+2q)}{2(1+q)^{3}} \\ &\qquad{}-\frac{(b_{2}-b_{1})^{2}}{12(q+1)} +\frac{b_{1}^{2}}{4}+ \frac{b_{2}^{2}}{12}+ \frac{b_{1}b_{2}}{6}- \frac{(b_{1}+b_{2})b_{2}}{6} +\frac{b_{1}b_{2}}{2} \biggr] \\ &\qquad{}+ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[\frac{(b_{2}-b_{1})^{2}}{3(1+q)^{3}}+ \frac{(b_{2}-b_{1})^{2}}{2(1+q)} + \frac{(b_{2}-b_{1})^{2}}{2(1+q)^{3}}- \frac{(b_{2}-b_{1})^{2}}{4(q+1)} + \frac{b_{1}^{2}}{12}+\frac{b_{2}^{2}}{4} \\ &\qquad{}+\frac{b_{1}b_{2}}{6}-\frac{(b_{1}+b_{2})b_{1}}{6} - \frac{(b_{1}+b_{2})b_{2}}{3}+ \frac{b_{1}b_{2}}{2} \biggr] \\ &\quad= \bigl\vert \psi ''(b_{1}) \bigr\vert \biggl[ \frac{(b_{2}-b_{1})^{2} (5q^{2}+4q+1 )-4(b_{1}+b_{2})b_{1}}{12(1+q)^{3}} +\frac{3b_{1}^{2}-b_{2}^{2}+6b_{1}b_{2}}{12} \biggr] \\ &\qquad{}+ \bigl\vert \psi ''(b_{2}) \bigr\vert \biggl[ \frac{(b_{2}-b_{1})^{2} (3(1+q)^{2}+10 )}{12(1+q)^{3}}-\frac{(b_{2}-b_{1})^{2}}{12} \biggr]. \end{aligned}$$

 □

4 Conclusion

We revisited the Hermite–Hadamard inequality in quantum calculus. We deduced some new identities in the way. Using these identities, we obtained new estimates in this regard. Employing the method outlined in this paper, we anticipate that some other inequalities may be reestablished. More results on the Hermite–Hadamard inequality in quantum calculus can be found in [22, 26, 31, 34].

References

  1. Adil Khan, M., Ali, T., Dragomir, S.S., Sarikaya, M.Z.: Hermite–Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1033–1048 (2018)

    Article  MathSciNet  Google Scholar 

  2. Adil Khan, M., Ali, T., Khan, T.U.: Hermite–Hadamard type inequalities with applications. Fasc. Math. 59, 57–74 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)

    Article  MathSciNet  Google Scholar 

  4. Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018)

    Article  MathSciNet  Google Scholar 

  6. Adil Khan, M., Khurshid, Y., Ali, T.: Hermite–Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comen. 86(1), 153–164 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Adil Khan, M., Khurshid, Y., Chu, Y.-M.: Hermite–Hadamard type inequalities via the Montgomery identity. Commun. Math. Appl. 10(1), 85–97 (2019)

    Google Scholar 

  8. Adil Khan, M., Khurshid, Y., Dragomir, S.S., Ullah, R.: Inequalities of the Hermite–Hadamard type with applications. Punjab Univ. J. Math. 50(3), 1–12 (2018)

    MathSciNet  Google Scholar 

  9. Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Agarwal, R.-P., Wong, P.J.Y.: Error Inequalities in Polynomial Interpolation and Their Applications. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

  11. Alp, N., Sarikaya, M.Z., Kunt, M., Işcan, I.: q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30, 193–203 (2018)

    Article  Google Scholar 

  12. Awan, M.U., Noor, M.A., Noor, K.I., Safdar, F.: On strongly generalized convex functions. Filomat 31(18), 5783–5790 (2017)

    Article  MathSciNet  Google Scholar 

  13. Chen, F., Yang, W.: Some new Chebyshev type quantum integral inequalities on finite intervals. J. Comput. Anal. Appl. 21, 417–426 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, Article ID 93 (2017)

    Article  MathSciNet  Google Scholar 

  15. Iqbal, A., Adil Khan, M., Ullah, S., Chu, Y.-M., Kashuri, A.: Hermite–Hadamard type inequalities pertaining conformable fractional integrals and their applications. AIP Adv. 8, Article ID 075101 (2018)

    Article  Google Scholar 

  16. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Book  Google Scholar 

  17. Kermausuor, S., Nwaeze, E.R.: Some new inequalities involving the Katugampola fractional integrals for strongly η-convex functions. Tbil. Math. J. 12(1), 117–130 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kermausuor, S., Nwaeze, E.R., Tameru, M.: New integral inequalities via the Katugampola fractional integrals for functions whose second derivatives are strongly η-convex. Mathematics 7, Article ID 183 (2019)

    Article  Google Scholar 

  19. Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019)

    MATH  Google Scholar 

  20. Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Kunt, M., Isçan, I.: Erratum: Quantum integral inequalities on finite intervals. doi:http://dx.doi.org/10.13140/RG.2.1.5059.4806, https://www.researchgate.net/publication/305303595, 1–2 (2016)

  22. Kunt, M., Işcan, I., Alp, N., Sarikaya, M.Z.: \(( p, q)\)-Hermite–Hadamard inequalities and \(( p, q)\)-estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 969–992 (2018)

    Article  MathSciNet  Google Scholar 

  23. Latif, M.A., Kunt, M., Dragomir, S.S., Işcan, I.: Some \((p,q)\)-estimates for Hermite–Hadamard inequalities via convex and quasi-convex functions. Adv. Differ. Equ. 2019, Article ID 425 (2019)

    Article  Google Scholar 

  24. Marinković, S., Rajković, P., Stanković, M.: The inequalities for some types q-integrals. Comput. Math. Appl. 56, 2490–2498 (2008)

    Article  MathSciNet  Google Scholar 

  25. Mehmood, N., Agarwal, R.P., Butt, S.I., Pec̆arić, J.E.: New generalizations of Popoviciu-type inequalities via new Green’s functions and Montgomery identity. J. Inequal. Appl. 2017, Article ID 108 (2017)

    Article  MathSciNet  Google Scholar 

  26. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Nwaeze, E.R.: Inequalities of the Hermite–Hadamard type for quasi-convex functions via the \((k,s)\)-Riemann–Liouville fractional integrals. Fract. Differ. Calc. 8(2), 327–336 (2018)

    Article  MathSciNet  Google Scholar 

  28. Nwaeze, E.R.: Generalized fractional integral inequalities by means of quasiconvexity. Adv. Differ. Equ. 2019, Article ID 262 (2019)

    Article  MathSciNet  Google Scholar 

  29. Nwaeze, E.R.: Integral inequalities via generalized quasiconvexity with applications. J. Inequal. Appl. 2019, Article ID 236 (2019)

    Article  MathSciNet  Google Scholar 

  30. Nwaeze, E.R., Kermausuor, S., Tameru, A.M.: Some new k-Riemann–Liouville fractional integral inequalities associated with the strongly η-quasiconvex functions with modulus \(\mu \geq 0\). J. Inequal. Appl. 2018, Article ID 139 (2018)

    Article  MathSciNet  Google Scholar 

  31. Nwaeze, E.R., Tameru, A.M.: New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, Article ID 425 (2019)

    Article  MathSciNet  Google Scholar 

  32. Tariboon, J., Ntouyas, S.K.: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, Article ID 282 (2013)

    Article  MathSciNet  Google Scholar 

  33. Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, Article ID 121 (2014)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Y., Du, T.-S., Wang, H., Shen, Y.-J.: Different types of quantum integral inequalities via \((\alpha ,m)\)-convexity. J. Inequal. Appl. 2018, Article ID 264 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Availability of data and materials

Not applicable.

Funding

The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

Author information

Authors and Affiliations

Authors

Contributions

MAK provided the main idea and carried out the proof of Theorem 3.2. NM carried out the proof of Theorems 3.4 and 3.5. ERN carried out the proof of Theorems 3.6 and 3.7. YMC carried out the proof of Theorem 3.3, drafted the first version of the manuscript, and completed the revision of the manuscript. All authors agreed to the authorship and their order in the final manuscript, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adil Khan, M., Mohammad, N., Nwaeze, E.R. et al. Quantum Hermite–Hadamard inequality by means of a Green function. Adv Differ Equ 2020, 99 (2020). https://doi.org/10.1186/s13662-020-02559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-02559-3

MSC

Keywords