Skip to main content

Some Steffensen-type dynamic inequalities on time scales


We consider some new Steffensen-type dynamic inequalities on an arbitrary time scale by utilizing the diamond-α dynamic integrals, which are characterized as a combination of the delta and nabla integrals. These inequalities expand some known dynamic inequalities on time scales, bind together and broaden some integral inequalities and their discrete analogs.


The renowned integral Steffensen inequality [28] is written as

$$ \int _{b-\lambda }^{b}\phi (t)\,dt\leq \int _{a}^{b}\phi (t)\psi (t)\,dt \leq \int _{a}^{a+\lambda }\phi (t)\,dt, $$

where u is nonincreasing, \(\lambda =\int _{a}^{b}\psi (t)\,dt\) and \(0\leq \psi (t)\leq 1\) on \([a,b]\). It is simple to notice that inequalities (1.1) are reversed if u is nondecreasing.

Also we have

$$ \sum_{k=n-\lambda _{2}+1}^{n} \phi (k) \leq \sum_{k=1}^{n}\phi (k)\psi (k) \leq \sum _{k=1}^{\lambda _{1}} \phi (k) $$

such that \(0 \leq \psi (k) \leq 1\), \(\lambda _{1}, \lambda _{2}\in \{1, \dots ,n\}\) with \(\lambda _{2}\leq \sum_{k=1}^{n}\psi (k)\leq \lambda _{1}\). Inequality (1.2) is known as discrete Steffensen’s inequality [15].

Stefan Hilger started the hypotheses of time scales in his PhD thesis [16] so as to bring together discrete and continuous analysis (see [17]). From that point onward, this theory has gotten a ton of consideration. The book due to Bohner and Peterson [9] regarding the matter of time scales briefs and sorts out a lot of time scales calculus.

Over the previous decade, a reasonable number of dynamic inequalities on time scales has been proven by many analysts who were propelled by certain applications (see [1,2,3,4, 9,10,11,12,13,14, 18, 29]). A few researchers created different outcomes concerning fractional calculus on time scales to deliver related dynamic inequalities (see [5,6,7, 24]).

Anderson, in [8], extended Steffensen’s inequality to times scale with nabla integrals as follows:

$$ \int _{b-\lambda }^{b}\phi (t)\nabla t\leq \int _{a}^{b}\phi (t)\psi (t) \nabla t\leq \int _{a}^{a+\lambda }\phi (t)\nabla t, $$

where u is of one sign and nonincreasing, \(0 \leq \psi (t) \leq 1\) for every \(t\in [a,b]_{\mathbb{T}}\), \(\lambda =\int _{a}^{b}\psi (t)\nabla t\), and \(b-\lambda , a+\lambda \in [a,b]_{\mathbb{T}}\).

By employing diamond-α integrals, Ozkan and Yildirim [21] gave a generalization of inequality (1.3) of the form:

If the following

$$\begin{aligned}& \int _{l}^{b}w(t)\diamondsuit _{\alpha }t\leq \int _{a}^{b}\phi (t) \diamondsuit _{\alpha }t \leq \int _{a}^{\eta }w(t)\diamondsuit _{\alpha }t \quad \mbox{if } u\geq 0, t\in [a,b]_{\mathbb{T}}, \\& \int _{l}^{b}w(t)\diamondsuit _{\alpha }t\geq \int _{a}^{b}\phi (t) \diamondsuit _{\alpha }t \geq \int _{a}^{\eta }w(t)\diamondsuit _{\alpha }t \quad \mbox{if } u\leq 0, t\in [a,b]_{\mathbb{T}}, \end{aligned}$$

hold, then

$$ \int _{l}^{b}u(t)w(t)\diamondsuit _{\alpha }t \leq \int _{a}^{b}u(t)v(t) \diamondsuit _{\alpha }t \leq \int _{a}^{\eta }u(\tau )w(t) \diamondsuit _{\alpha }t, $$

where \(0 \leq \psi (t) \leq w(t)\) for all \(t\in [a,b]_{\mathbb{T}}\) with \(l, \eta \in [a,b]_{\mathbb{T}}\).

Also in [21], the authors have given the following interesting result:

$$\begin{aligned}& \int _{b-\lambda }^{b}\phi (t)w(t)\diamondsuit _{\alpha }t+ \int _{a} ^{b} \bigl\vert \bigl[\phi (t)-\phi (b- \lambda )\bigr]z(t) \bigr\vert \diamondsuit _{\alpha }t \\& \quad \leq \int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t \\& \quad \leq \int _{a}^{a+\lambda }\phi (t)w(t)\diamondsuit _{\alpha }t- \int _{a}^{b} \bigl\vert \bigl[\phi (t)-\phi (a+ \lambda ) \bigr]z(t) \bigr\vert \diamondsuit _{\alpha }t, \end{aligned}$$

with u is nonincreasing, \(0 \leq z(t)\leq \psi (t)\leq w(t)-z(t)\) for every \(t\in [a,b]_{\mathbb{T}}\), \(\int _{b-\lambda }^{b}w(t) \diamondsuit _{\alpha }t=\int _{a}^{b}\psi (t)\diamondsuit _{\alpha }t = \int _{a}^{a+\lambda }w(t)\diamondsuit _{\alpha }t\), and \(b-\lambda , a+\lambda \in [a,b]_{\mathbb{T}}\).

The following inequality is a special case of the above inequality: if we put \(z(t)=M\) and \(w(t)=1\), so

$$\begin{aligned}& \int _{b-\lambda }^{b}\phi (t)\diamondsuit _{\alpha }t+M \int _{a}^{b} \bigl\vert \phi (t)-\phi (b-\lambda ) \bigr\vert \diamondsuit _{\alpha }t \\& \quad \leq \int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t \\& \quad \leq \int _{a}^{a+\lambda }\phi (t)\diamondsuit _{\alpha }t-M \int _{a} ^{b} \bigl\vert \phi (t)-\phi (a+\lambda ) \bigr\vert \diamondsuit _{\alpha }t, \end{aligned}$$

\(a, b\in \mathbb{T_{\kappa }^{\kappa }}\) with \(a< b\), \(\lambda =\int _{a}^{b}\psi (t)\diamondsuit _{\alpha }t\), and \(0\leq M\leq \psi (t) \leq 1-M \) for all \(t\in [a,b]_{\mathbb{T}}\).

Since its establishment, Steffensen’s inequality has played crucial roles in numerous fields of mathematics, particularly in mathematical analysis. In the past several decades, numerous speculations and refinements of Steffensen’s inequality have been given by different authors. A few researchers have focused on Steffensen’s inequality related to local and conformable fractional integrals (see [22, 25, 26, 30]). For a comprehensive review, we refer the interested reader to the books [19, 20] and the references cited in them.

This article is about to extend some Steffensen-type inequalities given in [23] to a general time scale, and build up some new generalizations of the diamond-α dynamic Steffensen inequality on time scales. As special cases of our outcomes, we recapture the integral inequalities presented in the above mentioned paper. Our outcomes additionally give several original discrete Steffensen’s inequalities.

We get the unique Steffensen inequalities by utilizing the diamond-α integrals on time scales. For \(\alpha = 1\), the diamond-α integral moves toward becoming delta integral and for \(\alpha = 0\) it moves toward becoming nabla integral. An excellent review about the diamond-α calculus can be viewed in the paper [27].

Basics of time scales

For our convenience, \(\mathbb{R}\) is the set of real numbers, \(\mathbb{Z}\) is the set of integers, and a time scale \(\mathbb{T}\) is an arbitrary nonempty closed subset of the set of real numbers \(\mathbb{R}\). If \(\mathbb{T}\) has a left-scattered maximum \(t_{1}\), then \(\mathbb{T}^{\kappa } = \mathbb{T}-\{t_{1}\}\), otherwise \(\mathbb{T} ^{\kappa } = \mathbb{T}\). If \(\mathbb{T}\) has a right-scattered minimum \(t_{2}\), then \(\mathbb{T}^{\kappa } = \mathbb{T}-\{t_{2}\}\), otherwise \(\mathbb{T}_{\kappa } = \mathbb{T}\). Finally, we have \(\mathbb{T}^{ \kappa }_{\kappa }=\mathbb{T}^{\kappa }\cap \mathbb{T}_{\kappa }\). The interval \([a,b]_{\mathbb{T}}=\{t\in \mathbb{T}:a\leq t\leq b\}\).

Assume the function \(\phi : \mathbb{T} \rightarrow \mathbb{R}\), \(t\in \mathbb{T}^{\kappa }\), then \(\phi ^{\Delta }(t)\in \mathbb{R}\), \(\phi ^{\nabla }(t)\in \mathbb{R}\) are said to be the delta derivative and nabla derivative of ϕ at t, respectively, if for any \(\varepsilon > 0\) there exist a neighborhood U and a neighborhood V of t such that, for all \(s\in U\) and \(s\in V\) simultaneously, we have

$$ \bigl\vert \bigl[\phi \bigl(\sigma (t)\bigr)-\phi (s)\bigr]-\phi ^{\Delta }(t)\bigl[\sigma (t)-s\bigr] \bigr\vert \leq \varepsilon \bigl\vert \sigma (t)-s \bigr\vert $$


$$ \bigl\vert \bigl[\phi \bigl(\rho (t)\bigr)-\phi (s)\bigr]-\phi ^{\nabla }(t)\bigl[\rho (t)-s\bigr] \bigr\vert \leq \varepsilon \bigl\vert \rho (t)-s \bigr\vert . $$

Moreover, ϕ is said to be delta differentiable on \(\mathbb{T} ^{\kappa }\) if it is delta differentiable at every \(t\in \mathbb{T} ^{\kappa }\) and is said to be nabla differentiable on \(\mathbb{T}_{ \kappa }\) if it is nabla differentiable at each \(t\in \mathbb{T}_{ \kappa }\).

There is the following formula of delta integration by parts on time scales:

$$ \int _{a}^{b}\psi ^{\Delta }(t)\phi (t)\Delta t= \psi (b)\phi (b)-\psi (a) \phi (a)- \int _{a}^{b}\psi ^{\sigma }(t)\phi (t)\Delta t, $$

the nabla integration by parts on time scales is given by

$$ \int _{a}^{b}\psi ^{\nabla }(t)\phi (t)\nabla t=\psi (b)\phi (b)-\psi (a) \phi (a)- \int _{a}^{b}\psi ^{\rho }(t)\phi (t)\nabla t. $$

We will use the following relations between calculus on time scales \(\mathbb{T}\) and either differential calculus on \(\mathbb{R}\) or difference calculus on \(\mathbb{Z}\). Note that:

  1. (i)

    If \(\mathbb{T}=\mathbb{R}\), then

    $$ \begin{aligned} &\sigma (t)=\rho (t)=t, \qquad \mu (t)= \nu (t)=0, \qquad \phi ^{\Delta }(t)= \phi ^{\nabla }(t)=\phi '(t), \\ & \int _{a}^{b}\phi (t)\Delta t= \int _{a}^{b}\phi (t)\nabla t= \int _{a} ^{b}\phi (t)\,dt. \end{aligned} $$
  2. (ii)

    If \(\mathbb{T}=\mathbb{Z}\), then

    $$ \begin{aligned} &\sigma (t)=t+1, \qquad \rho (t)=t-1, \qquad \mu (t)=\nu (t)=1, \\ &\phi ^{\Delta }(t)=\Delta \phi (t), \qquad \phi ^{\nabla }(t)=\nabla \phi (t), \\ & \int _{a}^{b}\phi (t)\Delta t=\sum _{t=a}^{b-1}\phi (t),\qquad \int _{a} ^{b}\phi (t)\nabla t=\sum _{t=a+1}^{b}\phi (t), \end{aligned} $$

    where the forward and backward difference operators are denoted by Δ and , respectively.

We dedicate the rest of this section to the diamond-α calculus on time scales, and we recommend the paper [27] for further knowledge.

For any \(t\in \mathbb{T}\), the diamond-α dynamic derivative of u at t is defined by

$$ u^{\diamondsuit _{\alpha }}(t) = \alpha u^{\Delta }(t)+(1-\alpha )u ^{\nabla }(t), \quad 0\leq \alpha \leq 1, $$

and denoted by \(u^{\diamondsuit _{\alpha }}(t)\), where \(\mathbb{T}\) is a time scale, and u is a function that is delta and nabla differentiable on \(\mathbb{T}\).

Now, it is time to discuss our main results.

Main results

Lemma 3.1

Assume that

  1. (B1)

    k is a positive \(\diamondsuit _{\alpha }\)-integrable function on \([a, b]_{\mathbb{T}}\).

  2. (B2)

    ϕ, ψ, \(h: [a, b]_{\mathbb{T}}\rightarrow \mathbb{R}\) are \(\diamondsuit _{\alpha }\)-integrable functions on \([a, b]_{ \mathbb{T}}\).

  3. (B3)

    \([c, d]_{\mathbb{T}}\subseteq [a, b]_{\mathbb{T}}\) with \(\int _{c}^{d}h(t)k(t) \diamondsuit _{\alpha }t =\int _{a}^{b}\psi (t)k(t) \diamondsuit _{\alpha }t\).

  4. (B4)

    \(z\in [a, b]_{\mathbb{T}}\).


$$\begin{aligned} \int _{c}^{d}\phi (t)h(t)\diamondsuit _{\alpha }t- \int _{a}^{b}\phi (t) \psi (t)\diamondsuit _{\alpha }t =& \int _{c}^{a} \biggl( \frac{\phi (z)}{k(z)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t \\ &{} + \int _{c}^{d} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (z)}{k(z)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\diamondsuit _{\alpha }t \\ &{} + \int _{d}^{b} \biggl(\frac{\phi (z)}{k(z)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\diamondsuit _{\alpha }t. \end{aligned}$$


By straightforward calculations, we get

$$\begin{aligned}& \int _{c}^{d}\phi (t)h(t)\diamondsuit _{\alpha }t- \int _{a}^{b}\phi (t) \psi (t)\diamondsuit _{\alpha }t \\& \quad = \int _{c}^{d}k(t) \bigl[h(t)-\psi (t) \bigr] \frac{\phi (t)}{k(t)} \diamondsuit _{\alpha }t- \biggl[ \int _{a}^{c}\frac{\phi (t)}{k(t)} \psi (t)k(t) \diamondsuit _{\alpha }t+ \int _{d}^{b} \frac{\phi (t)}{k(t)}\psi (t)k(t) \diamondsuit _{\alpha }t \biggr] \\& \quad = \int _{a}^{c} \biggl(\frac{\phi (z)}{k(z)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\diamondsuit _{\alpha }t + \int _{c}^{d} \biggl(\frac{ \phi (t)}{k(t)}- \frac{\phi (z)}{k(z)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\diamondsuit _{\alpha }t \\& \qquad {} + \int _{d}^{b} \biggl(\frac{\phi (z)}{k(z)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\diamondsuit _{\alpha }t \\& \qquad {} +\frac{\phi (z)}{k(z)} \biggl[ \int _{c}^{d}k(t)h(t) \diamondsuit _{\alpha }t- \int _{a}^{c}\psi (t)k(t)\diamondsuit _{\alpha }t \\& \qquad {}- \int _{c}^{d}\psi (t)k(t)\diamondsuit _{\alpha }t- \int _{d}^{b}\psi (t)k(t) \diamondsuit _{\alpha }t \biggr]. \end{aligned}$$


$$ \int _{c}^{d}k(t)h(t) \diamondsuit _{\alpha }t= \int _{a}^{b}k(t)\psi (t) \diamondsuit _{\alpha }t, $$


$$\begin{aligned}& \frac{\phi (z)}{k(z)} \biggl[ \int _{c}^{d}k(t)h(t)\diamondsuit _{\alpha }t- \int _{a}^{c}\psi (t)k(t)\diamondsuit _{\alpha }t \\& \quad {}- \int _{c}^{d}\psi (t)k(t) \diamondsuit _{\alpha }t- \int _{d}^{b}\psi (t)k(t)\diamondsuit _{\alpha }t \biggr]=0. \end{aligned}$$

Our desired result follows directly from (3.2) and (3.3). □

Corollary 3.2

Setting \(\alpha =1\) in Lemma 3.1, we get the delta form of inequality (3.1) by

$$\begin{aligned} \int _{c}^{d}\phi (t)h(t)\Delta t- \int _{a}^{b}\phi (t)\psi (t)\Delta t =& \int _{c}^{a} \biggl(\frac{\phi (z)}{k(z)}- \frac{\phi (t)}{k(t)} \biggr) \psi (t)k(t)\Delta t \\ &{} + \int _{c}^{d} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (z)}{k(z)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\Delta t \\ &{} + \int _{d}^{b} \biggl(\frac{\phi (z)}{k(z)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\Delta t. \end{aligned}$$

Corollary 3.3

Letting \(\alpha =0\) in Lemma 3.1, we obtain the nabla version of (3.1) as follows:

$$\begin{aligned} \int _{c}^{d}\phi (t)h(t)\nabla t- \int _{a}^{b}\phi (t)\psi (t)\nabla t =& \int _{c}^{a} \biggl(\frac{\phi (z)}{k(z)}- \frac{\phi (t)}{k(t)} \biggr) \psi (t)k(t)\nabla t \\ &{} + \int _{c}^{d} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (z)}{k(z)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\nabla t \\ &{} + \int _{d}^{b} \biggl(\frac{\phi (z)}{k(z)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\nabla t. \end{aligned}$$

Corollary 3.4

If \(\mathbb{T}=\mathbb{R}\) in Corollary 3.2, then, with the help of relation (2.3), we recapture [23, Lemma 2.1].

Corollary 3.5

If \(\mathbb{T}=\mathbb{Z}\) in Corollary 3.2, then, with the help of relation (2.4), inequality (3.4) becomes

$$\begin{aligned} \sum_{t=c}^{d-1}\phi (t)h(t)-\sum _{a}^{b}\phi (t)\psi (t)\,dt =&\sum _{t=c}^{a-1} \biggl(\frac{\phi (z)}{k(z)}-\frac{\phi (t)}{k(t)} \biggr) \psi (t)k(t) \\ &{} +\sum_{t=c}^{d-1} \biggl( \frac{\phi (t)}{k(t)}-\frac{\phi (z)}{k(z)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr] \\ &{} +\sum_{t=d}^{b-1} \biggl( \frac{\phi (z)}{k(z)}-\frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t). \end{aligned}$$

Theorem 3.6

Let (B1)(B3) of Lemma 3.1,

  1. (B5)

    \(\phi /k\) is nonincreasing, and

  2. (B6)

    \(0\leq \psi (t)\leq h(t)\) \(\forall t\in [a,b]_{\mathbb{T}}\)

be satisfied, then the following inequalities hold:

$$\begin{aligned} (\mathrm{i})&\quad \int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t\leq \int _{c}^{d}\phi (t)\psi (t)\diamondsuit _{\alpha }t+ \int _{a}^{c} \biggl(\frac{ \phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t, \end{aligned}$$
$$\begin{aligned} (\mathrm{ii})&\quad \int _{c}^{d}\phi (t)\psi (t)\diamondsuit _{\alpha }t- \int _{a}^{c} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t\leq \int _{a}^{b}\phi (t)\psi (t) \diamondsuit _{\alpha }t, \end{aligned}$$
$$\begin{aligned} (\mathrm{iii})&\quad \int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t \leq \int _{c}^{d}\phi (t)\psi (t)\diamondsuit _{\alpha }t- \int _{c}^{d} \biggl(\frac{ \phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\diamondsuit _{\alpha }t \\ &\quad \hphantom{\int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t \leq{}}{}+ \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t)\diamondsuit _{\alpha }t \\ &\quad \hphantom{\int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t} \leq \int _{c}^{d}\phi (t)\psi (t)\diamondsuit _{\alpha }t + \int _{a} ^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t, \end{aligned}$$
$$\begin{aligned} (\mathrm{iv})&\quad \int _{c}^{d}\phi (t)\psi (t)\diamondsuit _{\alpha }t- \int _{a}^{c} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t \\ &\qquad \leq \int _{c}^{d}\phi (t)\psi (t)\diamondsuit _{\alpha }t + \int _{c} ^{d} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)k(t) \bigl[h(t)- \psi (t) \bigr]\diamondsuit _{\alpha }t \\ &\quad \qquad {} - \int _{a}^{c} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\diamondsuit _{\alpha }t \\ &\qquad \leq \int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t. \end{aligned}$$

If \(\phi /k\) is nondecreasing, then inequalities (3.6), (3.7), (3.8), and (3.9) should be switched.


(i) Since \(\phi /k\) is nonincreasing, k is positive, and \(0\leq \psi \leq h\), we have

$$ \int _{c}^{d} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\diamondsuit _{\alpha }t\geq 0 $$


$$ \int _{d}^{b} \biggl(\frac{\phi (d)}{k(d)}- \frac{\phi (t)}{k(t)} \biggr) \psi (t)k(t) \diamondsuit _{\alpha }t\geq 0. $$

From (3.1), (3.10), and (3.11) with \(z=d\), we obtain

$$\begin{aligned}& \int _{c}^{d}\phi (t)\psi (t)\diamondsuit _{\alpha }t- \int _{a}^{b} \phi (t)\psi (t)\diamondsuit _{\alpha }t- \int _{a}^{c} \biggl(\frac{ \phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t \\& \quad = \int _{c}^{d} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\diamondsuit _{\alpha }t + \int _{d} ^{b} \biggl(\frac{\phi (d)}{k(d)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t\geq 0. \end{aligned}$$

This proves our claim.

(ii) Since \(\phi /k\) is nonincreasing, k is positive, and \(0\leq \psi \leq h\), we have

$$ \int _{c}^{d} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\diamondsuit _{\alpha }t\geq 0 $$


$$ \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (c)}{k(c)} \biggr) \psi (t)k(t) \diamondsuit _{\alpha }t\geq 0. $$

From (3.1) with \(z=c\), (3.12), and (3.13), we have

$$\begin{aligned}& \int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t- \int _{c}^{d} \phi (t)\psi (t)\diamondsuit _{\alpha }t- \int _{d}^{b} \biggl(\frac{ \phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t \\& \quad = \int _{c}^{d} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\diamondsuit _{\alpha }t + \int _{a} ^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (c)}{k(c)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t\geq 0. \end{aligned}$$

This completes our proof.

The proof of (iii), (iv) is similar to (i), (ii) of Theorem 3.6, respectively. Details are omitted. □

Corollary 3.7

Substituting \(\alpha =1\) and \(\alpha =0\) in Theorem 3.6(i), (ii), (iii), (iv) simultaneously, we achieve the following delta and nabla versions of inequalities (3.6), (3.7), (3.8), and (3.9), respectively:

$$\begin{aligned} (\mathrm{v})&\quad \int _{a}^{b}\phi (t)\psi (t)\Delta t\leq \int _{c}^{d}\phi (t) \psi (t)\Delta t+ \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t)\Delta t, \end{aligned}$$
$$\begin{aligned} (\mathrm{vi})&\quad \int _{c}^{d}\phi (t)\psi (t)\Delta t- \int _{a}^{c} \biggl(\frac{ \phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\Delta t\leq \int _{a}^{b}\phi (t)\psi (t)\Delta t, \end{aligned}$$
$$\begin{aligned} (\mathrm{vii})&\quad \int _{a}^{b}\phi (t)\psi (t)\Delta t \leq \int _{c}^{d}\phi (t)\psi (t) \Delta t- \int _{c}^{d} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\Delta t \\ &\quad \hphantom{\int _{a}^{b}\phi (t)\psi (t)\Delta t \leq{}}{} + \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t)\Delta t \\ &\quad \hphantom{\int _{a}^{b}\phi (t)\psi (t)\Delta t}\leq \int _{c}^{d}\phi (t)\psi (t)\Delta t + \int _{a}^{c} \biggl(\frac{ \phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t)\Delta t, \end{aligned}$$
$$\begin{aligned} (\mathrm{viii})&\quad \int _{c}^{d}\phi (t)\psi (t)\Delta t- \int _{a}^{c} \biggl( \frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\Delta t \\ &\qquad \leq \int _{c}^{d}\phi (t)\psi (t)\Delta t + \int _{c}^{d} \biggl(\frac{ \phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\Delta t \\ &\qquad \quad {} - \int _{a}^{c} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\Delta t \\ &\qquad \leq \int _{a}^{b}\phi (t)\psi (t)\Delta t, \\ (\mathrm{ix})&\quad \int _{a}^{b}\phi (t)\psi (t)\nabla t\leq \int _{c}^{d} \phi (t)\psi (t)\nabla t+ \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{ \phi (d)}{k(d)} \biggr)\psi (t)k(t)\nabla t, \\ (\mathrm{x})&\quad \int _{c}^{d}\phi (t)\psi (t)\nabla t- \int _{a}^{c} \biggl(\frac{ \phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\nabla t\leq \int _{a}^{b}\phi (t)\psi (t)\nabla t, \\ (\mathrm{xi})&\quad \int _{a}^{b}\phi (t)\psi (t)\nabla t \leq \int _{c}^{d}\phi (t)\psi (t) \nabla t- \int _{c}^{d} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\nabla t \\ &\quad \hphantom{\int _{a}^{b}\phi (t)\psi (t)\nabla t \leq{}}{} + \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t)\nabla t \\ &\quad \hphantom{\int _{a}^{b}\phi (t)\psi (t)\nabla t}\leq \int _{c}^{d}\phi (t)\psi (t)\nabla t + \int _{a}^{c} \biggl(\frac{ \phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t)\nabla t, \\ (\mathrm{xii})&\quad \int _{c}^{d}\phi (t)\psi (t)\nabla t- \int _{a}^{c} \biggl( \frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\nabla t \\ &\qquad \leq \int _{c}^{d}\phi (t)\psi (t)\nabla t + \int _{c}^{d} \biggl(\frac{ \phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr]\nabla t \\ &\qquad \quad {} - \int _{a}^{c} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\nabla t \\ &\qquad \leq \int _{a}^{b}\phi (t)\psi (t)\nabla t. \end{aligned}$$

Corollary 3.8

If \(\mathbb{T}=\mathbb{R}\) in Corollary 3.7(v), (vi), (vii), (viii), then with the help of relation (2.3), we recapture [23, Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4], respectively.

Corollary 3.9

If \(\mathbb{T}=\mathbb{Z}\) and applying (2.4), then inequalities (3.14), (3.15), (3.16), and (3.17), respectively, give

$$\begin{aligned}& \sum_{t=a}^{b-1}\phi (t)\psi (t)\leq \sum_{t=c}^{d-1}\phi (t)\psi (t)+ \sum_{t=a}^{c-1} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t), \end{aligned}$$
$$\begin{aligned}& \sum_{t=c}^{d-1}\phi (t)\psi (t)-\sum_{t=a}^{c-1} \biggl( \frac{\phi (c)}{k(c)}-\frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \leq \sum _{t=a}^{b-1}\phi (t)\psi (t), \end{aligned}$$
$$\begin{aligned}& \begin{aligned}[b] \sum_{t=a}^{b-1}\phi (t) \psi (t) &\leq \sum_{t=c}^{d-1}\phi (t)\psi (t)t- \sum_{t=c}^{d-1} \biggl( \frac{\phi (t)}{k(t)}-\frac{\phi (d)}{k(d)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr] \\ &\quad {} +\sum_{t=a}^{c-1} \biggl( \frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \\ &\leq \sum_{t=c}^{d-1}\phi (t)\psi (t)+\sum _{t=a}^{c-1} \biggl(\frac{ \phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t), \end{aligned} \end{aligned}$$
$$\begin{aligned}& \sum_{t=c}^{d-1}\phi (t)\psi (t)- \sum_{t=a}^{c-1} \biggl( \frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \\& \quad \leq \sum_{t=c}^{d-1}\phi (t)\psi (t)+\sum_{t=c}^{d-1} \biggl( \frac{ \phi (c)}{k(c)}-\frac{\phi (t)}{k(t)} \biggr)k(t) \bigl[h(t)-\psi (t) \bigr] \\& \qquad {} -\sum_{t=a}^{c-1} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \\& \quad \leq \sum_{t=a}^{b-1}\phi (t)\psi (t). \end{aligned}$$

Theorem 3.10

Let (B1)(B3) and

  1. (B7)

    \(\phi /k\) is nonincreasing in the Δ and sense,

be fulfilled.

  1. (i)


    $$\begin{aligned}& \int _{c}^{\sigma (x)}k(t)\psi (t)\Delta t \leq \int _{c}^{\sigma (x)}k(t)h(t) \Delta t, \quad c\leq x \leq d, \\& \int _{c}^{\rho (x)}k(t)\psi (t)\nabla t \leq \int _{c}^{\rho (x)}k(t)h(t) \nabla t,\quad c\leq x \leq d, \\& \int _{\sigma (x)}^{b}k(t)\psi (t) \Delta t\geq 0, \quad d \leq x\leq b, \\& \int _{\rho (x)}^{b}k(t)\psi (t) \nabla t\geq 0, \quad d \leq x\leq b, \end{aligned}$$


    $$ \int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t\leq \int _{c}^{d} \phi (t)h(t)\diamondsuit _{\alpha }t+ \int _{a}^{c} \biggl( \frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t. $$
  2. (ii)


    $$\begin{aligned}& \int _{\sigma (x)}^{d}k(t)\psi (t) \Delta t \leq \int _{\sigma (x)} ^{d}k(t)h(t) \Delta t, \quad c\leq x \leq d, \\& \int _{\rho (x)}^{d}k(t)\psi (t) \nabla t \leq \int _{\rho (x)}^{d}k(t)h(t) \nabla t, \quad c\leq x \leq d, \\& \int _{a}^{\sigma (x)}k(t)\psi (t) \Delta t\geq 0, \quad a \leq x\leq c, \\& \int _{a}^{\rho (x)}k(t)\psi (t) \nabla t\geq 0, \quad a \leq x\leq c, \end{aligned}$$


    $$ \int _{c}^{d}\phi (t)h(t)\diamondsuit _{\alpha }t- \int _{d}^{b} \biggl(\frac{ \phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t \leq \int _{a}^{b}\phi (t)\psi (t) \diamondsuit _{\alpha }t. $$


(i) Utilizing (3.4) and delta integration by parts formula on time scales, we get

$$\begin{aligned}& \int _{c}^{d} \phi (t)h(t) \Delta t+ \int _{a}^{b} \phi (t)\psi (t) \Delta t + \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \Delta t \\& \quad = \biggl[- \int _{c}^{d} \biggl( \int _{c}^{\sigma (x)}k(t) \bigl[h(t)-\psi (t) \bigr]\Delta t \biggr) \biggl(\frac{\phi (x)}{k(x)} \biggr)^{\Delta }\Delta x \biggr] \\& \qquad {} \times \biggl[- \int _{d}^{b} \biggl( \int _{\sigma (x)}^{b}\psi (t)k(t) \Delta t \biggr) \biggl( \frac{\phi (x)}{k(x)} \biggr)^{\Delta }\Delta x \biggr]\geq 0. \end{aligned}$$

In a similar manner, using (3.5) and nabla integration by parts formula on time scales, we have

$$\begin{aligned}& \int _{c}^{d} \phi (t)h(t) \nabla t+ \int _{a}^{b} \phi (t)\psi (t) \nabla t + \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \nabla t \\& \quad = \biggl[- \int _{c}^{d} \biggl( \int _{c}^{\rho (x)}k(t) \bigl[h(t)-\psi (t) \bigr]\nabla t \biggr) \biggl(\frac{\phi (x)}{k(x)} \biggr)^{\nabla }\nabla x \biggr] \\& \qquad {} \times \biggl[- \int _{d}^{b} \biggl( \int _{\rho (x)}^{b}\psi (t)k(t) \nabla t \biggr) \biggl( \frac{\phi (x)}{k(x)} \biggr)^{\nabla }\nabla x \biggr]\geq 0. \end{aligned}$$


$$\begin{aligned}& \int _{c}^{d} \phi (t)h(t) \diamondsuit _{\alpha }t+ \int _{a}^{b} \phi (t)\psi (t) \diamondsuit _{\alpha }t + \int _{a}^{c} \biggl(\frac{ \phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t \\& \quad =\alpha \int _{c}^{d} \phi (t)h(t) \Delta t+(1-\alpha ) \int _{c}^{d} \phi (t)h(t) \nabla t \\& \qquad {}+ \alpha \int _{a}^{b} \phi (t)\psi (t) \Delta t +(1- \alpha ) \int _{a}^{b} \phi (t)\psi (t) \nabla t \\& \qquad {} +\alpha \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \Delta t \\& \qquad {}+(1-\alpha ) \int _{a} ^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) \nabla t\geq 0. \end{aligned}$$

Hence, (3.22) holds.

(ii) Using (3.4) and delta integration by parts, we have

$$\begin{aligned}& \int _{a}^{b} \phi (t)\psi (t) \Delta t- \int _{c}^{d} \phi (t)h(t) \Delta t + \int _{d}^{b} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \Delta t \\& \quad = \biggl[- \int _{a}^{c} \biggl( \int _{a}^{\sigma (x)}\psi (t)k(t)\Delta t \biggr) \biggl( \frac{\phi (x)}{k(x)} \biggr)^{\Delta }\Delta x \biggr] \\& \qquad {} \times \biggl[- \int _{c}^{d} \biggl( \int _{\sigma (x)}^{d}k(t) \bigl[h(t)-\psi (t) \bigr]\Delta t \biggr) \biggl(\frac{\phi (x)}{k(x)} \biggr)^{ \Delta }\Delta x \biggr]\geq 0. \end{aligned}$$

Now, (3.5) and nabla integration by parts yield

$$\begin{aligned}& \int _{a}^{b} \phi (t)\psi (t) \nabla t- \int _{c}^{d} \phi (t)h(t) \nabla t + \int _{d}^{b} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \nabla t \\& \quad = \biggl[- \int _{a}^{c} \biggl( \int _{a}^{\rho (x)}\psi (t)k(t)\nabla t \biggr) \biggl( \frac{\phi (x)}{k(x)} \biggr)^{\nabla }\nabla x \biggr] \\& \qquad {} \times \biggl[- \int _{c}^{d} \biggl( \int _{\rho (x)}^{d}k(t) \bigl[h(t)- \psi (t) \bigr]\nabla t \biggr) \biggl(\frac{\phi (x)}{k(x)} \biggr)^{\nabla } \nabla x \biggr]\geq 0, \end{aligned}$$

so that

$$\begin{aligned}& \int _{a}^{b} \phi (t)\psi (t)\diamondsuit _{\alpha }t- \int _{c}^{d} \phi (t)h(t)\diamondsuit _{\alpha }t + \int _{d}^{b} \biggl( \frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \diamondsuit _{\alpha }t \\& \quad =\alpha \int _{a}^{b} \phi (t)\psi (t)\Delta t+(1-\alpha ) \int _{a} ^{b} \phi (t)\psi (t)\nabla t \\& \qquad {}-\alpha \int _{c}^{d} \phi (t)h(t)\Delta t -(1-\alpha ) \int _{c}^{d} \phi (t)h(t)\nabla t \\& \qquad {} +\alpha \int _{d}^{b} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \Delta t \\& \qquad {}+(1-\alpha ) \int _{d} ^{b} \biggl(\frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \nabla t\geq 0, \end{aligned}$$

from which (3.23) is satisfied. □

Corollary 3.11

Setting \(\alpha =1\) and \(\alpha =0\) in Theorem 3.10(i), (ii) simultaneously, we obtain the delta and nabla versions of inequalities (3.22) and (3.23), respectively, as follows:

$$\begin{aligned} (\mathrm{i})&\quad \int _{a}^{b}\phi (t)\psi (t)\Delta t\leq \int _{c}^{d}\phi (t)h(t) \Delta t+ \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t)\Delta t, \end{aligned}$$
$$\begin{aligned} (\mathrm{ii})&\quad \int _{c}^{d}\phi (t)h(t)\Delta t- \int _{d}^{b} \biggl( \frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\Delta t \leq \int _{a}^{b}\phi (t)\psi (t)\Delta t, \\ (\mathrm{iii})&\quad \int _{a}^{b}\phi (t)\psi (t)\nabla t\leq \int _{c}^{d}\phi (t)h(t) \nabla t+ \int _{a}^{c} \biggl(\frac{\phi (t)}{k(t)}- \frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t)\nabla t, \\ (\mathrm{iv})&\quad \int _{c}^{d}\phi (t)h(t)\nabla t- \int _{d}^{b} \biggl( \frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t)\nabla t \leq \int _{a}^{b}\phi (t)\psi (t)\nabla t. \end{aligned}$$

Corollary 3.12

If \(\mathbb{T}=\mathbb{R}\) in Corollary 3.11, then, with the help of (2.3), (i), (ii) recover [23, Theorem 2.5, Theorem 2.6], respectively.

Corollary 3.13

If \(\mathbb{T}=\mathbb{Z}\) in Corollary 3.11, then, with the help of relation (2.4), inequalities (3.24) and (3.25) turn into

$$ \sum_{t=a}^{b-1}\phi (t)\psi (t)\leq \sum _{t=c}^{d-1}\phi (t)h(t)+ \sum _{t=a}^{c-1} \biggl(\frac{\phi (t)}{k(t)}-\frac{\phi (d)}{k(d)} \biggr)\psi (t)k(t) $$


$$ \sum_{t=c}^{d-1}\phi (t)h(t)-\sum _{t=d}^{b-1} \biggl( \frac{\phi (c)}{k(c)}- \frac{\phi (t)}{k(t)} \biggr)\psi (t)k(t) \leq \sum_{t=a}^{b-1} \phi (t)\psi (t), $$


The following theorem can be obtained by taking \(c=a\) and \(d=a+\lambda \) in Theorem 3.10.

Theorem 3.14

Let (B1)(B3), (B7) hold.

  1. (i)

    If λ is defined by \(\int _{a}^{a+\lambda }h(t)k(t) \diamondsuit _{\alpha }t=\int _{a}^{b}\psi (t)k(t) \diamondsuit _{\alpha }t\),

    $$\begin{aligned}& \int _{a}^{\sigma (x)}k(t)\psi (t)\Delta t \leq \int _{a}^{\sigma (x)}k(t)h(t) \Delta t, \quad a\leq x \leq a+\lambda , \\& \int _{a}^{\rho (x)}k(t)\psi (t)\nabla t \leq \int _{a}^{\rho (x)}k(t)h(t) \nabla t, \quad a\leq x \leq a+\lambda , \\& \int _{\sigma (x)}^{b}k(t)\psi (t) \Delta t\geq 0, \quad a+ \lambda \leq x\leq b, \end{aligned}$$


    $$ \int _{\rho (x)}^{b}k(t)\psi (t) \nabla t\geq 0, \quad a+ \lambda \leq x\leq b, $$


    $$ \int _{a}^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t\leq \int _{a}^{a+ \lambda }\phi (t)h(t)\diamondsuit _{\alpha }t. $$
  2. (ii)

    If λ is given by \(\int _{b-\lambda }^{b}h(t)k(t) \diamondsuit _{\alpha }t=\int _{a}^{b}\psi (t)k(t) \diamondsuit _{\alpha }t\),

    $$\begin{aligned}& \int _{\sigma (x)}^{b}k(t)\psi (t) \Delta t \leq \int _{\sigma (x)}^{b}k(t)h(t) \Delta t, \quad b-\lambda \leq x \leq b, \\& \int _{\rho (x)}^{b}k(t)\psi (t) \nabla t \leq \int _{\rho (x)}^{b}k(t)h(t) \nabla t, \quad b-\lambda \leq x \leq b, \\& \int _{a}^{\sigma (x)}k(t)\psi (t) \Delta t\geq 0, \quad a \leq x\leq b-\lambda , \end{aligned}$$


    $$ \int _{a}^{\rho (x)}k(t)\psi (t) \nabla t\geq 0, \quad a \leq x\leq b-\lambda , $$


    $$ \int _{b-\lambda }^{b}\phi (t)h(t)\diamondsuit _{\alpha }t\leq \int _{a} ^{b}\phi (t)\psi (t)\diamondsuit _{\alpha }t. $$


  1. 1.

    Abdeldaim, A., El-Deeb, A.A.: On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations. Appl. Math. Comput. 256, 375–380 (2015). MR 3316076

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Abdeldaim, A., El-Deeb, A.A., Agarwal, P., El-Sennary, H.A.: On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 41(12), 4737–4753 (2018). MR 3828354

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Agarwal, R., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4(4), 535–557 (2001). MR 1859660

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Agarwal, R., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, Cham (2014). MR 3307947

    MATH  Google Scholar 

  5. 5.

    Anastassiou, G.A.: Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 59(12), 3750–3762 (2010). MR 2651850

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Anastassiou, G.A.: Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 52(3–4), 556–566 (2010). MR 2658507

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Anastassiou, G.A.: Integral operator inequalities on time scales. Int. J. Difference Equ. 7(2), 111–137 (2012). MR 3000811

    MathSciNet  Google Scholar 

  8. 8.

    Anderson, D.R.: Time-scale integral inequalities. JIPAM. J. Inequal. Pure Appl. Math. 6(3), Article ID 66 (2005). MR 2164307

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser Boston, Boston (2001). MR 1843232

    MATH  Google Scholar 

  10. 10.

    El-Deeb, A.A.: Some Gronwall–Bellman type inequalities on time scales for Volterra–Fredholm dynamic integral equations. J. Egypt. Math. Soc. 26(1), Article 1 (2018)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    El-Deeb, A.A., Cheung, W.-S.: A variety of dynamic inequalities on time scales with retardation. J. Nonlinear Sci. Appl. 11(10), 1185–1206 (2018). MR 3845535

    MathSciNet  MATH  Google Scholar 

  12. 12.

    El-Deeb, A.A., Elsennary, H.A., Cheung, W.-S.: Some reverse Hölder inequalities with Specht’s ratio on time scales. J. Nonlinear Sci. Appl. 11(4), 444–455 (2018). MR 3780318

    MathSciNet  MATH  Google Scholar 

  13. 13.

    El-Deeb, A.A., Elsennary, H.A., Nwaeze, E.R.: Generalized weighted Ostrowski, trapezoid and Grüss type inequalities on time scales. Fasc. Math. 60, 123–144 (2018). MR 3846782

    MATH  Google Scholar 

  14. 14.

    El-Deeb, A.A., Xu, H., Abdeldaim, A., Wang, G.: Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 2019, 130 (2019). MR 3934717

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Evard, J.-C., Gauchman, H.: Steffensen type inequalities over general measure spaces. Analysis 17(2–3), 301–322 (1997). MR 1486370

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Hilger, S.: Ein makettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis (1988)

  17. 17.

    Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990). MR 1066641

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Li, W.N.: Some new dynamic inequalities on time scales. J. Math. Anal. Appl. 319(2), 802–814 (2006). MR 2227939

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Mitrinović, D.S.: Analytic Inequalities. Springer, New York (1970). MR 0274686

    MATH  Google Scholar 

  20. 20.

    Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993). MR 1220224

    MATH  Google Scholar 

  21. 21.

    Ozkan, U.M., Yildirim, H.: Steffensen’s integral inequality on time scales. J. Inequal. Appl. 2007, Article ID 46524 (2007). MR 2335973

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Pečarić, J., Perić, I., Smoljak, K.: Generalized fractional Steffensen type inequalities. Eurasian Math. J. 3(4), 81–98 (2012). MR 3040688

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Pečarić, J., Perušić, A., Smoljak, K.: Cerone’s generalizations of Steffensen’s inequality. Tatra Mt. Math. Publ. 58, 53–75 (2014). MR 3242543

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Sahir, M.: Dynamic inequalities for convex functions harmonized on time scales. J. Appl. Math. Phys. 5, 2360–2370 (2017)

    Google Scholar 

  25. 25.

    Sarikaya, M.Z., Tunc, T., Erden, S.: Generalized Steffensen inequalities for local fractional integrals. Int. J. Anal. Appl. 14(1), 88–98 (2017)

    MATH  Google Scholar 

  26. 26.

    Sarikaya, M.Z., Yaldiz, H., Budak, H.: Steffensen’s integral inequality for conformable fractional integrals. Int. J. Anal. Appl. 15(1), 23–30 (2017)

    MATH  Google Scholar 

  27. 27.

    Sheng, Q., Fadag, M., Henderson, J., Davis, J.M.: An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal., Real World Appl. 7(3), 395–413 (2006). MR 2235865

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Steffensen, J.F.: On certain inequalities between mean values, and their application to actuarial problems. Scand. Actuar. J. 1918(1), 82–97 (1918)

    MathSciNet  Google Scholar 

  29. 29.

    Tian, Y., El-Deeb, A.A., Meng, F.: Some nonlinear delay Volterra–Fredholm type dynamic integral inequalities on time scales. Discrete Dyn. Nat. Soc. 2018, Article ID 5841985 (2018). MR 3847518

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Tunç, T., Sarıkaya, M.Z., Srivastava, H.M.: Some generalized Steffensen’s inequalities via a new identity for local fractional integrals. Int. J. Anal. Appl. 13(1), 98–107 (2016)

    MATH  Google Scholar 

Download references


The authors wish to express their sincere appreciation to the editor and the anonymous referees for their valuable comments and suggestions.


Not applicable.

Author information




All authors have read and finalized the manuscript with equal contribution.

Corresponding author

Correspondence to A. A. El-Deeb.

Ethics declarations

Competing interests

The authors announce that there are not any competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Deeb, A.A., El-Sennary, H.A. & Khan, Z.A. Some Steffensen-type dynamic inequalities on time scales. Adv Differ Equ 2019, 246 (2019).

Download citation


  • 26D10
  • 26D15
  • 26D20
  • 34A12
  • 34A40


  • Steffensen’s inequality
  • Dynamic inequality
  • Diamond-α dynamic integral
  • Time scale