Skip to main content

Advertisement

On weighted Atangana–Baleanu fractional operators

Abstract

In this paper, we define the weighted Atangana–Baleanu fractional operators of Caputo sense. We obtain the solution of a related linear fractional differential equation in a closed form, and use the result to define the weighted Atangana–Baleanu fractional integral. We then express the weighted Atangana–Baleanu fractional derivative in a convergent series of Riemann–Liouville fractional integrals, and establish commutative results of the weighted Atangana–Baleanu fractional operators.

Introduction

The qualitative study of fractional differential equations depends on the type of the implemented fractional derivative. Mainly, there are two types of nonlocal fractional derivatives; the classical ones with singular kernels such as the Riemann–Liouville and Caputo derivatives, and the ones with nonsingular kernels, which have been introduced recently, such as the Atangana–Baleanu and Caputo–Fabrizio derivatives [14, 22]. Even though that there are no strong mathematical justifications of the new types of fractional derivatives, they got the interests of many researchers because of their appearance in different applications; see [7, 9, 10, 12, 13, 1517, 19, 23, 24, 2729, 35, 39]. For recent developments of fractional derivatives with nonsingular kernels we refer the reader to [4, 5, 8, 20, 21, 36].

The complexity of applications advises researchers to extend the definitions of fractional derivatives. Therefore, the weighted fractional derivatives have been introduced. The theory and applications of the weighted Caputo and Riemann–Liouville derivatives were discussed in [2, 11, 3034]. Also, several types of integral equations are solved in an elegant way using the weighted fractional derivatives; see [2, 6]. Recently in [6], we introduced the weighted Caputo–Fabrizio fractional operators and studied related linear and nonlinear fractional differential equations. In this paper, we aim to extend the study to the Atangana–Baleanu fractional operators. We introduce the weighted Atangana–Baleanu fractional operators and study their properties. In Sect. 2, we present the definition of the weighted Atangana–Baleanu fractional derivative in Caputo sense and use the Laplace transform to solve an associated linear fractional differential equation. We then use the result to define the weighted Atangana–Baleanu fractional integral. In Sect. 3, we present the weighted Atangana–Baleanu operators in terms of the well-known Riemann–Liouville fractional integral, and investigate several properties of them. Finally, we end with some concluding remarks in Sect. 4.

Weighted Atangana–Baleanu operators

In the classical operators, the fractional integral is introduced and then used to define the fractional derivative. While, in the new types of fractional operators with nonsingular kernels, the fractional derivative is introduced and then implemented to define the fractional integrals. We follow the new approach and start with the definition of the left Atangana–Baleanu fractional derivative of a function \(f(t)\) with respect to the weight function \(w(t)\). We have

Definition 2.1

For \(0<\alpha <1\), the weighted Atangana–Baleanu fractional derivative of Caputo sense of a function \(f(t)\in W^{1}(0,T]\) with respect to the weight function \(w(t)\) is defined by

$$ \bigl({}_{c}D_{w}^{\alpha }f \bigr) (t)=\frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \int _{0}^{t} E_{\alpha } \bigl[-\mu _{\alpha }(t-s)^{ \alpha } \bigr] \frac{d}{ds}(w f) (s)\,ds,\quad t>0. $$
(2.1)

Here \(w\in C^{1}[0,T]\), \(w,w'>0\) on \([0,T]\), \(M(\alpha )\) is a normalization function satisfying \(M(0)=M(1)=1\), \(E_{\alpha }(t)\) is the well-known Mittag-Lefler function, \(W^{1}(0,T]\) denotes the space of functions \(f \in C^{1}(0,T]\) such that \(f' \in L^{1}[0,T]\), and

$$ \mu _{\alpha }=\frac{\alpha }{1-\alpha }. $$
(2.2)

The above integral-differential operator can be written as

$$ \bigl({}_{c}D_{w}^{\alpha }f \bigr) (t)=\frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \biggl( E_{\alpha } \bigl[-\mu _{\alpha }t^{\alpha } \bigr] * \frac{d}{dt}(w f) (t) \biggr),\quad t>0. $$
(2.3)

Theorem 2.1

Let \(u \in W^{1}(0,T] \), if \(g(0)=0\), then the unique solution of the fractional differential equation,

$$ \bigl({}_{c}D_{w}^{\alpha }u \bigr) (t)=g(t), \quad t>0, 0< \alpha < 1, $$
(2.4)

is given by

$$ u(t)=\frac{(w u)(0)}{w(t)}+\frac{1-\alpha }{M(\alpha )} g(t)+\frac{ \alpha }{M(\alpha )\varGamma (\alpha )} \frac{1}{w(t)} \int _{0}^{t} (t-s)^{ \alpha -1} w(s) g(s)\,ds. $$

Proof

Because \(f\in W^{1}(0,T]\), we have

$$ \lim_{t\rightarrow 0^{+}} \int _{0}^{t} E_{\alpha }\bigl[-\mu _{\alpha }(t-s)^{ \alpha }\bigr] \frac{d}{ds}(w u) (s)\,ds=0, $$

and \(({}_{c}D_{w}^{\alpha }u)(0^{+})=0\). Thus, a necessary condition for the existence of a solution to the problem (2.4) is that \(g(0)=0\). We have

$$ \frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \biggl( E_{\alpha } \bigl[- \mu _{\alpha }t^{\alpha } \bigr] * \frac{d}{dt}(w u) (t) \biggr)=g(t), $$

or

$$ E_{\alpha } \bigl[-\mu _{\alpha }t^{\alpha } \bigr] * \frac{d}{dt}(w u) (t)=\frac{1- \alpha }{M(\alpha )} w(t) g(t). $$

Applying the Laplace transform to the above equation and using the convolution result, we have

$$ L \bigl(E_{\alpha } \bigl[-\mu _{\alpha }t^{\alpha } \bigr] \bigr) L \biggl( \frac{d}{dt}(w u) (t) \biggr)=\frac{1-\alpha }{M(\alpha )} L \bigl( w(t) g(t) \bigr). $$

Since

$$ L \bigl(E_{\alpha } \bigl[-\mu _{\alpha }t^{\alpha } \bigr] \bigr)=\frac{s ^{\alpha -1}}{s^{\alpha }+\mu _{\alpha }},\qquad \biggl\vert \frac{\mu _{\alpha }}{s^{\alpha }} \biggr\vert < 1, $$

we have

$$ \frac{s^{\alpha -1}}{s^{\alpha }+\mu _{\alpha }} \bigl( s L(w u) (t)-(w u) (0) \bigr)=\frac{1-\alpha }{M(\alpha )} L \bigl( w(t) g(t) \bigr). $$

The above equation yields

$$\begin{aligned} L( w u) (t) =&(w u) (0)\frac{1}{s}+ \frac{1-\alpha }{M(\alpha )} \biggl[ L(w g) (t)+\frac{\mu _{\alpha }}{s^{\alpha }} L(w g) (t) \biggr] \\ =&(w u) (0)\frac{1}{s}+ \frac{1-\alpha }{M(\alpha )} \biggl[ L(w g) (t)+ \frac{ \mu _{\alpha }}{\varGamma (\alpha )} L\bigl(t^{\alpha -1}\bigr) L(w g) (t) \biggr]. \end{aligned}$$

Applying the inverse Laplace operator we have

$$\begin{aligned} (w u) (t) =&(w u) (0)+\frac{1-\alpha }{M(\alpha )} (w g) (t)+\frac{1- \alpha }{M(\alpha )} \frac{\mu _{\alpha }}{\varGamma (\alpha )} \bigl(t^{ \alpha -1}* (w g) (t)\bigr) \\ =&(w u) (0)+\frac{1-\alpha }{M(\alpha )} (w g) (t)+\frac{\alpha }{M( \alpha )\varGamma (\alpha )} \int _{0}^{t} (t-s)^{\alpha -1} w(s) g(s)\,ds, \end{aligned}$$

which completes the proof. □

The result in Theorem 2.1 suggests to define the fractional integral operator \(({}_{c}I_{w}^{\alpha }f)(t)\) as follows.

Definition 2.2

For \(0<\alpha <1\), the weighted Atangana–Baleanu fractional integral of order α, of \(f\in L^{1}(0,T)\) with respect to the weight function w is defined by

$$ \bigl({}_{c}I_{w}^{\alpha }f \bigr) (t)=\frac{1-\alpha }{M(\alpha )} f(t)+\frac{ \alpha }{M(\alpha )\varGamma (\alpha )}\frac{1}{w(t)} \int _{0}^{t} (t-s)^{ \alpha -1} w(s) f(s)\,ds. $$
(2.5)

Remark 2.1

For \(w(t)=1\), the weighted Atangana–Baleanu fractional integral, coincides with the regular Atangana–Baleanu fractional integral; see [1, 3, 14].

The following result will be used throughout the text.

Proposition 2.1

For \(0<\alpha <1\), the following holds true.

  1. 1.
    $$ L \biggl(\frac{d}{dt}\bigl(E_{\alpha }\bigl(a t^{\alpha }\bigr)\bigr) \biggr)=\frac{a}{s^{ \alpha }-a}, \quad \biggl\vert \frac{a}{s^{\alpha }} \biggr\vert < 1. $$
    (2.6)
  2. 2.

    For arbitrary \(c_{1},c_{2}\in \mathbb{R}\), and \(f,g\in W^{1}(0,T]\),

    $$ c_{1} \bigl(f'*g\bigr) (t)+c_{2} \bigl(f*g'\bigr) (t)=(c_{1}+c_{2}) \bigl(f'*g\bigr) (t)+c_{2} \bigl(f(0) g(t)-f(t) g(0) \bigr). $$
    (2.7)

Proof

  1. 1.

    We have

    $$\begin{aligned} L \biggl(\frac{d}{dt}\bigl(E_{\alpha }\bigl(a t^{\alpha } \bigr)\bigr) \biggr) =& L \Biggl( \frac{d}{dt}\sum _{n=0}^{\infty }\frac{a^{n} t^{n\alpha }}{\varGamma ( \alpha n+1)} \Biggr) \\ =&L \Biggl( \sum_{n=1}^{\infty }\frac{a^{n} t^{\alpha n-1}}{\varGamma (\alpha n)} \Biggr) \\ =&\sum_{n=1}^{\infty }\frac{a^{n} }{\varGamma (\alpha n)} L\bigl(t^{\alpha n-1}\bigr) \\ =& \sum_{n=1}^{\infty } \frac{a^{n} }{\varGamma (\alpha n)} \frac{\varGamma ( \alpha n)}{s^{\alpha n} } \\ =&\sum_{n=1}^{\infty } \frac{a^{n}}{s^{\alpha n}} \\ =&\sum_{n=1}^{\infty }\biggl( \frac{a}{s^{\alpha }}\biggr)^{n}=\frac{\frac{a}{s ^{\alpha }}}{1-\frac{a}{s^{\alpha }}}= \frac{a}{s^{\alpha }-a}, \quad \biggl\vert \frac{a}{s^{\alpha }} \biggr\vert < 1, \end{aligned}$$

    which completes the proof.

  2. 2.

    The proof is straightforward using integration by parts.

 □

Theorem 2.2

Let \(u,g \in W^{1}(0,T] \), if \(\lambda u(0)+g(0)=0\), then the unique solution of the linear fractional differential equation,

$$ \bigl({}_{c}D_{w}^{\alpha }u \bigr) (t)=\lambda u(t)+g(t),\quad t>0, 0< \alpha < 1, $$
(2.8)

is given by

$$\begin{aligned} w(t) u(t) =&\frac{M(\alpha ) (w u)(0)}{\delta _{\alpha }}E_{\alpha }\biggl(\frac{ \lambda \alpha t^{\alpha }}{\delta _{\alpha }} \biggr)+\frac{1-\alpha }{ \delta _{\alpha }} (w g) (t) \\ &{}+ \frac{M(\alpha )}{\lambda \delta _{\alpha }} \frac{d}{dt} E_{\alpha }\biggl(\frac{ \lambda \alpha t^{\alpha }}{\delta _{\alpha }} \biggr)* (w g) (t), \end{aligned}$$
(2.9)

where \(\delta _{\alpha }=M(\alpha )-\lambda (1-\alpha )\neq 0\), \(\lambda \neq 0\).

Proof

We have

$$ \lambda (w u) (t)+ (w g) (t)= w(t) \bigl({}_{c}D_{w}^{\alpha }u \bigr) (t)=\frac{M( \alpha )}{1-\alpha } E_{\alpha }\bigl(-\mu _{\alpha }t^{\alpha } \bigr)*(w u)'(t). $$

Applying the Laplace transform to the above equation yields

$$\begin{aligned} L \bigl( \lambda ( w u) (t)+ (w g) (t) \bigr) =&\frac{M(\alpha )}{1- \alpha } L \bigl(E_{\alpha }\bigl(-\mu _{\alpha }t^{\alpha }\bigr) \bigr) L \bigl((w u)'(t) \bigr) \\ =&\frac{M(\alpha )}{1-\alpha } \frac{s^{\alpha -1}}{s^{\alpha }+ \mu _{\alpha }} \bigl(s L \bigl( (w u) (t) \bigr)-(w u) (0) \bigr), \quad \biggl\vert \frac{ \mu _{\alpha }}{s^{\alpha }} \biggr\vert < 1. \end{aligned}$$

Direct calculations lead to

$$\begin{aligned} L \bigl( (w u) (t) \bigr) =&\frac{(1-\alpha ) s^{\alpha }+\alpha }{ (M( \alpha )-\lambda (1-\alpha ) ) s^{\alpha }-\lambda \alpha } L \bigl((w g) (t) \bigr) \\ &{}+ M( \alpha ) (w u) (0) \frac{ s^{\alpha -1} }{ (M( \alpha )-\lambda (1-\alpha ) ) s^{\alpha }-\lambda \alpha } \\ =&\frac{(1-\alpha ) s^{\alpha }+\alpha }{\delta _{\alpha }s^{\alpha }- \lambda \alpha } L \bigl((w g) (t) \bigr)+ M(\alpha ) (w u) (0) \frac{ s ^{\alpha -1} }{ \delta _{\alpha }s^{\alpha }-\lambda \alpha } \\ =&\frac{1-\alpha }{\delta _{\alpha }} \frac{s^{\alpha -1}}{s^{\alpha }-\frac{\lambda \alpha }{\delta _{\alpha }}} s L \bigl((w g) (t) \bigr)+ \frac{ \alpha }{\delta _{\alpha }} \frac{1}{s^{\alpha }-\frac{\lambda \alpha }{\delta _{\alpha }}} L \bigl((w g) (t) \bigr) \\ &{}+ \frac{M(\alpha ) (w u)(0)}{ \delta _{\alpha }} \frac{s^{\alpha -1}}{s^{\alpha }-\frac{\lambda \alpha }{\delta _{\alpha }}} \\ =&\frac{1-\alpha }{\delta _{\alpha }}L \biggl(E_{\alpha }\biggl(\frac{\lambda \alpha t^{\alpha }}{\delta _{\alpha }} \biggr) \biggr) \bigl( L \bigl((w g)'(t) \bigr) +(w g) (0) \bigr) \\ &{}+ \frac{1}{\lambda } L \biggl(\frac{d}{dt}E_{ \alpha }\biggl( \frac{\lambda \alpha t^{\alpha }}{\delta _{\alpha }} \biggr) \biggr) L \bigl((w g) (t) \bigr) \\ &{}+\frac{M(\alpha ) (w u)(0)}{\delta _{\alpha }} L \biggl(E_{\alpha }\biggl(\frac{ \lambda \alpha t^{\alpha }}{\delta _{\alpha }} \biggr) \biggr), \end{aligned}$$

hence,

$$\begin{aligned} (w u) (t) =&\frac{M(\alpha ) (w u)(0)}{\delta _{\alpha }}E_{\alpha }\biggl( \frac{ \lambda \alpha t^{\alpha }}{\delta _{\alpha }} \biggr) \\ &{}+\frac{1}{\lambda }\frac{d}{dt}E_{\alpha }\biggl( \frac{\lambda \alpha t ^{\alpha }}{\delta _{\alpha }} \biggr) *(w g) (t)+\frac{1-\alpha }{ \delta _{\alpha }}E_{\alpha } \biggl(\frac{\lambda \alpha t^{\alpha }}{ \delta _{\alpha }} \biggr) * (w g)'(t). \end{aligned}$$
(2.10)

Using the result in Eq. (2.7) we have

$$\begin{aligned}& \frac{1}{\lambda }\frac{d}{dt}E_{\alpha } \biggl(\frac{\lambda \alpha t ^{\alpha }}{\delta _{\alpha }} \biggr) *(w g) (t)+\frac{1-\alpha }{ \delta _{\alpha }}E_{\alpha } \biggl(\frac{\lambda \alpha t^{\alpha }}{ \delta _{\alpha }} \biggr) * (w g)'(t) \\& \quad =\frac{M(\alpha )}{\lambda \delta _{\alpha }} \frac{d}{dt}E_{\alpha }\biggl( \frac{\lambda \alpha t^{\alpha }}{\delta _{\alpha }} \biggr) *(w g) (t)+\frac{1- \alpha }{\delta _{\alpha }} \biggl( (w g) (t)-(w g) (0) E_{\alpha }\biggl(\frac{ \lambda \alpha t^{\alpha }}{\delta _{\alpha }} \biggr) \biggr), \end{aligned}$$
(2.11)

and hence the result is proved by substituting Eq. (2.11) in Eq. (2.10). □

Infinite series representation and properties of the weighted Atangana–Baleanu operators

The infinite series representation of the Atangana–Baleanu fractional derivative was introduced in [18] and has been used to establish several properties of the Atangana–Baleanu fractional operators. Given the Riemann–Liouville fractional integral

$$ \bigl(I_{0}^{\alpha }f\bigr) (t)=\frac{1}{\varGamma (\alpha )} \int _{0}^{t} (t-s)^{ \alpha -1} f(s)\,ds, $$

and the infinite series representation of the Mittag-Leffler function

$$ E_{\alpha }(x)=\sum_{n=0}^{\infty } \frac{x^{n}}{\varGamma (\alpha n+1)}, $$

we have

$$ \bigl({}_{c}I_{w}^{\alpha }f \bigr) (t)=\frac{1-\alpha }{M(\alpha )} f(t)+\frac{ \alpha }{M(\alpha )}\frac{1}{w(t)} \bigl(I_{0}^{\alpha }w f\bigr) (t) $$
(3.1)

and

$$\begin{aligned} \bigl({}_{c}D_{w}^{\alpha }f\bigr) (t) =& \frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \int _{0}^{t} E_{\alpha } \bigl[-\mu _{\alpha }(t-s)^{ \alpha } \bigr] \frac{d}{ds}(w f) (s)\,ds \end{aligned}$$
(3.2)
$$\begin{aligned} =&\frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \int _{0}^{t} \sum_{n=0} ^{\infty }\frac{(-1)^{n} \mu _{\alpha }^{n}}{\varGamma (\alpha n+1)}(t-s)^{ \alpha n} \frac{d}{ds}(w f) (s)\,ds \\ =&\frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \sum _{n=0}^{\infty }\frac{(-1)^{n} \mu _{\alpha }^{n}}{\varGamma (\alpha n+1)} \int _{0}^{t} (t-s)^{\alpha n} \frac{d}{ds}(w f) (s)\,ds \\ =&\frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \sum _{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \biggl(I_{0}^{\alpha n+1} \frac{d}{dt}(w f) \biggr) (t). \end{aligned}$$
(3.3)

Since \(E_{\alpha }( [-\mu _{\alpha }(t-s)^{\alpha } ]\) is continuous, \(w\in C^{1}[0,T]\) and \(f\in W^{1}(0,T]\), the integral in Eq. (3.2) converges for a finite interval \([0,T]\), and hence the infinite series in Eq. (3.3) is convergent for all \(t\in [0,T]\).

Theorem 3.1

If \(f \in W^{1}(0,T]\), then, for \(0<\alpha <1\),

  1. 1.

    \(({}_{c}I_{w}^{\alpha } {}_{c}D_{w}^{\alpha }f)(t)= f(t)- \frac{w(0)f(0)}{w(t)}\), and

  2. 2.

    \(({}_{c}D_{w}^{\alpha } {}_{c}I_{w}^{\alpha }f)(t)=f(t)- \frac{w(0)f(0)}{w(t)}\).

Proof

  1. 1.

    We have

    $$\begin{aligned} \bigl({}_{c}I_{w}^{\alpha } {}_{c}D_{w}^{\alpha }f \bigr) (t) =&\frac{1-\alpha }{M( \alpha )} \bigl({}_{c}D_{w}^{\alpha }f \bigr) (t)+\frac{\alpha }{M(\alpha )} \frac{1}{w(t)} \bigl(I_{0}^{\alpha } \bigl( w {}_{c}D_{w}^{\alpha }f\bigr) \bigr) (t) \\ =&\frac{1-\alpha }{M(\alpha )} \Biggl[ \frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl(I_{0} ^{\alpha n+1} ( w f)'\bigr) (t) \Biggr] \\ &{}+\frac{\alpha }{M(\alpha )}\frac{1}{w(t)} \Biggl[I_{0}^{\alpha } \Biggl( \frac{M(\alpha )}{1-\alpha } \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl(I_{0}^{\alpha n+1} ( w f)'\bigr) \Biggr) (t) \Biggr] \\ =& \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl(I _{0}^{\alpha n+1} ( w f)'\bigr) (t) \\ &{}+\frac{\mu _{\alpha }}{w(t)} \sum _{n=0} ^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl(I_{0}^{\alpha (n+1)+1} ( w f)'\bigr) (t) \\ =& \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl(I _{0}^{\alpha n+1} ( w f)'\bigr) (t) \\ &{}+\frac{\mu _{\alpha }}{w(t)} \sum _{n=1} ^{\infty }(-1)^{n-1} \mu _{\alpha }^{n-1} \bigl(I_{0}^{\alpha n+1} ( w f)'\bigr) (t) \\ =& \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl(I _{0}^{\alpha n+1} ( w f)'\bigr) (t) \\ &{}-\frac{1}{w(t)} \sum _{n=1}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl(I_{0}^{\alpha n+1} ( w f)'\bigr) (t) \\ =& \frac{1}{w(t)} \bigl(I_{0}^{1} (w f)'\bigr) (t)= \frac{1}{w(t)} \bigl( w(t) f(t)-w(0)f(0) \bigr), \end{aligned}$$

    which completes the proof.

  2. 2.

    We have

    $$\begin{aligned} \bigl({}_{c}D_{w}^{\alpha } {}_{c}I_{w}^{\alpha }f \bigr) (t) =&\frac{M(\alpha )}{1- \alpha } \frac{1}{w(t)} \sum _{n=0}^{\infty }(-1)^{n} \mu _{\alpha } ^{n} \bigl(I_{0}^{\alpha n+1} \bigl(w {}_{c}I_{w}^{\alpha }f \bigr)' \bigr) (t) \\ =&\frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \sum _{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \biggl[I_{0}^{\alpha n+1} ( \biggl(\frac{1-\alpha }{M(\alpha )}(w f)' \\ &{}+\frac{\alpha }{M(\alpha )} \bigl(I_{0}^{\alpha }(w f) \bigr)' \biggr) (t) \biggr] \\ =&\frac{1}{1-\alpha } \frac{1}{w(t)} \sum _{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl[(1-\alpha ) \bigl(\bigl(I_{0}^{\alpha n} (w f)\bigr) (t)- (w f) (0) \bigl(I_{0}^{\alpha n} 1\bigr) (t) \bigr) \\ &{}+\alpha \bigl( \bigl(I_{0}^{\alpha n} \bigl(I_{0}^{\alpha }(w f) \bigr) \bigr) (t)- \bigl(I_{0}^{\alpha }(w f) \bigr) (0) \bigl(I_{0}^{\alpha n} 1\bigr) (t) \bigr) \bigr] \\ =& \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl[\bigl(I_{0}^{\alpha n} (w f)\bigr) (t)- (w f) (0) \bigl(I_{0}^{\alpha n} 1\bigr) (t) \\ &{}+\mu _{\alpha } \bigl( \bigl(I_{0}^{\alpha n+\alpha } (w f) \bigr) (t)- (w f) (0) \bigl(I_{0}^{\alpha n+\alpha } 1\bigr) (t) \bigr) \bigr] \\ =& \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl[\bigl(I_{0}^{\alpha n} (w f)\bigr) (t)- (w f) (0) \bigl(I_{0}^{\alpha n} 1\bigr) (t) \bigr] \\ &{}+ \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{\alpha (n+1)} \bigl[ \bigl(I_{0}^{\alpha (n+1)} (w f) \bigr) (t)- (w f) (0) \bigl(I_{0} ^{\alpha (n+1)} 1\bigr) (t) \bigr] \\ =& \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \bigl[\bigl(I_{0}^{\alpha n} (w f)\bigr) (t)- (w f) (0) \bigl(I_{0}^{\alpha n} 1\bigr) (t) \bigr] \\ &{}-\frac{1}{w(t)} \sum_{n=1}^{\infty }(-1)^{n} \mu _{\alpha }^{\alpha n} \bigl[ \bigl(I_{0}^{\alpha n} (w f) \bigr) (t)- (w f) (0) \bigl(I_{0}^{\alpha n} 1\bigr) (t) \bigr] \\ =& \frac{1}{w(t)} \bigl(\bigl(I_{0}^{ 0} (w f) \bigr) (t)- (w f) (0) \bigl(I_{0}^{0} 1\bigr) (t) \bigr) \\ =& \frac{1}{w(t)} \bigl( (w f) (t)- (w f) (0) \bigr), \end{aligned}$$
    (3.4)

    which completes the proof.

 □

As a direct result of Theorem 3.1 we have the following.

Corollary 3.1

If \(f \in W^{1}(0,T]\), and \(f(0)=0\), then, for \(0<\alpha <1\),

  1. 1.

    \(({}_{c}I_{w}^{\alpha } {}_{c}D_{w}^{\alpha }f)(t)= f(t)\), and

  2. 2.

    \(({}_{c}D_{w}^{\alpha } {}_{c}I_{w}^{\alpha }f)(t)=f(t)\).

Theorem 3.2

If \(f \in W^{1}(0,T]\), then, for \(\alpha ,\beta \in (0,1)\),

  1. 1.

    \({}_{c}D_{w}^{\alpha }( {}_{c}D_{w}^{\beta }f)(t)={}_{c}D_{w}^{\beta }( {}_{c}D_{w}^{\alpha }f)(t) \), and

  2. 2.

    \({}_{c}I_{w}^{\alpha }( {}_{c}I_{w}^{\beta }f)(t)={}_{c}I_{w}^{\beta }( {}_{c}I_{w}^{\alpha }f)(t)\).

That is, the weighted Atangana–Baleanu fractional operators in the Caputo sense are commutative operators.

Proof

  1. 1.

    We have

    $$ {}_{c}D_{w}^{\alpha }\bigl( {}_{c}D_{w}^{\beta }f\bigr) (t)= \frac{M(\alpha )}{1- \alpha } \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha } ^{n} \bigl(I_{0}^{\alpha n+1} \bigl(w {}_{c}D_{w}^{\beta }f \bigr)' \bigr) (t) $$
    (3.5)

    and

    $$\begin{aligned} \bigl(w {}_{c}D_{w}^{\beta }f\bigr) (t) =& \frac{M(\beta )}{1-\beta } \sum_{k=0} ^{\infty }(-1)^{k} \mu _{\beta }^{k} \bigl(I_{0}^{\beta k+1} (w f)' \bigr) (t). \end{aligned}$$

    Thus,

    $$ \frac{d}{dt} \bigl(w {}_{c}D_{w}^{\beta }f \bigr) (t)=\frac{M(\beta )}{1- \beta } \sum_{k=0}^{\infty }(-1)^{k} \mu _{\beta }^{k} \bigl(I_{0}^{ \beta k} ( w f)' \bigr) (t). $$
    (3.6)

    By substituting Eq. (3.6) in Eq. (3.5) we have

    $$\begin{aligned} {}_{c}D_{w}^{\alpha }\bigl( {}_{c}D_{w}^{\beta }f \bigr) (t) =&\frac{M(\alpha )}{1- \alpha } \frac{1}{w(t)} \sum _{n=0}^{\infty }(-1)^{n} \mu _{\alpha } ^{n} \Biggl(I_{0}^{\alpha n+1} \frac{M(\beta )}{1-\beta } \sum_{k=0} ^{\infty }(-1)^{k} \mu _{\beta }^{k} \bigl(I_{0}^{\beta k} ( w f)' \bigr) \Biggr) (t) \\ =&\frac{1}{w(t)}\frac{M(\alpha ) M(\beta )}{(1-\alpha )(1-\beta )} \sum_{n,k=0} (-\mu _{\alpha })^{n} (-\mu _{\beta })^{k} \bigl(I_{0}^{\alpha n+\beta k+1} (w f)'\bigr) (t), \end{aligned}$$
    (3.7)

    and the result is proved since the last expression is symmetric in α and β.

  2. 2.

    We have

    $$\begin{aligned} {}_{c}I_{w}^{\alpha }\bigl( {}_{c}I_{w}^{\beta }f\bigr) (t) =& \frac{1-\alpha }{M( \alpha )} \bigl({}_{c}I_{w}^{\beta }f \bigr) (t)+\frac{\alpha }{M(\alpha )} \frac{1}{w(t)} I_{0}^{\alpha } \bigl( w {}_{c}I_{w}^{\beta }f\bigr) (t) \\ =&\frac{1-\alpha }{M(\alpha )} \biggl(\frac{1-\beta }{M(\beta )} f(t)+\frac{ \beta }{M(\beta )} \frac{1}{w(t)} I_{0}^{\beta }(w f) (t) \biggr) \\ &{}+\frac{\alpha }{M(\alpha )} \frac{1}{w(t)} I_{0}^{\alpha } \biggl(\frac{1- \beta }{M(\beta )} (w f) (t)+\frac{\beta }{M(\beta )} I_{0}^{\beta }( w f) (t) \biggr) \\ =& \frac{(1-\alpha )(1-\beta )}{M(\alpha ) M(\beta )} f(t)+\frac{ \beta (1-\alpha )}{M(\alpha )M(\beta )}\frac{1}{w(t)}I_{0}^{\beta }( w f) (t)\\ &{}+\frac{\alpha (1-\beta )}{M(\alpha )M(\beta )} \frac{1}{w(t)}I _{0}^{\alpha }( w f) (t) \\ &{}+\frac{\alpha \beta }{M(\alpha )M(\beta )} \frac{1}{w(t)} I_{0}^{ \alpha +\beta }( w f) (t), \end{aligned}$$

    which proves the result as the last expression is symmetric in α and β.

 □

The weighted Atangana–Baleanu fractional operators are defined for \(t>a\) and arbitrary \(a\in \mathbb{R}^{+}\) as listed below. However, we started with \(t>0\), in order to apply the Laplace transform to define the weighted Atangana–Baleanu fractional integral.

Definition 3.1

For \(0<\alpha <1\), the weighted Atangana–Baleanu fractional derivative of Caputo sense of a function \(f(t)\in W^{1}(a,T]\), \(a\in \mathbb{R}^{+}\) with respect to the weight function \(w(t)\) is defined by

$$ \bigl({}_{c}D_{a,w}^{\alpha }f \bigr) (t)=\frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \int _{a}^{t} E_{\alpha } \bigl[-\mu _{\alpha }(t-s)^{ \alpha } \bigr] \frac{d}{ds}(w f) (s)\,ds,\quad t>a. $$
(3.8)

Definition 3.2

For \(0<\alpha <1\), the weighted Atangana–Baleanu fractional integral of order α, of \(f\in L^{1}(a,T)\), \(a\in \mathbb{R}^{+}\) with respect to the weight function w is defined by

$$ \bigl({}_{c}I_{a,w}^{\alpha }f \bigr) (t)=\frac{1-\alpha }{M(\alpha )} f(t)+\frac{ \alpha }{M(\alpha )\varGamma (\alpha )}\frac{1}{w(t)} \int _{a}^{t} (t-s)^{ \alpha -1} w(s) f(s)\,ds. $$
(3.9)

By applying analogous steps in the previous section one can easily verify the following:

$$ \bigl({}_{c}I_{a,w}^{\alpha }f\bigr) (t)= \frac{1-\alpha }{M(\alpha )} f(t)+\frac{ \alpha }{M(\alpha )}\frac{1}{w(t)} \bigl(I_{a}^{\alpha }w f\bigr) (t) $$

and

$$ \bigl({}_{c}D_{a,w}^{\alpha }f\bigr) (t)= \frac{M(\alpha )}{1-\alpha } \frac{1}{w(t)} \sum_{n=0}^{\infty }(-1)^{n} \mu _{\alpha }^{n} \biggl(I _{a}^{\alpha n+1} \frac{d}{dt}(w f) \biggr) (t). $$

The properties obtained in Theorems 3.1 and 3.2 will be valid for the \(({}_{c}I_{a,w}^{\alpha }f)(t)\) and \(({}_{c}D_{a,w} ^{\alpha }f)(t)\) operators.

Concluding remarks

We have introduced the weighted Atangana–Baleanu fractional operators, and studied their properties. By means of the Laplace transform, we have obtained the solutions of related linear equations in closed forms. The weighted Atangana–Baleanu fractional integral is written in terms of the Riemann–Liouville integral, and the weighted Atangana–Baleanu fractional derivative is written in terms of an infinite series of Riemann–Liouville integrals. By means of these representations, we have established several properties of the weighted Atangana–Baleanu fractional operators. Because of the type of the kernel, it is well known that dealing with the Atangana–Baleanu fractional operators is more difficult than dealing with the Caputo–Fabrizio operators. Therefore, the problem of introducing and studying the weighted Atangana–Baleanu fractional operators with respect to another function \(z(t)\) and weight function \(w(t)\) with their properties is still open. Also, the question whether the new models in the paper can be solved by the available numerical techniques in the literature [25, 26, 37, 38] is a valid question, and this issue has to considered in a future research.

References

  1. 1.

    Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10, 1098–1107 (2017)

  2. 2.

    Agarwal, O.: Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal. 15(4), 700–711 (2012)

  3. 3.

    Al-Refai, M.: Fractional differential equations involving Caputo fractional derivative with Mittag-Leffler non-singular kernel: comparison principles and applications. Electron. J. Differ. Equ. 36, 1 (2018)

  4. 4.

    Al-Refai, M.: Reduction of order formula and fundamental set of solutions for linear fractional differential equations. Appl. Math. Lett. 82, 8–13 (2018)

  5. 5.

    Al-Refai, M., Hajji, M.A.: Analysis of a fractional eigenvalue problem involving Atangana–Baleanu fractional derivative: a maximum principle and applications. Chaos, Interdiscip. J. Nonlinear Sci. 29, 013135 (2019)

  6. 6.

    Al-Refai, M., Jarrah, A.M.: Fundamental results on weighted Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 126, 7–11 (2019)

  7. 7.

    Al-Refai, M., Pal, K.: A maximum principle for a fractional boundary value problem with convection term and applications. Math. Model. Anal. 24(1), 62–71 (2019)

  8. 8.

    Al-Refai, M., Pal, K.: New aspects of Caputo–Fabrizio fractional derivative. Prog. Fract. Differ. Appl. 5(2), 157–166 (2019)

  9. 9.

    Alijani, Z., Baleanu, D., Shiri, B., Wu, G.: Spline collocation methods for systems of fuzzy fractional differential equations. Chaos Solitons Fractals 109510 (2019)

  10. 10.

    Aliya, A., Alshomrani, A., Li, Y., Inc, M., Baleanu, D.: Existence theory and numerical simulation of HIV-I cure model with new fractional derivative possessing a non-singular kernel. Adv. Differ. Equ. 2019(1), 408 (2019)

  11. 11.

    Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

  12. 12.

    Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)

  13. 13.

    Atangana, A., Alkahtani, B.: Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015)

  14. 14.

    Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

  15. 15.

    Baleanu, B., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2004)

  16. 16.

    Baleanu, B., Jajarmi, A., Sajjadi, S., Mozyrska, D.: A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos, Interdiscip. J. Nonlinear Sci. 29(8), 083127 (2019)

  17. 17.

    Baleanu, D., Asad, J., Jajarmi, A.: The fractional model of spring pendulum: new features within different kernels. Proc. Rom. Acad., Ser. A 19(3), 447–454 (2018)

  18. 18.

    Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

  19. 19.

    Baleanu, D., Sajjadi, S., Jajarmi, A., Asad, J.: New features of the fractional Euler–Lagrange equations for a physical system within non-singular derivative operator. Eur. Phys. J. Plus 134, 181 (2019)

  20. 20.

    Baleanu, D., Shiri, B.: Collocation methods for fractional differential equations involving non-singular kernel. Chaos Solitons Fractals 116, 136–145 (2018)

  21. 21.

    Baleanu, D., Shiri, B., Srivastava, M., Al Qurashi, M.: A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel. Adv. Differ. Equ. 2018(1), 353 (2018)

  22. 22.

    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

  23. 23.

    Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2, 1–11 (2016)

  24. 24.

    Gómez-Aguilar, J., ópez-López, M., Alvarado-Martínez, M., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Physica A 447, 467–481 (2016)

  25. 25.

    Hajipour, M., Jajarmi, A., Baleanu, D.: On the accurate discretization of a highly nonlinear boundary value problem. Numer. Algorithms 79(3), 679–695 (2018)

  26. 26.

    Hajipour, M., Jajarmi, A., Malek, A., Baleanu, D.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math. Comput. 325, 146–158 (2018)

  27. 27.

    Hristov, J.: Transient heal diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo–Fabrizio time-fractional derivative. Therm. Sci. 20(2), 757–762 (2016)

  28. 28.

    Jajarmi, A., Arshad, S., Baleanu, D.: A new fractional modelling and control strategy for the outbreak of dengue fever. Phys. A, Stat. Mech. Appl. 535, 122524 (2019)

  29. 29.

    Jajarmi, A., Ghanbari, B., Baleanu, D.: A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence. Chaos, Interdiscip. J. Nonlinear Sci. 29(9), 093111 (2019)

  30. 30.

    Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst., Ser. S. https://doi.org/10.3934/dcdss.2020039

  31. 31.

    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

  32. 32.

    Kiryakova, V.: A brief story about the operators of generalized fractional calculus. Fract. Calc. Appl. Anal. 11(2), 201–218 (2008)

  33. 33.

    Osler, T.: Fractional derivatives of a composite function. SIAM J. Math. Anal. 1, 288–293 (1970)

  34. 34.

    Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Longhorne (1993)

  35. 35.

    Shiri, B., Baleanu, D.: System of fractional differential algebraic equations with applications. Chaos Solitons Fractals 120, 203–212 (2019)

  36. 36.

    Srivastava, M., Fernandez, A., Baleanu, D.: Some new fractional-calculus connections between Mittag-Leffler functions. Mathematics 7(6), 485 (2019)

  37. 37.

    Syam, M., Al-Refai, M.: Solving fractional diffusion equation via the collocation method based on fractional Legendre functions. J. Methods Comput. Phys. 2014, Article ID 381074 (2014). https://doi.org/10.1155/2014/381074

  38. 38.

    Syam, M., Al-Refai, M.: Fractional differential equations with Atangana–Baleanu fractional derivative: analysis and applications. Chaos Solitons Fractals 2, 100013 (2019)

  39. 39.

    Ullah, S., Khan, M., Farooq, M., Hammouch, Z., Baleanu, D.: A fractional model for the dynamics of tuberculosis infection using Caputo–Fabrizio derivative, Discrete Contin. Dyn. Syst., Ser. S. https://doi.org/10.3934/dcdss.2020057

Download references

Acknowledgements

The author express his sincere appreciation to the Research Affairs at Yarmouk University for their support.

Funding

The author declares that there are no funding resources for this project.

Author information

Author read and approved the final manuscript.

Correspondence to Mohammed Al-Refai.

Ethics declarations

Competing interests

The author declares there to be no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Refai, M. On weighted Atangana–Baleanu fractional operators. Adv Differ Equ 2020, 3 (2020). https://doi.org/10.1186/s13662-019-2471-z

Download citation

Keywords

  • Weighted fractional derivatives
  • Fractional derivatives with nonsingular kernels
  • Fractional differential equations