Skip to main content

Theory and Modern Applications

The Minkowski inequalities via generalized proportional fractional integral operators

Abstract

Recent research has gained more attention on conformable integrals and derivatives to derive the various type of inequalities. One of the recent advancements in the field of fractional calculus is the generalized nonlocal proportional fractional integrals and derivatives lately introduced by Jarad et al. (Eur. Phys. J. Special Topics 226:3457–3471, 2017) comprising the exponential functions in the kernels. The principal aim of this paper is to establish reverse Minkowski inequalities and some other fractional integral inequalities by utilizing generalized proportional fractional integrals. Also, two new theorems connected with this inequality as well as other inequalities associated with the generalized proportional fractional integrals are established.

1 Introduction

Fractional calculus is a study of integrals and derivatives of arbitrary order which was a natural outgrowth of conventional definitions of calculus integral and derivative. Fractional integral has been comprehensively studied in the literature. The idea has been defined by numerous mathematicians with a slightly different formula, for example, Riemann–Liouville, Weyl, Erdélyi–Kober, Hadamard integral, Liouville and Katugampola fractional integral (see [18, 22, 23, 26, 34]). In the last few years, Khalil et al. [24] and Abdeljawad [1] established a new class of fractional derivatives and integrals called fractional conformable derivatives and integrals. Jarad et al. [21] introduced the fractional conformable integral operators. On the basis of that idea, one can obtain the generalizations of the inequalities: Hadamard, Hermite–Hadamard, Opial, Grüss, Ostrowski, Chebyshev, among others [19, 35, 37,38,39]).

Later on in [6], Anderson and Ulness improved the idea of the fractional conformable derivative by introducing the idea of local derivatives. In [2, 3, 7, 9, 27] researchers introduced new fractional derivative operators by using exponential and Mittag-Leffler functions in their kernels. In [20], Jarad et al. proposed the left and right generalized nonlocal proportional fractional integral and derivative operators. Such generalizations motivate future research to present more innovative ideas to unify the fractional operators and obtain the inequalities involving such fractional operators. The integral inequalities and their applications play an essential role in the theory of differential equations and applied mathematics. A variety of various types of some classical integral inequalities and their generalizations have been established by utilizing the classical fractional integral, fractional derivative operators (see, e.g., [4, 12, 14,15,16,17, 25, 28,29,30, 32, 33, 36, 41, 42, 46, 47]).

The reverse Minkowski fractional integral inequalities are perceived in [13]. Anber et al. [5] have gained some fractional integral inequalities by using Riemann–Liouville fractional integral. In [11], the authors established Minkowski inequalities and some other inequalities by employing Katugampola fractional integral operators. In [10, 45], the authors established the reverse Minkowski inequality for Hadamard fractional integral operators. In [31], Mubeen et al. recently established the reverse Minkowski inequalities and some related inequalities for generalized k-fractional conformable integrals.

This paper is organized as follows: In the second section, we present some known results and basic definitions. In the third section, the reverse Minkowski inequalities are presented. In the fourth section, some other related inequalities involving generalized nonlocal proportional fractional integrals are presented.

2 Preliminaries

This section is devoted to some known definitions and results associated with the classical Riemann–Liouville fractional integrals and their generalization involving the Riemann–Liouville fractional integrals. Set et al. [40] presented Hermite–Hadamard and reverse Minkowski inequalities for Riemann–Liouville fractional integrals. In [8], Bougoffa also presented Hardy’s and reverse Minkowski inequalities. The following theorems involving the reverse Minkowski inequalities are the motivation of work performed so far, involving the classical Riemann integrals.

Theorem 2.1

([40])

Let \(r\geq 1\) and let g, h be two positive functions on \([0,\infty )\). If \(0< m\leq \frac{g(\rho )}{h(\rho )} \leq M\), \(\vartheta \in [a,b]\), then the following inequality holds:

$$\begin{aligned} & \biggl( \int _{a}^{b}g^{r}(\vartheta )\,d \vartheta \biggr)^{1/r}+ \biggl( \int _{a}^{b}h^{r}(\vartheta )\,d \vartheta \biggr)^{1/r} \\ &\quad \leq \frac{1+M(m+2)}{(m+1)(M+1)} \biggl( \int _{a}^{b}(g+h)^{r}(\vartheta ) \,d \vartheta \biggr)^{1/r}. \end{aligned}$$
(1)

Theorem 2.2

([40])

Let \(r\geq 1\) and let g, h be two positive functions on \([0,\infty )\). If \(0< m\leq \frac{g(\rho )}{h(\rho )} \leq M\), \(\vartheta \in [a,b]\), then the following inequality holds:

$$\begin{aligned} & \biggl( \int _{a}^{b}g^{r}(\vartheta )\,d \vartheta \biggr)^{2/r}+ \biggl( \int _{a}^{b}h^{r}(\vartheta )\,d \vartheta \biggr)^{2/r} \\ &\quad \geq \biggl(\frac{(M+1)(m+1)}{M}-2 \biggr) \biggl( \int _{a}^{b}g^{r}( \vartheta )\,d \vartheta \biggr)^{1/r} \biggl( \int _{a}^{b}h^{r}(\vartheta )\,d \vartheta \biggr)^{1/r}. \end{aligned}$$
(2)

Definition 2.1

([26, 34])

The left and right R-L fractional integrals of order λ are respectively defined by

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda }g \bigr) ( \vartheta )=\frac{1}{ \varGamma (\lambda )} \int _{a}^{\vartheta }(\vartheta -\rho )^{\lambda -1}g( \rho )\,d\rho ,\quad a< \vartheta \end{aligned}$$
(3)

and

$$\begin{aligned} \bigl(\mathfrak{I}_{b}^{\lambda }g \bigr) ( \vartheta )=\frac{1}{ \varGamma (\lambda )} \int _{\vartheta }^{b}(\rho -\vartheta )^{\lambda -1}g( \rho )\,d\rho ,\quad \vartheta < b, \end{aligned}$$
(4)

where \(\lambda \in \mathbb{C}\) and \(\Re (\lambda )>0\).

In [13], Dahmani introduced the following reverse Minkowski inequalities involving the R-L fractional integral operators.

Theorem 2.3

([13])

Let \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r\geq 1\), and let g, h be two positive functions on \([0,\infty )\) such that, for all \(\vartheta >0\), \(\mathfrak{I}^{\lambda }g^{r}( \vartheta )<\infty \), \(\mathfrak{I}^{\lambda }h^{r}(\vartheta )< \infty \). If \(0< m\leq \frac{g(\rho )}{h(\rho )}\leq M\), \(\rho \in [a, \vartheta ]\), then the following inequality holds:

$$\begin{aligned} \bigl(\mathfrak{I}^{\lambda }g^{r}(\vartheta ) \bigr)^{1/r}+ \bigl(\mathfrak{I} ^{\lambda }h^{r}( \vartheta ) \bigr)^{1/r}\leq \frac{1+M(m+2)}{(m+1)(M+1)} \bigl( \mathfrak{I}^{\lambda }(g+h)^{r}( \vartheta ) \bigr)^{ 1/r }. \end{aligned}$$
(5)

Theorem 2.4

([13])

Let \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r\geq 1\), and let g, h be two positive functions on \([0,\infty )\) such that, for all \(\vartheta >0\), \(\mathfrak{I}^{\lambda }g^{r}( \vartheta )<\infty \), \(\mathfrak{I}^{\lambda }h^{r}(\vartheta )< \infty \). If \(0< m\leq \frac{g(\rho )}{h(\rho )}\leq M\), \(\rho \in [a, \vartheta ]\), then the following inequality holds:

$$\begin{aligned} & \bigl(\mathfrak{I}^{\lambda }g^{r}(\vartheta ) \bigr)^{2/r}+ \bigl(\mathfrak{I} ^{\lambda }h^{r}( \vartheta ) \bigr)^{2/r} \\ &\quad \geq \biggl(\frac{(M+1)(m+1)}{M}-2 \biggr) \bigl(\mathfrak{I}^{\lambda }g ^{r}(\vartheta ) \bigr)^{1/r} \bigl(\mathfrak{I}^{\lambda }h^{r}( \vartheta ) \bigr)^{1/r}. \end{aligned}$$
(6)

Definition 2.2

([20])

The left and right generalized nonlocal proportional integral operators are respectively defined by

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g \bigr) ( \vartheta )=\frac{1}{ \eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta }\exp \biggl[\frac{ \eta -1}{\eta }( \vartheta -\rho )\biggr] (\vartheta -\rho )^{\lambda -1}g( \rho )\,d\rho \end{aligned}$$
(7)

and

$$\begin{aligned} \bigl(\mathfrak{I}_{b}^{\lambda ,\eta }g \bigr) ( \vartheta )=\frac{1}{ \eta ^{\lambda }\varGamma (\lambda )} \int _{\vartheta }^{b}\exp \biggl[\frac{ \eta -1}{\eta }( \rho -\vartheta )\biggr](\rho -\vartheta )^{\lambda -1}g( \rho )\,d\rho , \end{aligned}$$
(8)

where \(\eta \in (0,1]\) and \(\lambda \in \mathbb{C}\) and \(\Re (\lambda )>0\).

Remark 2.1

If we consider \(\eta =1\) in (7) and (8), then we get the left and right Riemann–Liouville (3) and (4) respectively.

3 Reverse Minkowski inequalities via generalized proportional fractional integral operator

In this section, we use generalized nonlocal proportional fractional integral operator to develop reverse Minkowski integral inequalities. The reverse Minkowski fractional integral inequality is presented in the following theorem.

Theorem 3.1

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r\geq 1\), and let g, h be two positive functions on \([0,\infty )\) such that, for all \(\vartheta >0\), \({}_{a}\mathfrak{I}^{\lambda , \eta }g^{r}(\vartheta )<\infty \), \({}_{a}\mathfrak{I}^{\lambda , \eta }h^{r}(\vartheta )<\infty \). If \(0< m\leq \frac{g(\rho )}{h( \rho )}\leq M\), \(\rho \in [a,\vartheta ]\), then the following inequality holds:

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{1/r}+ \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }h^{r}(\vartheta ) \bigr) ^{1/r} \leq \frac{1+M(m+2)}{(m+1)(M+1)} \bigl({}_{a}\mathfrak{I}^{ \lambda ,\eta }(g+h)^{r}( \vartheta ) \bigr)^{1/r}. \end{aligned}$$
(9)

Proof

Under the condition stated in Theorem 3.1, \(\frac{g(\rho )}{h( \rho )}\leq M\), \(\rho \in [0,\vartheta ]\), \(\vartheta >0\), we have

$$ (M+1)^{r} g^{r}(\rho )\leq M^{r} (g+h )^{r}(\rho ). $$
(10)

Consider a function

$$\begin{aligned} \mathfrak{F}(\vartheta ,\rho ) &=\frac{1}{\eta ^{\lambda }\varGamma ( \lambda )}\exp \biggl[\frac{\eta -1}{\eta }(\vartheta -\rho )\biggr] (\vartheta - \rho )^{\lambda -1} \\ &= \frac{1}{\eta ^{\lambda }\varGamma (\lambda )}(\vartheta -\rho )^{ \lambda -1} \biggl[1+ \frac{\eta -1}{\eta }(\vartheta -\rho )+\frac{ (\frac{\eta -1}{\eta }(\vartheta -\rho ) )^{2}}{2}+\cdots \biggr]. \end{aligned}$$
(11)

We observe that the function \(\mathfrak{F}(\vartheta ,\rho )\) remains positive for all \(\rho \in (a,\vartheta )\), \(a<\vartheta \leq b\), since each term of the above function is positive in view of conditions stated in Theorem 3.1.

Multiplying both sides of (10) by \(\mathfrak{F}(\vartheta , \rho )\) and integrating the resultant inequality with respect to ρ from a to ϑ, we have

$$\begin{aligned} &\frac{(M+1)^{r} }{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr] (\vartheta -\rho )^{ \lambda -1}g^{r}(\rho )\,d\rho \\ &\quad \leq \frac{M^{r} }{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{ \vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr] (\vartheta -\rho )^{\lambda -1} (g+h )^{r}(\rho )\,d\rho , \end{aligned}$$

which can be written as

$$ {}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}(\vartheta ) \leq \frac{M^{r}}{(M+1)^{r}}{}_{a}\mathfrak{I}^{\lambda ,\eta } (g+h ) ^{r}(\vartheta ). $$

Hence, it follows that

$$ \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{1/r}\leq \frac{M}{(M+1)} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } (g+h )^{r}( \vartheta ) \bigr) ^{1/r}. $$
(12)

Now, using the condition \(mg(\rho )\leq h(\rho )\), we have

$$ \biggl(1+\frac{1}{m} \biggr)h(\rho )\leq \frac{1}{m} \bigl(g(\rho )+h( \rho ) \bigr), $$

it follows that

$$ \biggl(1+\frac{1}{m} \biggr)^{r} h^{r}(\rho )\leq \biggl(\frac{1}{m}\biggr)^{r} \bigl(g(\rho )+h(\rho ) \bigr)^{r}. $$
(13)

Multiplying both sides of (13) by \(\mathfrak{F}(\vartheta , \rho )\) and integrating the resultant inequality with respect to ρ from a to ϑ, we have

$$ \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }h^{r}( \vartheta ) \bigr) ^{1/r}\leq \frac{1}{(m+1)} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } (g+h )^{r}( \vartheta ) \bigr) ^{1/r}. $$
(14)

Thus adding inequalities (12) and (14) yields the desired inequality. □

Theorem 3.2

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r\geq 1\), and let g, h be two positive functions on \([0,\infty )\) such that, for all \(\vartheta >0\), \({}_{a}\mathfrak{I}^{\lambda , \eta }g^{r}(\vartheta )<\infty \), \({}_{a}\mathfrak{I}^{\lambda , \eta }h^{r}(\vartheta )<\infty \). If \(0< m\leq \frac{g(\rho )}{h( \rho )}\leq M\), \(\rho \in [a,\vartheta ]\), then the following inequality holds:

$$\begin{aligned} & \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{2/r}+ \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }h^{r}(\vartheta ) \bigr) ^{2/r} \\ &\quad \geq \biggl(\frac{(M+1)(m+1)}{M}-2 \biggr) \bigl({}_{a} \mathfrak{I}^{ \lambda ,\eta }g^{r}(\vartheta ) \bigr)^{1/r} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }h^{r}(\vartheta ) \bigr)^{1/r}. \end{aligned}$$
(15)

Proof

The multiplication of inequalities (12) and (14) yields

$$\begin{aligned} \biggl(\frac{(M+1)(m+1)}{M} \biggr) \bigl({}_{a} \mathfrak{I}^{\lambda , \eta }g^{r}(\vartheta ) \bigr)^{1/r} \bigl({}_{a}\mathfrak{I}^{ \lambda ,\eta }h^{r}(\vartheta ) \bigr)^{1/r}\leq \bigl[ \bigl({} _{a} \mathfrak{I}^{\lambda ,\eta } \bigl(g(\vartheta )+ h(\vartheta ) \bigr) ^{r} \bigr)^{1/r} \bigr]^{2}. \end{aligned}$$
(16)

Now, applying the Minkowski inequality to the right-hand side of (16), we obtain

$$\begin{aligned} & \bigl[ \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } \bigl(g(\vartheta )+ h(\vartheta ) \bigr)^{r} \bigr)^{1/r} \bigr]^{2} \\ &\quad \leq \bigl[ \bigl({} _{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr)^{1/r}+ \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }h^{r}( \vartheta ) \bigr) ^{1/r} \bigr]^{2} \\ &\quad \leq \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{2/r}+ \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }h^{r}(\vartheta ) \bigr)^{2/r}+2 \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}(\vartheta ) \bigr)^{1/r} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }h^{r}( \vartheta ) \bigr)^{1/r}. \end{aligned}$$
(17)

Thus, from inequalities (16) and (17), we get the desired inequality (15). □

4 Certain related inequalities via generalized proportional fractional integral operator

This section is devoted to deriving certain related inequalities involving a generalized proportional fractional integral operator.

Theorem 4.1

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r>1\), \(1/r+1/s =1\), and let g, h be two positive functions on \([0,\infty )\) such that \({}_{a}\mathfrak{I}^{\lambda ,\eta }[g(\vartheta )]<\infty \), \({}_{a}\mathfrak{I}^{\lambda ,\eta }[h(\vartheta )]< \infty \). If \(0< m\leq \frac{g(\rho )}{h(\rho )}\leq M<\infty \), \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), we have

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g( \vartheta ) \bigr)^{1/r} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }h( \vartheta ) \bigr)^{1/s} \leq \biggl(\frac{M}{m} \biggr)^{1/rs} \bigl({}_{a}\mathfrak{I}^{ \lambda ,\eta } \bigl[g(\vartheta )\bigr]^{1/r}\bigl[h(\vartheta )\bigr]^{1/s} \bigr). \end{aligned}$$
(18)

Proof

Since \(\frac{g(\rho )}{h(\rho )}\leq M<\infty \), \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), therefore we have

(19)

It follows that

$$\begin{aligned} \bigl[g(\rho )\bigr]^{1/r}\bigl[h(\rho ) \bigr]^{1/s} &\geq M^{-1/r}\bigl[g(\rho ) \bigr]^{1/r}\bigl[g( \rho )\bigr]^{1/s} \\ &\geq M^{-1/s}\bigl[g(\rho )\bigr]^{\frac{1}{r}+{1/s}} \\ &\geq M^{-1/r}\bigl[g(\rho )\bigr]. \end{aligned}$$
(20)

Multiplying both sides of (20) by \(\mathfrak{F}(\vartheta , \rho )\) where \(\mathfrak{F}(\vartheta ,\rho )\) is defined by (11) and integrating the resultant inequality with respect to ρ from a to ϑ, we have

$$\begin{aligned} &\frac{ 1}{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta } \exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1}\bigl[g(\rho ) \bigr]^{1/r}\bigl[h(\rho )\bigr]^{1/s}\,d\rho \\ &\quad \geq \frac{M^{-1/r} }{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{ \vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta - \rho )^{\lambda -1}g(\rho )\,d\rho . \end{aligned}$$
(21)

It follows that

$$\begin{aligned} {}_{a}\mathfrak{I}^{\lambda ,\eta } \bigl[\bigl[g( \vartheta )\bigr]^{1/r}\bigl[h( \vartheta )\bigr]^{1/s} \bigr]\geq M^{\frac{-1}{r}} \bigl[{}_{a} \mathfrak{I}^{\lambda ,\eta }g( \vartheta ) \bigr]. \end{aligned}$$
(22)

Consequently, we have

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } \bigl[ \bigl[g(\vartheta )\bigr]^{1/r}\bigl[h( \vartheta )\bigr]^{1/s} \bigr] \bigr)^{1/r}\geq M^{\frac{-1}{rs}} \bigl[{}_{a} \mathfrak{I}^{\lambda ,\eta }h(\vartheta ) \bigr]^{1/r}. \end{aligned}$$
(23)

On the other hand, \(m g(\rho )\leq h(\rho )\), \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), therefore we have

$$\begin{aligned} \bigl[g(\rho )\bigr]^{1/r}\geq m^{1/r} \bigl[h(\rho )\bigr]^{1/r}. \end{aligned}$$
(24)

It follows that

$$\begin{aligned} \bigl[g(\rho )\bigr]^{1/r}\bigl[h(\rho ) \bigr]^{1/s} &\geq m^{1/r}\bigl[g(\rho )\bigr]^{1/r} \bigl[h( \rho )\bigr]^{1/s} \\ &\geq m^{1/r}\bigl[h(\rho )\bigr]^{\frac{1}{r}+{1/s}} \\ &\geq m^{1/r}\bigl[h(\rho )\bigr]. \end{aligned}$$
(25)

Again, multiplying both sides of (25) by \(\mathfrak{F}( \vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta ,\rho )\) is defined by (11) and integrating the resultant inequality with respect to ρ from a to ϑ, we have

$$\begin{aligned} &\frac{ 1}{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta } \exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1}\bigl[g(\rho ) \bigr]^{1/r}\bigl[h(\rho )\bigr]^{1/s}\,d\rho \\ & \quad \geq \frac{m^{1/r}}{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{ \vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta - \rho )^{\lambda -1}h(\rho )\,d\rho . \end{aligned}$$
(26)

Hence, we can write

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } \bigl[ \bigl[g(\vartheta )\bigr]^{1/r}\bigl[h( \vartheta )\bigr]^{1/s} \bigr] \bigr)^{1/r}\geq m^{\frac{1}{rs}} \bigl[{}_{a} \mathfrak{I}^{\lambda ,\eta }g(\vartheta ) \bigr]^{1/s}. \end{aligned}$$
(27)

Multiplying (23) and (27), we get the desired inequality. □

Theorem 4.2

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r>1\), \(\frac{1}{r}+{1/s}=1\), and let g, h be two positive functions on \([0,\infty )\) such that \({}_{a}\mathfrak{I}^{\lambda ,\eta }[g^{r}( \vartheta )]<\infty \), \({}_{a}\mathfrak{I}^{\lambda ,\eta }[h^{s}( \vartheta )]<\infty \). If \(0< m\leq \frac{g(\rho )^{r}}{h(\rho )^{s}} \leq M<\infty \), \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), we have

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{1/r} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }h^{s}( \vartheta ) \bigr) ^{1/s}\leq \biggl(\frac{M}{m} \biggr)^{\frac{1}{rs}} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta } \bigl[g(\vartheta )\bigr]^{1/r}\bigl[h(\vartheta )\bigr]^{1/s} \bigr). \end{aligned}$$
(28)

Proof

Replacing \(g(\vartheta )\) and \(h(\vartheta )\) by \(g^{r}(\vartheta )\) and \(h^{r}(\vartheta )\), \(a<\vartheta \leq b\) in Theorem 4.1, we get the desired inequality (28). □

Theorem 4.3

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r>1\), \(\frac{1}{r}+{1/s}=1\), and let g, h be two positive functions on \([0,\infty )\) such that \({}_{a}\mathfrak{I}^{\lambda ,\eta }[g^{r}( \vartheta )]<\infty \), \({}_{a}\mathfrak{I}^{\lambda ,\eta }[h^{s}( \vartheta )]<\infty \). If \(0< m\leq \frac{g^{r}(\rho )}{h^{s}(\rho )} \leq M<\infty \) where \(m, M\in \mathbb{R}\), \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), then the following inequality for left generalized proportional fractional integral holds:

$$\begin{aligned} _{a}\mathfrak{I}^{\lambda ,\eta }\bigl[g(\vartheta )h(\vartheta )\bigr]\leq \frac{2^{r-1}M ^{r}}{r(M+1)^{r}}{}_{a} \mathfrak{I}^{\lambda ,\eta }\bigl[g^{r}+h^{p}\bigr]( \vartheta )+ \frac{2^{s-1}}{s(m+1)^{s}}{}_{a}\mathfrak{I}^{\lambda , \eta } \bigl[g^{s}+h^{s}\bigr](\vartheta ). \end{aligned}$$
(29)

Proof

By the given hypothesis \(\frac{g(\rho )}{h(\rho )}\leq M\), we have

$$\begin{aligned} (M+1)^{r}g^{r}(\rho )\leq M^{r}[g+h]^{r}(\rho ). \end{aligned}$$
(30)

Multiplying both sides of inequality (30) by \(\mathfrak{F}( \vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta ,\rho )\) is defined by (11) and integrating the resultant identity with respect to ρ over \((a,\vartheta )\), we get

$$\begin{aligned} &\frac{(M+1)^{r}}{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1}g^{r}(\rho )\,d\rho \\ & \quad \leq \frac{M^{r}}{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{ \vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta - \rho )^{\lambda -1}[g+h]^{r}( \rho )\,d\rho . \end{aligned}$$
(31)

It follows that

$$\begin{aligned} {}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta )\leq \frac{M^{r}}{(M+1)^{r}}{}_{a}\mathfrak{I}^{\lambda ,\eta }[g+h]^{r}( \vartheta ). \end{aligned}$$
(32)

On the other hand, using \(m\leq \frac{g(\rho )}{h(\rho )}\), \(a< t<\vartheta \), we have

$$\begin{aligned} (m+1)^{s} h^{s}(\rho )\leq [g+h]^{s}(\rho ). \end{aligned}$$
(33)

Again, multiplying both sides of inequality (33) by \(\mathfrak{F}(\vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta , \rho )\) is defined by (11) and integrating the resultant identity with respect to ρ over \((a,\vartheta )\), we get

$$\begin{aligned} {}_{a}\mathfrak{I}^{\lambda ,\eta }h^{s}( \vartheta )\leq \frac{1}{(m+1)^{s}}{}_{a}\mathfrak{I}^{\lambda ,\eta }[g+h]^{s}( \vartheta ). \end{aligned}$$
(34)

Now, using Young’s inequality, we have

$$\begin{aligned} g(\rho )h(\rho )\leq \frac{g^{r}(\rho )}{r}+ \frac{g^{s}(\rho )}{s}. \end{aligned}$$
(35)

Multiplying both sides of inequality (33) by \(\mathfrak{F}( \vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta ,\rho )\) is defined by (11) and integrating the resultant identity with respect to ρ over \((a,\vartheta )\), we get

$$\begin{aligned} _{a}\mathfrak{I}^{\lambda ,\eta }g(\vartheta )h( \vartheta )\leq \frac{1}{r} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }g^{r}(\vartheta ) \bigr)+ {1/s} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } g^{s}( \vartheta ) \bigr). \end{aligned}$$
(36)

With the aid of (32) and (34), (36) can be written as

$$\begin{aligned} {}_{a}\mathfrak{I}^{\lambda ,\eta }g(\vartheta )h( \vartheta ) &\leq \frac{1}{r} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }g^{r}(\vartheta ) \bigr)+ {1/s} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } g^{s}( \vartheta ) \bigr) \\ & \leq \frac{M^{r}}{r(M+1)^{r}}{}_{a}\mathfrak{I}^{\lambda ,\eta }[g+h]^{r}( \vartheta )+\frac{1}{s(m+1)^{s}}{}_{a}\mathfrak{I}^{\lambda ,\eta }[g+h]^{s}( \vartheta ). \end{aligned}$$
(37)

Now, using the inequality \((\rho +\omega )^{r}\leq 2^{s-1}(\rho ^{r}+ \omega ^{r})\), \(r>1\), \(\rho , \omega >0\), one can obtain

$$\begin{aligned} {}_{a}\mathfrak{I}^{\lambda ,\eta }[g+h]^{r}( \vartheta )\leq {}_{a} \mathfrak{I}^{\lambda ,\eta } \bigl[g^{r}+h^{r}\bigr](\vartheta ) \end{aligned}$$
(38)

and

$$\begin{aligned} {}_{a}\mathfrak{I}^{\lambda ,\eta }[g+h]^{s}( \vartheta )\leq {}_{a} \mathfrak{I}^{\lambda ,\eta } \bigl[g^{s}+h^{s}\bigr](\vartheta ). \end{aligned}$$
(39)

Hence the proof of (29) can follow from (37), (38), and (39). □

Theorem 4.4

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r\geq 1\), and let g, h be two positive functions on \([0,\infty )\) such that \({}_{a}\mathfrak{I}^{\lambda ,\eta }[g^{r}(\vartheta )]< \infty \), \({}_{a}\mathfrak{I}^{\lambda ,\eta }[h^{r}(\vartheta )]< \infty \). If \(0< k< m\leq \frac{g(\rho )}{h(\rho )}\leq M<\infty \), where \(m, M\in \mathbb{R}\), \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), then the following inequality for left generalized proportional fractional integral holds:

$$\begin{aligned} \frac{M+1}{M-k} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }\bigl[g(\vartheta )-kh(\vartheta )\bigr] \bigr) &\leq \bigl({}_{a}\mathfrak{I}^{\lambda , \eta }g^{r}(\vartheta ) \bigr)^{1/r}+ \bigl({}_{a}\mathfrak{I}^{ \lambda ,\eta }h^{r}( \vartheta ) \bigr)^{1/r} \\ &\leq \frac{m+1}{m-k} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } \bigl[g( \vartheta )-kh(\vartheta )\bigr] \bigr)^{1/r}. \end{aligned}$$
(40)

Proof

Under the given hypothesis \(0< k< m\leq \frac{g^{r}(\rho )}{h^{s}( \rho )}\leq M<\infty \), we have

$$\begin{aligned} mk\leq Mk\quad &\Rightarrow\quad mk+m\leq mk+M\leq Mk+M\, \\ &\Rightarrow\quad (M+1) (m-k)\leq (m+1) (M-k). \end{aligned}$$

It can be written as

$$\begin{aligned} \frac{ (M+1)}{(M-k)}\leq \frac{(m+1)}{(m-k)}. \end{aligned}$$

Also, we have

$$\begin{aligned} m-k\leq \frac{g(\rho )-kh(\rho )}{h(\rho )}\leq M-k. \end{aligned}$$

It follows that

$$\begin{aligned} \frac{ (g(\rho )-kh(\rho ) )^{r}}{(M-k)^{r}}\leq h^{r}( \rho )\leq \frac{ (g(\rho )-kh(\rho ) )^{r}}{(m-k)^{r}}. \end{aligned}$$
(41)

Also, we have

$$\begin{aligned} \frac{1}{M}\leq \frac{h(\rho )}{g(\rho )}\leq \frac{1}{m}\quad \Rightarrow\quad \frac{m-k}{km}\leq \frac{g(\rho )-kh(\rho )}{kg(\rho )}\leq \frac{M-k}{kM}. \end{aligned}$$

It follows that

$$\begin{aligned} \biggl(\frac{M}{M-k} \biggr)^{r}\leq \bigl(g(\rho )-kh(\rho ) \bigr) ^{r}\leq g^{r}(\rho )\leq \biggl(\frac{m}{m-k} \biggr)^{r}\leq \bigl(g( \rho )-kh(\rho ) \bigr)^{r}. \end{aligned}$$
(42)

Multiplying both sides of inequality (41) by \(\mathfrak{F}( \vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta ,\rho )\) is defined by (11) and integrating the resultant identity with respect to ρ over \((a,\vartheta )\), we get

$$\begin{aligned} &\frac{1}{(M-k)^{r} \eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1} \bigl(g(\rho )-kh(\rho ) \bigr)^{r} \,d\rho \\ & \quad \leq \frac{1}{ \eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1}h^{r}(\rho )\,d\rho \\ & \quad \leq \frac{1}{(m-k)^{r} \eta ^{\lambda }\varGamma (\lambda )} \int _{a} ^{\vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{\lambda -1} \bigl(g(\rho )-kh(\rho ) \bigr)^{r}\,d\rho . \end{aligned}$$

It follows that

$$\begin{aligned} \frac{1}{(M-k)} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta } \bigl(g( \vartheta )-kh(\vartheta ) \bigr)^{r} \bigr)^{1/r} &\leq \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }h^{r}(\vartheta ) \bigr)^{1/r} \\ & \leq \frac{1}{(m-k)} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } \bigl(g( \vartheta )-kh(\vartheta ) \bigr)^{r} \bigr)^{1/r}. \end{aligned}$$
(43)

Again, multiplying both sides of inequality (42) by \(\mathfrak{F}(\vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta , \rho )\) is defined by (11) and integrating the resultant identity with respect to ρ over \((a,\vartheta )\), we get

$$\begin{aligned} \biggl(\frac{M}{M-k} \biggr) \bigl({}_{a} \mathfrak{I}^{\lambda , \eta } \bigl(g(\vartheta )-kh(\vartheta ) \bigr)^{r} \bigr)^{1/r} & \leq \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }g^{r}(\vartheta ) \bigr) ^{1/r} \\ & \leq \biggl(\frac{m}{m-k} \biggr) \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta } \bigl(g(\vartheta )-kh(\vartheta ) \bigr)^{r} \bigr)^{1/r}. \end{aligned}$$
(44)

Hence, by adding inequalities (43) and (44), we get the desired inequality (40). □

Theorem 4.5

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r\geq 1\), and let g, h be two positive functions on \([0,\infty )\) such that \({}_{a}\mathfrak{I}^{\lambda ,\eta }[g^{r}(\vartheta )]< \infty \), \({}_{a}\mathfrak{I}^{\lambda ,\eta }[h^{r}(\vartheta )]< \infty \). If \(0\leq \alpha \leq g(\rho )\leq \mathcal{A}\) and \(0\leq \sigma \leq h(\rho )\leq \mathcal{B}\) for all \(\rho \in [a, \vartheta ]\), \(\vartheta >a\), then the following inequality for left generalized proportional fractional integral holds:

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{1/r}+ \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }h^{r}(\vartheta ) \bigr) ^{1/r} \leq \frac{\mathcal{A}(\alpha +\mathcal{B})+\mathcal{B}(\sigma +\mathcal{A})}{(\mathcal{A}+\sigma )(\mathcal{B}+\alpha )} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }[g+h]^{r}( \vartheta ) \bigr)^{1/r}. \end{aligned}$$
(45)

Proof

Under the given hypothesis, we have

$$\begin{aligned} \frac{1}{\mathcal{B}}\leq \frac{1}{h(\rho )}\leq \frac{1}{\sigma }. \end{aligned}$$
(46)

The product of inequality (46) with \(0\leq \alpha \leq g( \rho )\leq \mathcal{A}\) yields

$$\begin{aligned} \frac{\alpha }{\mathcal{B}}\leq \frac{g(\rho )}{h(\rho )}\leq \frac{ \mathcal{A}}{\sigma }. \end{aligned}$$
(47)

From (47), we obtain

$$\begin{aligned} h^{r}(\rho )\leq \biggl(\frac{\mathcal{B}}{\alpha +\mathcal{B}} \biggr) ^{r} \bigl(g(\rho )+h(\rho ) \bigr)^{r} \end{aligned}$$
(48)

and

$$\begin{aligned} g^{r}(\rho )\leq \biggl(\frac{\mathcal{A}}{\sigma +\mathcal{A}} \biggr) ^{r} \bigl(g(\rho )+h(\rho ) \bigr)^{r}. \end{aligned}$$
(49)

Now, multiplying both sides of inequalities (48) and (49) respectively by \(\mathfrak{F}(\vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta ,\rho )\) is defined by (11) and integrating the resultant identity with respect to ρ over \((a,\vartheta )\), we obtain

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }h^{r}( \vartheta ) \bigr) ^{1/r}\leq \biggl(\frac{\mathcal{B}}{\alpha +\mathcal{B}} \biggr) \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } \bigl(g(\vartheta )+h( \vartheta ) \bigr)^{r} \bigr)^{1/r} \end{aligned}$$
(50)

and

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{1/r}\leq \biggl(\frac{\mathcal{A}}{\sigma +\mathcal{A}} \biggr) \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta } \bigl(g(\vartheta )+h( \vartheta ) \bigr)^{r} \bigr)^{1/r}. \end{aligned}$$
(51)

Hence, by adding (50) and (51), we get the desired proof. □

Theorem 4.6

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r\geq 1\), and let g, h be two positive functions on \([0,\infty )\) such that \({}_{a}\mathfrak{I}^{\lambda ,\eta }[g(\vartheta )]<\infty \), \({}_{a}\mathfrak{I}^{\lambda ,\eta }[h(\vartheta )]<\infty \). If \(0< m\leq \frac{g(\rho )}{h(\rho )}\leq M\) where \(m, M\in \mathbb{R}\) for all \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), then the following inequality for the left generalized proportional fractional integral holds:

$$\begin{aligned} \frac{1}{M} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }g(\vartheta )h( \vartheta ) \bigr) &\leq \frac{1}{(m+1)(M+1)} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta } \bigl(g(\vartheta )+h(\vartheta ) \bigr) ^{2} \bigr) \\ &\quad \leq \frac{1}{m} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g( \vartheta )h(\vartheta ) \bigr). \end{aligned}$$
(52)

Proof

Under the given hypothesis, \(0< m\leq \frac{g(\rho )}{h(\rho )}\leq M\), we have

$$\begin{aligned} h(\rho ) (m+1)\leq h(\rho )+g(\rho )\leq h(\rho ) (M+1). \end{aligned}$$
(53)

Also, we have \(\frac{1}{M}\leq \frac{h(\rho )}{g(\rho )}\leq \frac{1}{m}\), which gives

$$\begin{aligned} g(\rho ) \biggl(\frac{M+1}{M} \biggr)\leq g(\rho )+h( \rho )\leq g( \rho ) \biggl(\frac{m+1}{m} \biggr). \end{aligned}$$
(54)

The multiplication of (53) and (54) yields

$$\begin{aligned} \frac{g(\rho )h(\rho )}{M}\leq \frac{ (g(\rho )+h(\rho ) ) ^{2}}{(m+1)(M+1)}\leq \frac{g(\rho )h(\rho )}{m}. \end{aligned}$$
(55)

Now, multiplying both sides of inequality (55) by \(\mathfrak{F}(\vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta ,\rho )\) is defined by (11) and integrating the resultant identity with respect to ρ over \((a,\vartheta )\), we have

$$\begin{aligned} &\frac{1}{M\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta } \exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1}g(\rho )h(\rho )\,d\rho \\ &\quad \leq \frac{1}{(m+1)(M+1)\eta ^{\lambda }\varGamma (\lambda )} \int _{a} ^{\vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{\lambda -1} \bigl(g(\rho )+h(\rho ) \bigr)^{2}\,d\rho \\ &\quad \leq \frac{1}{m\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta }\exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1}g(\rho )h(\rho )\,d \rho. \end{aligned}$$
(56)

It follows that

$$\begin{aligned} \frac{1}{M} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g( \vartheta )h( \vartheta ) \bigr) &\leq \frac{1}{(m+1)(M+1)} \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta } \bigl(g(\vartheta )+h(\vartheta ) \bigr) ^{2} \bigr) \\ &\leq \frac{1}{m} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g( \vartheta )h(\vartheta ) \bigr), \end{aligned}$$

which completes the desired proof. □

Theorem 4.7

Let \(\eta \in (0,1]\), \(\lambda \in \mathbb{C}\), \(\Re (\lambda )>0\), \(r\geq 1\), and let g, h be two positive functions on \([0,\infty )\) such that \({}_{a}\mathfrak{I}^{\lambda ,\eta }[g(\vartheta )]<\infty \), \({}_{a}\mathfrak{I}^{\lambda ,\eta }[h(\vartheta )]<\infty \). If \(0< m\leq \frac{g(\rho )}{h(\rho )}\leq M\), where \(m, M\in \mathbb{R}\) for all \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), then the following inequality for the left generalized proportional fractional integral holds:

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{1/r}+ \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }h^{r}(\vartheta ) \bigr) ^{1/r} \leq 2 \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }h^{r} \bigl(g( \vartheta ),h(\vartheta ) \bigr) \bigr), \end{aligned}$$
(57)

where \(h (g(\vartheta ),h(\vartheta ) )=\max \{M [ (\frac{M}{m}+1 )g(\rho )-Mh(\rho ) ],\frac{(m+M)h( \rho )-g(\rho )}{m} \}\).

Proof

Under the given hypothesis \(0< m\leq \frac{g(\rho )}{h(\rho )}\leq M\), where \(\rho \in [a,\vartheta ]\), \(\vartheta >a\), we have

$$\begin{aligned} 0< m\leq M+m-\frac{g(\rho )}{h(\rho )} \end{aligned}$$
(58)

and

$$\begin{aligned} M+m-\frac{g(\rho )}{h(\rho )}\leq M. \end{aligned}$$
(59)

From (58) and (59), we have

$$\begin{aligned} h(\rho )< \frac{(M+m)h(\rho )-g(\rho )}{m}\leq h \bigl(g(\rho ),h( \rho ) \bigr), \end{aligned}$$
(60)

where \(h (g(\vartheta ),h(\vartheta ) )=\max \{M [ (\frac{M}{m}+1 )g(\rho )-Mh(\rho ) ],\frac{(m+M)h( \rho )-g(\rho )}{m} \}\). Also, from the given hypothesis \(0<\frac{1}{M}\leq \frac{h(\rho )}{g(\rho )}\leq \frac{1}{m}\), we have

$$\begin{aligned} \frac{1}{M}\leq \frac{1}{M}+ \frac{1}{m}-\frac{h(\rho )}{g(\rho )} \end{aligned}$$
(61)

and

$$\begin{aligned} \frac{1}{M}+\frac{1}{m}- \frac{h(\rho )}{g(\rho )}\leq \frac{1}{m}. \end{aligned}$$
(62)

From (61) and (62), we obtain

$$\begin{aligned} \frac{1}{M}\leq \frac{ (\frac{1}{M}+\frac{1}{m} )g(\rho )-h( \rho )}{g(\rho )}\leq \frac{1}{m}. \end{aligned}$$
(63)

It follows that

$$\begin{aligned} g(\rho ) &=M \biggl(\frac{1}{M}+\frac{1}{m} \biggr)g(\rho )-Mh(\rho ) \\ &= \frac{M (M+m )g(\rho )-M^{2}mh(\rho )}{mM} \\ &= \biggl(\frac{M}{m}+1 \biggr)g(\rho )-Mh(\rho ) \\ &= M \biggl[ \biggl(\frac{M}{m}+1 \biggr)g(\rho )-Mh(\rho ) \biggr] \\ & \leq h \bigl(g(\rho ), h(\rho ) \bigr). \end{aligned}$$
(64)

From (60) and (64), we can write

$$\begin{aligned} g^{r}(\rho )\leq h \bigl(g(\rho ), h(\rho ) \bigr) \end{aligned}$$
(65)

and

$$\begin{aligned} h^{r}(\rho )\leq h^{r} \bigl(g(\rho ),h(\rho ) \bigr). \end{aligned}$$
(66)

Now, multiplying both sides of inequalities (65) and (62) respectively by \(\mathfrak{F}(\vartheta ,\rho )\) where \(\mathfrak{F}(\vartheta ,\rho )\) is defined by (11) and integrating the resultant identity with respect to ρ over \((a,\vartheta )\), we get

$$\begin{aligned} &\frac{1}{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta } \exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1}g^{r}(\rho )\,d\rho \\ &\quad \leq \frac{1}{\eta ^{\lambda }\varGamma (\lambda )} \int _{a}^{\vartheta } \exp \biggl[\frac{\eta -1}{\eta }( \vartheta -\rho )\biggr](\vartheta -\rho )^{ \lambda -1} h \bigl(g(\rho ), h( \rho ) \bigr)\,d\rho . \end{aligned}$$
(67)

It follows that

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }g^{r}( \vartheta ) \bigr) ^{1/r}\leq \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta } h \bigl(g( \vartheta ), h(\vartheta ) \bigr) \bigr)^{1/r}. \end{aligned}$$
(68)

Similarly, from (62), we obtain

$$\begin{aligned} \bigl({}_{a}\mathfrak{I}^{\lambda ,\eta }h^{r}( \vartheta ) \bigr) ^{1/r}\leq \bigl({}_{a} \mathfrak{I}^{\lambda ,\eta }h^{r} \bigl(g( \vartheta ),h(\vartheta ) \bigr) \bigr)^{1/r}. \end{aligned}$$
(69)

Hence, by adding (68) and (69), we get the desired proof. □

5 Concluding remarks

In this paper, we presented the Minkowski inequalities and some other related inequalities via generalized nonlocal proportional fractional integral operators. The results exhibited in Sect. 3 generalized the work earlier done by Dahmani [13] for Riemann–Liouville fractional integral operator. Also, the special cases of the results presented in Sect. 3 are found in [40]. The inequalities established in Sect. 4 generalized the inequalities earlier obtained by Suliman [44]. Also, our result will reduce to some classical results which are found in the work of Sroysang [43].

References

  1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015). https://doi.org/10.1016/j.cam.2014.10.016

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdeljawad, T., Baleanu, D.: Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 78 (2017). https://doi.org/10.1186/s13662-017-1126-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80, 11–27 (2017). https://doi.org/10.1016/S0034-4877(17)30059-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Alzabut, J., Abdeljawad, T., Jarad, F., Sudsutad, W.: A Gronwall inequality via the generalized proportional fractional derivative with applications. J. Inequal. Appl. 2019, 101 (2019)

    Article  MathSciNet  Google Scholar 

  5. Anber, A., Dahmani, Z., Bendoukha, B.: New integral inequalities of Feng Qi type via Riemann-Liouville fractional integration. Facta Univ., Ser. Math. Inform. 27(2), 13–22 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 10(2), 109–137 (2015)

    MathSciNet  Google Scholar 

  7. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016). https://doi.org/10.2298/TSCI160111018A

    Article  Google Scholar 

  8. Bougoffa, L.: On Minkowski and Hardy integral inequalities. J. Inequal. Pure Appl. Math. 7(2), Article ID 60 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  10. Chinchane, V.L., Pachpatte, D.B.: New fractional inequalities via Hadamard fractional integral. Int. J. Funct. Anal. Oper. Theory Appl. 5, 165–176 (2013)

    MathSciNet  MATH  Google Scholar 

  11. da Vanterler, J., Sousa, C., Capelas de Oliveira, E.: The Minkowski’s inequality by means of a generalized fractional integral. AIMS Ser. Appl. Math. 3, 131–147 (2018). https://doi.org/10.3934/Math.2018.1.131

    Article  Google Scholar 

  12. da Vanterler, J., Sousa, C., Oliveira, D.S., Capelas de Oliveira, E.: Grüss-type inequalities by means of generalized fractional integrals. Bull. Braz. Math. Soc. (2019). https://doi.org/10.1007/s00574-019-00138-z

    Article  MATH  Google Scholar 

  13. Dahmani, Z.: On Minkowski and Hermite-Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 1, 51–58 (2010)

    Article  MathSciNet  Google Scholar 

  14. Dahmani, Z.: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493–497 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Dahmani, Z., Tabharit, L.: On weighted Gruss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2, 31–38 (2010)

    Article  MathSciNet  Google Scholar 

  16. Dragomir, S.S.: A generalization of Gruss’s inequality in inner product spaces and applications. J. Math. Anal. Appl. 237(1), 74–82 (1999)

    Article  MathSciNet  Google Scholar 

  17. Dragomir, S.S.: Some integral inequalities of Gruss type. Indian J. Pure Appl. Math. 31(4), 397–415 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)

    Book  Google Scholar 

  19. Huang, C.J., Rahman, G., Nisar, K.S., Ghaffar, A., Qi, F.: Some inequalities of Hermite-Hadamard type for k-fractional conformable integrals. Aust. J. Math. Anal. Appl. 16(1), 1–9 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Jarad, F., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 226, 3457–3471 (2017). https://doi.org/10.1140/epjst/e2018-00021-7

    Article  Google Scholar 

  21. Jarad, F., Ugrlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017(1), 247 (2017). https://doi.org/10.1186/s13662-017-1306-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6, 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Katugampola, U.N.: New fractional integral unifying six existing fractional integrals (2016) arXiv:1612.08596

  24. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264(65), 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  25. Khan, H., Abdeljawad, T., Tunç, C., Alkhazzan, A., Khan, A.: Minkowski’s inequality for the AB-fractional integral operator. J. Inequal. Appl. 2019, 96 (2019)

    Article  MathSciNet  Google Scholar 

  26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 207. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  27. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)

    Google Scholar 

  28. McD Mercer, A.: An improvement of the Gruss inequality. JIPAM. J. Inequal. Pure Appl. Math. 10(4), Article ID 93 (2005)

    MathSciNet  MATH  Google Scholar 

  29. McD Mercer, A., Mercer, P.: New proofs of the Gruss inequality. Aust. J. Math. Anal. Appl. 1(2), Article ID 12 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Mitrinovic, D.S., Pecaric, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

  31. Mubeen, S., Habib, S., Naeem, M.N.: The Minkowski inequality involving generalized k-fractional conformable integral, Mubeen et al. J. Inequal. Appl. 2019, 81 (2019). https://doi.org/10.1186/s13660-019-2040-8

    Article  Google Scholar 

  32. Nisar, K.S., Qi, F., Rahman, G., Mubeen, S., Arshad, M.: Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function. J. Inequal. Appl. 2018, 135 (2018)

    Article  MathSciNet  Google Scholar 

  33. Nisar, K.S., Rahman, G., Choi, J., Mubeen, S., Arshad, M.: Certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications. East Asian Math. J. 34(3), 249–263 (2018)

    Google Scholar 

  34. Podlubny, I.: Fractional Differential Equation. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  35. Qi, F., Rahman, G., Hussain, S.M., Du, W.S., Nisar, K.S.: Some inequalities of Čebyšev type for conformable k-fractional integral operators. Symmetry 10, 614 (2018). https://doi.org/10.3390/sym10110614

    Article  Google Scholar 

  36. Rahman, G., Nisar, K.S., Mubeen, S., Choi, J.: Certain inequalities involving the \((k,\rho )\)-fractional integral operator. Far East J. Math. Sci.: FJMS 103(11), 1879–1888 (2018)

    Google Scholar 

  37. Rahman, G., Nisar, K.S., Qi, F.: Some new inequalities of the Gruss type for conformable fractional integrals. AIMS Ser. Appl. Math. 3(4), 575–583 (2018)

    Article  Google Scholar 

  38. Rahman, G., Ullah, Z., Khan, A., Set, E., Nisar, K.S.: Certain Chebyshev type inequalities involving fractional conformable integral operators. Mathematics 7, 364 (2019). https://doi.org/10.3390/math7040364

    Article  Google Scholar 

  39. Set, E., Mumcu, İ., Demirbaş, S.: Conformable fractional integral inequalities of Chebyshev type. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2253–2259 (2019). https://doi.org/10.1007/s13398-018-0614-9

    Article  MathSciNet  Google Scholar 

  40. Set, E., Özdemir, M., Dragomir, S.: On the Hermite-Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. 2010, 148102 (2010)

    Article  MathSciNet  Google Scholar 

  41. Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 269, 29–34 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Sousa, J., Capelas de Oliveira, E.: The Minkowski’s inequality by means of a generalized fractional integral. AIMS Ser. Appl. Math. 3(1), 131–147 (2018)

    Article  Google Scholar 

  43. Sroysang, B.: More on reverses of Minkowski’s integral inequality. Math. Æterna 3, 597–600 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Sulaiman, W.T.: Reverses of Minkowski’s, Hölder’s, and Hardy’s integral inequalities. Int. J. Mod. Math. Sci. 1, 14–24 (2012)

    Google Scholar 

  45. Taf, S., Brahim, K.: Some new results using Hadamard fractional integral. Int. J. Nonlinear Anal. Appl. 7, 103–109 (2015)

    MATH  Google Scholar 

  46. Usta, F., Budak, H., Ertuǧral, F., Sarıkaya, M.Z.: The Minkowski’s inequalities utilizing newly defined generalized fractional integral operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 68(1), 686–701 (2019)

    MathSciNet  Google Scholar 

  47. Vanterlerda, J., Sousa, C., Capelas de Oliveira, E.: On the Ψ-fractional integral and applications. Comput. Appl. Math. 38, 4 (2019). https://doi.org/10.1007/s40314-019-0774-z

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Further we are thankful to the anonymous referee for useful suggestions.

Availability of data and materials

Not applicable.

Funding

The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Author information

Authors and Affiliations

Authors

Contributions

All authors have done equal contribution in this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Competing interests

There does not exist any competing interest regarding this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, G., Khan, A., Abdeljawad, T. et al. The Minkowski inequalities via generalized proportional fractional integral operators. Adv Differ Equ 2019, 287 (2019). https://doi.org/10.1186/s13662-019-2229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-019-2229-7

MSC

Keywords