Skip to content

Advertisement

  • Research
  • Open Access

Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets

Advances in Difference Equations20192019:127

https://doi.org/10.1186/s13662-019-2068-6

  • Received: 7 January 2019
  • Accepted: 21 March 2019
  • Published:

Abstract

In this paper, we present a semi-analytic method called the local fractional homotopy analysis method (LFHAM) for solving differential equations involving local fractional derivatives based on the local fractional calculus and the homotopy analysis method. The suggested analytical technique always provides a simple way of constructing a series of solutions from the higher-order deformation equation. The LFHAM guarantees the convergence of the series solutions using the nonzero convergence-control parameter. Three examples are provided to illustrate the efficiency and high accuracy of the method.

Keywords

  • Local fractional homotopy analysis method
  • Problems involving local fractional derivatives
  • Numeric and symbolic computations

MSC

  • 34K50
  • 34A12
  • 34A30
  • 34D20

1 Introduction

Many real-life problems are modeled to linear and nonlinear partial differential equations in most cases. However, solving these equations in closed form is very difficult, more especially the nonlinear models. In recent years, many mathematicians and engineers have devoted considerable time to develop efficient and stable techniques for solving nonlinear models including the non-differentiable problems which arise naturally in mathematical physics and engineering [137]. In mathematical literature, the most commonly used fractional derivative operators are the Caputo and Riemann–Liouville fractional derivatives [38, 39]. However, these derivatives have a kernel with singularity which limits their applicability to many real-world problems [40]. To overcome the problem of the singularity of the kernel, a new fractional derivative with exponential kernel was introduced by Caputo and Fabrizio in 2015 [41]. Unfortunately, the kernel of Caputo–Fabrizio fractional derivative was not non-local and the associated integral was not a fractional operator [42]. To solve the problem of the Caputo–Fabrizio fractional derivative, Atangana and Baleanu introduced an efficient fractional derivative operator with non-local and non-singular kernel called the Atangana–Baleanu fractional derivative (AB) in Caputo and Riemann–Liouville sense in 2016 (see [43]). Due to the non-local behavior of the AB fractional derivative, it has been used to develop some powerful mathematical methods for solving real-world problems such as the fractional Laplace decomposition method [44], the fractional homotopy perturbation transform method [45, 46], the fractional Adams-Bashforth method [47], and the fractional homotopy analysis transform method [4851] to mention a few. Besides, all the recently proposed techniques have nothing to do with the existence of any small/large physical parameter. So, in real-world problems, these methods can be applied much more widely than the well-known analytical method called the perturbation technique which entirely relies on the existence of small/large parameter [52] (perturbation quantity), since not all mathematical models contain the so-called perturbation quantity. Other semi-analytical methods, such as the local fractional Adomian decomposition method [53, 54], the local fractional homotopy perturbation method [55, 56], the local fractional variational iteration method [5760], the local fractional Sumudu decomposition method [61], the local fractional natural homotopy perturbation method [62], and many more, have been proposed and successfully applied to various linear and nonlinear models. However, most of these existing techniques cannot guarantee the convergence of the series solutions, hence are not suitable for solving highly nonlinear problems. To overcome the limitations of the current methods, a Chinese mathematician Liao proposed a semi-analytic method called the homotopy analysis method (HAM) for solving highly nonlinear models [63]. The homotopy analysis method is a combination of the classical perturbation technique [6467] and the homotopy, a concept in topology, and does not rely on the small/large parameter. The advantage of the homotopy analysis method over the existing techniques is the excellent freedom of choosing the initial guess and the existence of the so-called nonzero convergence-control parameter. Based on the basic idea of the homotopy analysis method, many numerical and analytical techniques have been proposed. Marinca and Herisa suggested the optimal homotopy analysis method [68] in 2008. In 2009, Niu and Wang introduced a one-step optimal homotopy analysis method [69], and the spectral homotopy analysis method based on the Chebyshev pseudospectral method [70] was proposed by Motsa et al. in 2010. The predictor homotopy analysis method [71] was also suggested in 2010, and recently in 2018 Singh et al. successfully applied the homotopy analysis method and the Sumudu transform method to fractional Drinfeld–Sokolov–Wilson equation [72]. Besides, many authors have discovered that the Adomian decomposition method (ADM), the homotopy perturbation method (HPM), and the variational iteration method (VIM) are all special cases of the homotopy analysis method (HAM) when the nonzero convergence-control parameter \(\hslash =-1\) (see [7377]).

Motivated by the ongoing research in the literature, in this paper we introduce an iterative method called the local fractional homotopy analysis method (LFHAM) for solving non-differentiable problems arising in fractal media. The LFHAM gives a series of solutions which converge rapidly within a few terms with the help of the nonzero convergence-control parameter. Some applications are given to verify the efficiency and stability of the method. In Table 1, some useful results in fractal space are presented.
Table 1

Some useful identities of the local fractional calculus are give below

 

Basic identities

1

\(\cos _{\alpha }(t^{\alpha })=\sum_{n=0}^{+\infty }(-1)^{n}\frac{t^{(2n+1)\alpha }}{\varGamma (1+(2n+1)\alpha)}\), 0<α ≤ 1

2

\(\sin _{\alpha }(t^{\alpha })=\sum_{n=0}^{+\infty }(-1)^{n}\frac{t^{2n\alpha }}{\varGamma (1+(2n+1)\alpha)}\), 0<α ≤ 1

3

\(E_{\alpha }(t^{\alpha })=\sum_{n=0}^{+\infty }\frac{t^{n\alpha }}{\varGamma (1+n\alpha)}\), 0<α ≤ 1

4

\(\frac{d^{\alpha }}{dt^{\alpha }}\frac{t^{n\alpha }}{\varGamma (1+n\alpha)}=\frac{t^{(n-1)\alpha }}{\varGamma (1+(n-1)\alpha)}\)

5

\({}_{0}I^{(\alpha)}_{t}\frac{t^{n\alpha }}{\varGamma (1+n\alpha)}=\frac{t^{(n+1)\alpha }}{\varGamma (1+(n+1)\alpha)}\)

6

\(\frac{d^{\alpha }}{dt^{\alpha }}\cos _{\alpha }(t^{\alpha })=-\sin _{\alpha }(t^{\alpha })\)

7

\(\frac{d^{\alpha }}{dt^{\alpha }}\sin _{\alpha }(t^{\alpha })=\cos _{\alpha }(t^{\alpha })\)

8

\(\frac{d^{\alpha }}{dt^{\alpha }}E_{\alpha }(t^{\alpha })=E_{\alpha }(t^{\alpha })\)

The remaining sections of this work are organized as follows. In Sect. 2, some background notations of local fractional calculus are presented. In Sect. 3, the local analysis and convergence of local fractional homotopy analysis method are discussed. Applications of LFHAM are shown in Sect. 4. The conclusion of this paper is given in Sect. 5.

2 Preliminaries and notations of local fractional calculus

Definition 1

Let \(\wp: \Im \rightarrow \aleph \) be a function defined on a fractal set of fractal dimension α say (\(0<\alpha <1\)). Then a real-valued function \(\wp (t)\) on the fractal set is defined as [14, 15]
$$ \wp (t)=t^{\alpha }, $$
(1)
where \(t^{\alpha }\in \Im \) and \(0<\alpha <1\).

Lemma 1

Let F be a fractal and a subset of the real line. If \(v: (F,d) \rightarrow (\varOmega ',d')\) is a bi-Lipschitz mapping, then there are constants \(\rho,\tau >0\), and \(F\subset \mathbb{R}\),

$$ \rho ^{s}H^{s}(F)\leq H^{s}\bigl(v(F)\bigr)\leq \tau ^{s}H^{s}(F), $$
(2)
such that for all \(t_{1},t_{2}\in F\),
$$ \rho ^{\alpha } \vert t_{1}-t_{2} \vert ^{\alpha }\leq \bigl\vert v(t_{1})-v(t_{2}) \bigr\vert \leq \tau ^{\alpha } \vert t_{1}-t_{2} \vert ^{\alpha }. $$
(3)
As a direct consequence of Lemma 2.1 [15, 19], we deduce
$$ \bigl\vert v(t_{1})-v(t_{2}) \bigr\vert \leq \tau ^{\alpha } \vert t_{1}-t_{2} \vert ^{\alpha } $$
(4)
such that
$$ \bigl\vert v(t_{1})-v(t_{2}) \bigr\vert < \varepsilon ^{\alpha }, $$
(5)
where α denotes the fractal dimension of the set F. Besides, in fractal geometry the result is related to the fractal coarse-grained mass function \(\gamma ^{\alpha }[F,\beta _{1},\beta _{2}]\) as
$$ \gamma ^{\alpha }[F,\beta _{1},\beta _{2}]= \frac{H^{\alpha }(F\cap (\beta _{1},\beta _{2})}{\varGamma (\alpha +1)}, $$
(6)
with
$$ H^{\alpha }\bigl(F\cap (\beta _{1},\beta _{2})\bigr)=( \beta _{2}-\beta _{1}), $$
(7)
where \(H^{\alpha }\) denotes the α-dimensional Hausdorff measure.

Definition 2

Suppose that there exists [14, 15]
$$ \bigl\vert v(t)-v(t_{0}) \bigr\vert < \varepsilon ^{\alpha }, $$
(8)
with \(|t-t_{0}|<\delta \), for \(\delta,\varepsilon >0\) and δ, \(\varepsilon \in \mathbb{R}\). Then the function \(v(t)\) is called local fractional continuous at \(t=t_{0}\) and is denoted by \(\lim_{t\rightarrow t_{0}}v(t_{0})\). Equivalently, the function \(v(t)\) is called local fractional continuous function on the interval \((\beta _{1},\beta _{2})\) and is denoted by
$$ v(t)\in C_{\alpha }(\beta _{1},\beta _{2}), $$
(9)
provided Eq. (8) is valid for \(t \in (\beta _{1},\beta _{2})\).

Definition 3

The local fractional derivative of the function \(v(t)\) of order α at \(t=t_{0}\) is defined as follows [14, 15]:
$$ v^{(\alpha)}(t)=\frac{d^{\alpha }v}{dt^{\alpha }}\bigg|_{t=t_{0}}= \lim_{t\rightarrow t_{0}} \frac{\Delta ^{\alpha }(v(t)-v(t_{0}))}{(t-t _{0})^{\alpha }}, $$
(10)
where
$$ \Delta ^{\alpha }\bigl(v(t)-v(t_{0})\bigr)\cong \varGamma (1+ \alpha) \bigl[v(t)-v(t _{0}) \bigr]. $$
(11)
For any \(t\in (\beta _{1},\beta _{2})\), there exists [14, 15]
$$ v^{(\alpha)}(t)=D_{t}^{(\alpha)}v(t), $$
(12)
which is denoted by
$$ v(t)\in D_{t}^{(\alpha)}(\beta _{1},\beta _{2}). $$
(13)
Moreover, the local fractional derivatives of higher order are defined as follows [14, 15]:
$$ D^{(n\alpha)}_{t}(t)=v^{(n\alpha)}(t)=\overbrace{D^{(\alpha)}_{t} \cdots D_{t}^{(\alpha)}v(t)}^{n \text{ times} }, $$
(14)
and the local fractional partial derivative of higher order is defined as follows [14, 15]:
$$ \frac{\partial ^{n\alpha }v(t,x)}{\partial t^{n\alpha }}= \overbrace{\frac{ \partial ^{\alpha }}{\partial t^{\alpha }}\cdots \frac{\partial ^{ \alpha }}{\partial t^{\alpha }}v(t,x)}^{n \text{ times} }. $$
(15)

Property 1

Suppose that \(v^{(k+1)\alpha }\in C_{\alpha }(\beta _{1},\beta _{2})\) for \(k=0,1,\ldots,n\) and \(0<\alpha \leq 1\), then
$$ v(t)=\sum_{k=0}^{n}\frac{v^{(k\alpha)}(t_{0})}{\varGamma (k\alpha +1)}(t-t _{0})+\frac{v^{((k+1)\alpha)}(\xi)}{\varGamma ((k+1)\alpha +1)}(t-t _{0})^{(k+1)\alpha }, $$
(16)
with \(\beta _{1}< t_{0}<\xi <t<\beta _{2}\), \(\forall t\in (\beta _{1},\beta _{2})\), where \(v^{k\alpha }(t)= \overbrace{\tfrac{d^{ \alpha }}{dt^{\alpha }}\cdots \tfrac{d^{\alpha }}{dt^{\alpha }}v(t)} ^{n+1 \text{ times} }\).

Proof

See [14, 15]. □

Remark 1

Property 1 does not hold if the function is only Holder continuous. See [9].

Definition 4

The local fractional integral of the function \(v(t)\) of order α in the interval \([\gamma, \beta ]\) is defined as follows [14, 15]:
$$ {}_{\beta }I^{(\alpha)}_{\eta }=\frac{1}{\varGamma (1+\alpha)} \int _{ \eta }^{\beta }v(\tau) (d\tau)^{\alpha }= \frac{1}{\varGamma (1+\alpha)}\lim_{\Delta \rightarrow 0}\sum_{i=0}^{N-1}v( \tau _{i}) (\Delta _{\tau i})^{\alpha }, $$
(17)
where \(\Delta _{\tau i}=\tau _{i+1}-\tau _{i}\), \(\Delta _{\tau }=\max {\Delta _{\tau 0},\Delta _{\tau 1},\Delta _{\tau 2},\ldots, }[\tau _{i},\tau _{i+1}]\), \(\tau _{0}=\eta \), \(\tau _{N}=\beta \) is a partition of the interval \([\eta, \beta ]\).
Based on the local fractional integral defined in Eq. (17), the following properties hold (see [14, 15]):
$$\begin{aligned}& {}_{\beta }I^{(\alpha)}_{\eta } \bigl[v(t)\pm w(t) \bigr] ={} _{\beta }I^{(\alpha)}_{\eta } \bigl[v(t) \bigr]\pm _{\eta }I^{(\alpha)}_{ \beta } \bigl[w(t) \bigr]. \end{aligned}$$
(18)
$$\begin{aligned}& {}_{\beta }I^{(\alpha)}_{\eta }v(t)w^{(\alpha)}(t) = \bigl[v(t)w(t) \bigr] ^{\beta }_{\eta }- {}_{\beta }I^{(\alpha)}_{\eta }v^{(\alpha)}(t)w(t). \end{aligned}$$
(19)
$$\begin{aligned}& {}_{\beta }I^{(\alpha)}_{\eta } \bigl[v(t) \bigr] = {}_{\beta }I^{( \alpha)}_{\zeta } \bigl[v(t) \bigr]+ _{\zeta }I^{(\alpha)}_{\eta } \bigl[v(t) \bigr]. \end{aligned}$$
(20)
$$\begin{aligned}& {}_{\beta }I^{(\alpha)}_{\eta } \bigl[\zeta v(t) \bigr] =\zeta _{ \beta }I^{(\alpha)}_{\eta } \bigl[v(t) \bigr]. \end{aligned}$$
(21)
$$\begin{aligned}& {}_{\beta }I^{(\alpha)}_{\eta } \bigl[v(t) \bigr] = \frac{(\beta - \eta)^{\alpha }}{\varGamma (\alpha +1)}, \end{aligned}$$
(22)
where \(\beta <\zeta <\eta \), \(v(t), w(t)\in C_{\alpha }(\eta, \beta)\).

Definition 5

The Riemann–Liouville fractional integral operator of order \(\alpha >0\) of a function \(f(t)\in C^{m}_{\tau }\) and \(\tau \geq -1\) is defined as follows [39]:
$$ I^{\alpha }f(t)= \textstyle\begin{cases} \frac{1}{\varGamma (\alpha)}\int _{0}^{t}(t-\eta)^{\alpha -1}f(\eta)\,d\eta, & \alpha >0, t>0, \\ f(t), & \alpha =0. \end{cases} $$
(23)
Below we list some important properties of \(I^{\alpha }\) (see [13]).
  1. (i)
    If \(f\in C_{\tau }\), \(\tau \geq -1\), \(\alpha, \beta \geq 0\), and \(\gamma >-1\), then
    $$\begin{aligned}& I^{\alpha }t^{x}=\frac{\varGamma (x+1)}{\varGamma (x+\alpha +1)}t^{\alpha +x}, \end{aligned}$$
    (24)
    $$\begin{aligned}& I^{\alpha }I^{\beta }f(t)=I^{\alpha +\beta }, \qquad I^{\alpha }I^{\beta }f(t)=I^{\beta }I^{\alpha }f(t). \end{aligned}$$
    (25)
     
  2. (ii)
    For \(m-1<\alpha \leq m\), \(m\in \mathbb{N}\) and \(f\in C^{m}_{\tau }\), \(\tau \geq -1\), then
    $$ D^{\alpha }I^{\alpha }f(t)=f(t), \qquad I^{\alpha }D^{\alpha }f(t)=f(t)- \sum_{i=0}^{m-1}f^{i} \bigl(0^{+}\bigr)\frac{t ^{i}}{i!}, \quad t>0. $$
    (26)
     

Definition 6

The function \(f(t)\) in the Caputo fractional derivative is defined as follows [39, 41]:
$$ D^{\alpha }f(t)= \textstyle\begin{cases} \frac{1}{\varGamma (m-\alpha)}\int _{0}^{t}(t-\eta)^{m-\alpha -1}f^{(m)}( \eta)\,d\eta, & \\ I^{m-\alpha }D^{m}f(t), & \end{cases} $$
(27)
where \(m-1<\alpha <m\), \(m\in \mathbb{N}\), \(t>0\).

3 Local fractional homotopy analysis method

In this section, we illustrate the basic idea of the local fractional homotopy analysis method. Consider the following nonlinear local fractional partial differential equation:
$$ N \bigl[u(x,t) \bigr]=0, $$
(28)
where N is the nonlinear operator, x and t denote the independent variables, and \(u(x,t)\) denotes the local fractional unknown function. Using the fundamentals of the traditional homotopy analysis method proposed by Liao [63], we construct a convex non-differentiable homotopy called the zero order deformation equation
$$ (1-p)\textit{\pounds}_{\alpha } \bigl[\psi (x,t;p)-u_{0}(x,t) \bigr]=p\hslash H(x,t)N \bigl[\psi (x,t;p) \bigr], $$
(29)
where \(p\in [0,1]\) is an embedding parameter, \(\hslash \neq 0\) is the nonzero convergence-control parameter, and \(H(x,t)\neq 0\) is the local fractional nonzero auxiliary function, \(\psi (x,t;p)\) is the local fractional unknown function, \(u_{0}(x,t)\) is an initial guess of \(u(x,t)\), and \(\textit{\pounds}_{\alpha }=\frac{\partial ^{\alpha }}{\partial t ^{\alpha }}\) is the linear local fractional operator with the property that
$$ \textit{\pounds}_{\alpha }\bigl[\psi (x,t)\bigr]=0, \quad \mbox{when } \psi (x,t)=0. $$
(30)
Based on the concept of homotopy analysis method, one has great freedom to choose the auxiliary linear operator and the initial guess. Obviously, when \(p=1\) and \(p=0\), it holds
$$ \psi (x,t;0)=u_{0}(x,t) \quad \mbox{and} \quad \psi (x,t;1)=u(x,t), $$
(31)
respectively. Thus, as p increases from 0 to 1, the solution \(\psi (x,t;p)\) varies from the initial guess \(u_{0}(x,t)\) to the solution \(u(x,t)\). Expanding \(\psi (x,t;p)\) using the local fractional Taylor series [14, 15] with respect to p, we deduce
$$ \psi (x,t;p)=u_{0}(x,t)+\sum _{m=1}^{+\infty }u_{m}(x,t)p^{m}, $$
(32)
where
$$ u_{m}(x,t)= \biggl[\frac{1}{m!} \frac{\partial ^{m}\psi (x,t;p)}{\partial p^{m}} \biggr]_{p=0}. $$
(33)
If the auxiliary linear operator, the initial guess, the auxiliary function, and the convergence-control parameter are chosen properly, then Eq. (32) converges at \(p=1\), and
$$ u(x,t)=u_{0}(x,t)+\sum_{m=1}^{+\infty }u_{m}(x,t) $$
(34)
is the solution of the original problem Eq. (28). According to Eq. (32), the governing equation can be deduced from the zero deformation Eq. (29).
Define a local fractional vector
$$ \mathbf{u}_{m}= \bigl\{ u_{0}(x,t), u_{1}(x,t), u_{2}(x,t),\ldots, u_{m}(x,t) \bigr\} . $$
(35)
Differentiating Eq. (29) m-times with respect to the embedding parameter p and then setting \(p=0\) and finally dividing by m!, we obtain the so-called Mth-order deformation equation
$$ \textit{\pounds}_{\alpha } \bigl[u_{m}(x,t)-\chi _{m}u_{m-1}(x,t) \bigr]=p H(x,t)R _{m}( \mathbf{u}_{m-1},x,t), $$
(36)
where
$$ R_{m}(\mathbf{u}_{m-1},x,t)= \biggl[ \frac{1}{(m-1)!}\frac{\partial ^{(m-1)!}N [\psi (x,t;p) ]}{\partial p^{(m-1)}} \biggr]_{p=0} $$
(37)
and
$$ \chi _{m}= \textstyle\begin{cases} 0 & m \leq 1, \\ 1 & m > 1. \end{cases} $$
(38)
Applying the local fractional integral operator on both sides of Eq. (36), we deduce
$$\begin{aligned} u_{m}(x,t) =&\chi _{m}u_{m-1}(x,t)- \chi _{m}\sum_{k=0}^{m-1}u ^{(k)} _{m-1}\bigl(x,0^{+}\bigr)\frac{t^{k\alpha }}{\varGamma (k\alpha +1)} \\ &{}+\hslash H(x,t) {}_{\beta }I^{(\alpha)}_{\eta } \bigl[ R_{m}( \mathbf{u}_{m-1},x,t) \bigr]. \end{aligned}$$
(39)
Using computer algebra software such as Mathematica or Matlab, we can easily obtain the series solutions of \(u_{m}(x,t)\) for \(m\geq 1\) at Mth-order deformation equation as follows:
$$ u(x,t)=\sum_{m=0}^{+\infty }u_{m}(x,t). $$
(40)
The cornerstone of the local fractional homotopy analysis method is the nonzero convergence-control parameter which provides us with a convenient way to guarantee the convergence of the series solutions of Eq. (40).

In the next subsection, we prove the convergence analysis of Eq. (40).

3.1 Convergence analysis of the LFHAM

Lemma 2

Suppose that the series solution of Eq. (40) is convergent, and let X be any set of local fractional continuous functions which satisfies Eq. (8) and \(u_{n}\in X\). Then \(B(X)\) is a Banach space.

Proof

Let \(u_{n}\in B(X)\). Then we need to show that the local fractional continuous function \(u_{n}\) converges uniformly in \(B(X)\). Let \(x\in X\). Then, for all \(n,m\in {\mathbb{N}}\), we have
$$\begin{aligned} \bigl\vert u_{n}(x)-u_{m}(x) \bigr\vert \leq & \Vert u_{n}-u_{m} \Vert < \varepsilon ^{\alpha }, \end{aligned}$$
(41)
which implies \((u_{n}(x))\) is a Cauchy sequence, hence converges. Let the limit of \((u_{n}(x))\) be \((u(x))\). Then we want show that \(u_{n}(x)\rightarrow u(x)\) in \(B(X)\).
For any given \(\varepsilon ^{\alpha }>0\), there is a positive integer N such that, for every \(n, m>N\),
$$\begin{aligned} \bigl\vert u_{n}(x)-u_{m}(x) \bigr\vert =& \bigl\Vert u_{n}(x)-u(x)+u(x)-u_{m}(x) \bigr\Vert \\ \leq & \bigl\Vert u_{n}(x)-u(x) \bigr\Vert + \bigl\Vert u(x)-u_{m}(x) \bigr\Vert \\ < &\frac{1}{2\varepsilon ^{\alpha }}+\frac{1}{2\varepsilon ^{\alpha }} \\ =&\varepsilon ^{\alpha }. \end{aligned}$$
Thus, for every x,
$$ \bigl\vert u_{n}(x)-u(x) \bigr\vert \leq \varepsilon ^{\alpha }. $$
(42)
This implies that \(u_{n}\) uniformly converges to u. The proof is complete. □

Theorem 1

If the series
$$ v(x,t)=v_{0}(x,t)+\sum_{m=1}^{+\infty }v_{m}(x,t)p^{m} $$
(43)

converges to \(\xi (x,t)\), where \(v_{m}(x,t)\) is governed by Eq. (36) under the definition of Eq. (37) and Eq. (38), then \(\xi (x,t)\) must be the exact solution of Eq. (28).

Proof

Let
$$ \lim_{M\rightarrow \infty }\sum_{m=1}^{M} \xi _{m}(x,t)=v_{0}(x,t)+ \lim_{M\rightarrow \infty }\sum _{m=1}^{M}v_{m}(x,t)=\xi (x,t). $$
(44)
Then we deduce that \(\lim_{M\rightarrow \infty }\sum_{m=1}^{M}v_{m}(x,t)=0\). Besides, using Eq. (36), we get
$$\begin{aligned}& \lim_{M\rightarrow +\infty } \Biggl[\hslash H(x,t)\sum _{m=1}^{M}R _{m}(\mathbf{v}_{m-1},x,t) \Biggr] \\& \quad =\lim_{M\rightarrow +\infty } \Biggl[\sum_{m=1}^{M} \textit{\pounds}_{\alpha } \bigl[v_{m}(x,t)-\chi _{m}v_{m-1}(x,t) \bigr] \Biggr] \\& \quad =\textit{\pounds}_{\alpha } \Biggl[\lim_{M\rightarrow \infty }\sum _{m=1}^{M}v _{m}(x,t)-\lim _{M\rightarrow +\infty }\sum_{m=1}^{M}\chi _{m}v_{m-1}(x,t) \Biggr] \\& \quad =\textit{\pounds}_{\alpha } \Biggl[\lim_{M\rightarrow +\infty }\sum _{m=1}^{M}v _{m}(x,t) \Biggr]=0. \end{aligned}$$
On the other hand, since \(H(x,t)\neq 0\), \(\hslash \neq 0\) and by the linearity property of Eq. (30), we obtain
$$ \lim_{M\rightarrow \infty }\sum_{m=1}^{M}R_{m}( \mathbf{v}_{m-1},x,t)=0. $$
(45)
Similarly, based on Eq. (37), we get
$$\begin{aligned}& \lim_{M\rightarrow +\infty } \Biggl[\sum_{m=1}^{M}R_{m}( \mathbf{v}_{m-1},x,t) \Biggr] \\& \quad =\lim_{M\rightarrow +\infty }\sum_{m=1}^{M} \biggl[\frac{1}{(m-1)!}\frac{ \partial ^{(m-1)}N [\psi (x,t;p) ]}{\partial p^{(m-1)}} \biggr] _{p=0}=0. \end{aligned}$$
(46)
Generally, since \(\psi (x,t;p)\neq N [u(x,t) ]\) in Eq. (28), let the residual error \(\epsilon (x,t;p)= N [u(x,t) ]\). This implies
$$ \epsilon (x,t;p)=0, $$
(47)
which satisfies the solution of Eq. (28). Hence, the residual error of the local fractional Taylor series on the embedding parameter p yields
$$\begin{aligned}& \lim_{M\rightarrow +\infty }\sum_{m=1}^{M} \biggl[\frac{1}{m!}\frac{ \partial ^{m}N [\epsilon (x,t;p) ]}{\partial p^{m}} \biggr] _{p=0} \\& \quad =\lim_{M\rightarrow +\infty }\sum_{m=1}^{M} \biggl[\frac{1}{m!}\frac{ \partial ^{m}N [\psi (x,t;p) ]}{\partial p^{m}} \biggr]_{p=0}. \end{aligned}$$
(48)
Then using Eq. (45) and the assumption that \(p=1\), we deduce
$$\begin{aligned} \epsilon (x,t;p) =&\lim_{M\rightarrow +\infty } \Biggl[\sum _{m=1}^{M}R _{m}( \mathbf{v}_{m-1},x,t) \Biggr] \\ =&\lim_{M\rightarrow +\infty }\sum_{m=1}^{M} \biggl[\frac{1}{m!}\frac{ \partial ^{m}N [\psi (x,t;p) ]}{\partial p^{m}} \biggr]_{p=0}=0. \end{aligned}$$
(49)
Thus, Eq. (49) proved that \(\xi (x,t)\) satisfies the exact solution of the original problem Eq. (28). □

4 Applications of the LFHAM

In this section, we demonstrate the applicability of the LFHAM to linear and nonlinear partial differential equations involving local fractional derivatives.

Example 1

Consider the following non-homogeneous local fractional heat conduction equation:
$$\begin{aligned} \frac{\partial ^{\alpha }v(x,t)}{\partial t^{\alpha }}-\frac{ \partial ^{2\alpha }v(x,t)}{\partial x^{2\alpha }}=E_{\alpha } \bigl(x^{ \alpha }\bigr), \quad t>0, x\in \mathbb{R} \end{aligned}$$
(50)
subject to the initial condition
$$ v(x,0)=E_{\alpha }\bigl(x^{\alpha }\bigr). $$
(51)

Based on Eq. (50) and Eq. (51) and the procedure of the LFHAM, it is natural to choose \(v_{0}(x,t)=E_{\alpha }(x^{\alpha })\) to be the initial guess.

We choose the linear operator as
$$ \textit{\pounds}_{\alpha } \bigl[\varphi (x,t;p) \bigr]=\frac{\partial ^{ \alpha }}{\partial x^{\alpha }} \bigl[ \varphi (x,t;p) \bigr], $$
(52)
with the property \(\textit{\pounds}_{\alpha }[C]=0\), where C is an integral constant.
We define the nonlinear operator as follows:
$$\begin{aligned} &N \bigl[\varphi (x,t;p) \bigr]=\frac{\partial ^{\alpha }\varphi (x,t;p)}{ \partial t^{\alpha }}-\frac{\partial ^{2\alpha }\varphi (x,t;p)}{ \partial x^{2\alpha }}-E_{\alpha } \bigl(x^{\alpha }\bigr). \end{aligned}$$
(53)
We construct the zero-order deformation equation:
$$ (1-p)\textit{\pounds}_{\alpha } \bigl[\varphi (x,t;p)-v_{0}(x,t) \bigr]=p \hslash H(x,t)N \bigl[\varphi (x,t;p) \bigr]. $$
(54)
Obviously, when \(p=0\) and \(p=1\),
$$ \varphi (x,t;0)=v_{0}(x,t) \quad \mbox{and} \quad \varphi (x,t;1)=v(x,t). $$
(55)
Then the Mth-order deformation equation is defined as follows:
$$ \textit{\pounds}_{\alpha } \bigl[v_{m}(x,t)-\chi _{m}v_{m-1}(x,t) \bigr]= \hslash H(x,t)R_{m}( \mathbf{v}_{m-1},x,t), $$
(56)
where
$$\begin{aligned} R_{m}(\mathbf{v}_{m-1},x,t) =&\frac{\partial ^{\alpha }v_{m-1}(x,t)}{ \partial t^{\alpha }}- \frac{\partial ^{2\alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }}-(1-\chi _{m})E_{\alpha }\bigl(x^{\alpha } \bigr). \end{aligned}$$
(57)
Setting \(H(x,t)=1\) and applying the local fractional integral on the Mth-order deformation Eq. (56), we get
$$\begin{aligned} v_{m}(x,t) =&(\chi _{m}+ \hslash)v_{m-1}(x,t)-(\chi _{m}+\hslash)v_{m-1}(x,0) \\ &{}-\hslash {}_{\beta }I^{(\alpha)}_{\eta } \biggl[ \frac{\partial ^{2 \alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }}+(1-\chi _{m})E_{\alpha }\bigl(x ^{\alpha } \bigr) \biggr]. \end{aligned}$$
(58)
Then Eq. (58) yields
$$ \textstyle\begin{cases} {v}_{m}(x,t)=-\hslash {}_{\beta }I^{(\alpha)}_{\eta } [\frac{ \partial ^{2\alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }}+(1-\chi _{m})E _{\alpha }(x^{\alpha }) ],\quad m=1 & \\ {v}_{m}(x,t)=(\chi _{m}+\hslash)v_{m-1}(x,t)-\hslash {}_{\beta }I^{( \alpha)}_{\eta } [\frac{\partial ^{2\alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }}+(1-\chi _{m})E_{\alpha }(x^{\alpha }) ],\quad m>1. \end{cases} $$
(59)
Hence
$$\begin{aligned}& v_{0}(x,t) =E_{\alpha }\bigl(x^{\alpha }\bigr), \\& v_{1}(x,t) =-2\hslash E_{\alpha }\bigl(x^{\alpha }\bigr) \frac{t^{\alpha }}{ \varGamma (\alpha +1)}, \\& v_{2}(x,t) =-2\hslash (\hslash +1)E_{\alpha } \bigl(x^{\alpha }\bigr)\frac{t ^{\alpha }}{\varGamma (\alpha +1)}+2\hslash ^{2}E_{\alpha } \bigl(x^{\alpha }\bigr)\frac{t ^{2\alpha }}{\varGamma (2\alpha +1)}, \\& \vdots \end{aligned}$$
and so on.
Setting the convergence-control parameter \(\hslash =-1\), the series solutions of Eq. (50) are given by
$$\begin{aligned} v(x,t) =&v_{0}(x,t)+\sum _{m=1}^{+\infty }v_{m}(x,t) \\ =&2E_{\alpha }\bigl(x^{\alpha }\bigr) \biggl(\frac{t^{\alpha }}{\varGamma (\alpha +1)}+ \frac{t^{2\alpha }}{\varGamma (2\alpha +1)}+\frac{t^{3\alpha }}{ \varGamma (3\alpha +1)}+\cdots \biggr)+E_{\alpha } \bigl(x^{\alpha }\bigr) \\ =&E_{\alpha }\bigl(x^{\alpha }\bigr) \bigl(2E_{\alpha } \bigl(t^{\alpha }\bigr)-1 \bigr). \end{aligned}$$
(60)
The results obtained in Eq. (60) were entirely in agreement with the local fractional homotopy analysis method [56].
Figures 1: The 3D surface solution of Eq. (50) for \(\alpha =1\) is presented in Fig. 1(a). The surface solution of Eq. (40) for (\(\alpha =\frac{1}{2}\)) is depicted in Fig. 1(b). The non-differentiable surface solution is depicted in Fig. 1(c). The surface solution behavior of \(v(x,t)\) for different values of \(\alpha =1,\frac{1}{2},\frac{\ln (2)}{\ln (3)}\) is given in Fig. 1(d). The absolute error analysis for \(\alpha =1\) of 10th and 20th-order approximations of the LFHAM is presented in Fig. 1(e) and Fig. 1(f), respectively. In Fig. 1(g) and Fig. 1(h), the absolute error analysis of 10th and 20th-order approximations of the non-differentiable problem for \(\alpha =\frac{\ln (2)}{\ln (3)}\) is illustrated.
Figure 1
Figure 1

(a) Numerical simulation of Eq. (50) for \(\alpha =1\), (b) 3D surface solution for \(\alpha =\frac{1}{2}\), (c) 3D non-differentiable surface solution behavior for \(\alpha =\frac{\ln (2)}{\ln (3)}\), (d) 2D approximate solutions for \(\alpha =1,\frac{1}{2}\) and \(\frac{\ln (2)}{\ln (3)}\), (e) Absolute error \(E_{10}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\) for \(\alpha =1\), (f) Absolute error \(E_{20}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\), \(\alpha =1\), (g) Absolute error of the LFHAM \(E_{10}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\) when \(\alpha =\frac{\ln (2)}{\ln (3)}\), (h) Absolute error of the LFHAM \(E_{20}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\) when \(\alpha =\frac{\ln (2)}{\ln (3)}\)

Example 2

Consider the following non-homogeneous local fractional heat conduction equation:
$$\begin{aligned} \frac{\partial ^{\alpha }v(x,t)}{\partial t^{\alpha }}-\frac{ \partial ^{2\alpha }v(x,t)}{\partial x^{2\alpha }}=-\cos _{\alpha }\bigl(x ^{\alpha }\bigr), \quad t>0, x\in \mathbb{R} \end{aligned}$$
(61)
subject to the initial condition
$$ v(x,0)=\sin _{\alpha }\bigl(x^{\alpha }\bigr). $$
(62)

According to the procedure of the LFHAM and based on Eq. (61) and Eq. (62), it is natural to choose \(v_{0}(x,t)=\sin _{\alpha }(x ^{\alpha })\).

Let us choose the linear operator as follows:
$$ \textit{\pounds}_{\alpha } \bigl[\varphi (x,t;p) \bigr]=\frac{\partial ^{ \alpha }}{\partial x^{\alpha }} \bigl[ \varphi (x,t;p) \bigr], $$
(63)
with the property \(\textit{\pounds}_{\alpha }[C]=0\), where C is an integral constant.
We define the nonlinear operator:
$$\begin{aligned} &N \bigl[\varphi (x,t;p) \bigr]=\frac{\partial ^{\alpha }\varphi (x,t;p)}{ \partial t^{\alpha }}-\frac{\partial ^{2\alpha }\varphi (x,t;p)}{ \partial x^{2\alpha }}+\cos _{\alpha }\bigl(x^{\alpha }\bigr). \end{aligned}$$
(64)
We construct the zero-order deformation equation as follows:
$$ (1-p)\textit{\pounds}_{\alpha } \bigl[\varphi (x,t;p)-v_{0}(x,t) \bigr]=p \hslash H(x,t)N \bigl[\varphi (x,t;p) \bigr]. $$
(65)
Obviously, when \(p=0\) and \(p=1\),
$$ \varphi (x,t;0)=v_{0}(x,t) \quad \mbox{and} \quad \varphi (x,t;1)=v(x,t). $$
(66)
Then the Mth-order deformation equation is defined as follows:
$$ \textit{\pounds}_{\alpha } \bigl[v_{m}(x,t)-\chi _{m}v_{m-1}(x,t) \bigr]= \hslash H(x,t)R_{m}( \mathbf{v}_{m-1},x,t), $$
(67)
where
$$\begin{aligned} R_{m}(\mathbf{v}_{m-1},x,t) =&\frac{\partial ^{\alpha }v_{m-1}(x,t)}{ \partial t^{\alpha }}- \frac{\partial ^{2\alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }}+\cos _{\alpha }\bigl(x^{\alpha }\bigr). \end{aligned}$$
(68)
Putting \(H(x,t)=1\) and applying the local fractional integral on the Mth-order deformation Eq. (67), we obtain
$$\begin{aligned} v_{m}(x,t) =&(\chi _{m}+ \hslash)v_{m-1}(x,t)-(\chi _{m}+\hslash)v_{m-1}(x,0) \\ &{}+\hslash {}_{\beta }I^{(\alpha)}_{\eta } \biggl[\cos _{\alpha }\bigl(x^{ \alpha }\bigr)-\frac{\partial ^{2\alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }} \biggr]. \end{aligned}$$
(69)
Then Eq. (69) yields
$$ \textstyle\begin{cases} {v}_{m}(x,t)=\hslash {}_{\beta }I^{(\alpha)}_{\eta } [\cos _{ \alpha }(x^{\alpha })-\frac{\partial ^{2\alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }} ],\quad m=1, \\ {v}_{m}(x,t)=(\chi _{m}+\hslash)v_{m-1}(x,t)-\hslash {}_{\beta }I^{( \alpha)}_{\eta } [(1-\chi _{m})\cos _{\alpha }(x^{\alpha })-\frac{ \partial ^{2\alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }} ],\\\quad m>1. \end{cases} $$
(70)
Hence
$$\begin{aligned}& v_{0}(x,t) =\sin _{\alpha }\bigl(x^{\alpha }\bigr), \\& v_{1}(x,t) =\hslash \bigl(\sin _{\alpha }\bigl(x^{\alpha } \bigr)+\cos _{\alpha }\bigl(x^{\alpha }\bigr) \bigr)\frac{t^{\alpha }}{\varGamma (\alpha +1)}, \\& v_{2}(x,t) =\hslash (\hslash +1) \bigl(\sin _{\alpha } \bigl(x^{\alpha }\bigr)+ \cos _{\alpha }\bigl(x^{\alpha }\bigr) \bigr) \frac{t^{\alpha }}{\varGamma (\alpha +1)} +\hslash ^{2} \bigl(\sin _{\alpha } \bigl(x^{\alpha }\bigr)+\cos _{\alpha }\bigl(x^{ \alpha }\bigr) \bigr) \frac{t^{2\alpha }}{\varGamma (2\alpha +1)}, \\& \vdots \end{aligned}$$
and so on.
Setting the convergence-control parameter \(\hslash =-1\), the series solution of Eq. (61) is given by
$$\begin{aligned} v(x,t) =&v_{0}(x,t)+\sum _{m=1}^{+\infty }v_{m}(x,t) \\ =&\sin _{\alpha }\bigl(x^{\alpha }\bigr)+ \bigl(\sin _{\alpha } \bigl(x^{\alpha }\bigr)+ \cos _{\alpha }\bigl(x^{\alpha }\bigr) \bigr) \\ &{}\times \biggl(-\frac{t^{\alpha }}{\varGamma (\alpha +1)}+\frac{t^{2 \alpha }}{\varGamma (2\alpha +1)}- \frac{t^{3\alpha }}{\varGamma (3\alpha +1)}+ \cdots \biggr) \\ =&\sin _{\alpha }\bigl(x^{\alpha }\bigr)+\sum _{i=1}^{\infty }\frac{(-1)^{i}t ^{i\alpha }}{\varGamma (i\alpha +1)} \bigl(\sin _{\alpha }\bigl(x^{\alpha }\bigr)+ \cos _{\alpha } \bigl(x^{\alpha }\bigr) \bigr) \\ =&E_{\alpha }\bigl(-t^{\alpha }\bigr) \bigl(\sin _{\alpha } \bigl(x^{\alpha }\bigr)+ \cos _{\alpha }\bigl(x^{\alpha }\bigr) \bigr)-\cos _{\alpha }\bigl(x^{\alpha }\bigr). \end{aligned}$$
(71)
The results obtained in Eq. (71) were in complete agreement with the local fractional homotopy perturbation method [56].
Figures 2: Surface solution of Eq. (61) for \(\alpha =1\) is given in Fig. 2(a). Surface solution behavior of Eq. (61) for (\(\alpha =\frac{1}{2}\)) is presented in Fig. 2(b). The non-differentiable surface solution behavior is depicted in Fig. 2(c). The 2D surface solution behavior for different values of \(\alpha =1,\frac{1}{2},\frac{ \ln (2)}{\ln (3)}\) is presented in Fig. 2(d). The absolute error analysis for 10th and 20th-order approximations of the LFHAM is given in Fig. 2(e) and Fig. 2(f), respectively. The 10th and 20th-order absolute error analysis of the non-differentiable problem for \(\alpha =\frac{\ln (2)}{\ln (3)}\) is presented in Fig. 2(g) and Fig. 2(h), respectively.
Figure 2
Figure 2

(a) Numerical simulation of Eq. (61) for \(\alpha =1\), (b) 3D surface solution for \(\alpha =\frac{1}{2}\), (c) 3D non-differentiable surface solution behavior for \(\alpha =\frac{\ln (2)}{\ln (3)}\), (d) 2D approximate solutions for \(\alpha =1,\frac{1}{2}\) and \(\frac{\ln (2)}{\ln (3)}\), (e) Absolute error \(E_{10}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\), \(\alpha =1\), (f) Absolute error \(E_{20}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\) (g) Absolute error of the LFHAM \(E_{10}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\) for \(\alpha =\frac{\ln (2)}{\ln (3)}\), (h) Absolute error of the LFHAM \(E_{20}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\) for \(\alpha =\frac{\ln (2)}{\ln (3)}\)

Example 3

Consider the following nonlinear local fractional convection-diffusion equation:
$$\begin{aligned}& \frac{\partial ^{\alpha }v(x,t)}{\partial t^{\alpha }} =\frac{ \partial ^{2\alpha }v(x,t)}{\partial x^{2\alpha }}-\frac{\partial ^{ \alpha }v(x,t)}{\partial x^{\alpha }}+v(x,t) \frac{\partial ^{\alpha }v(x,t)}{ \partial x^{\alpha }}-v^{2}(x,t)+v(x,t), \\& \quad t>0, x\in \mathbb{R} \end{aligned}$$
(72)
subject to the initial condition
$$ v(x,0)=E_{\alpha }\bigl(x^{\alpha }\bigr). $$
(73)

Based on Eq. (72) and the initial condition Eq. (73), it is natural to choose \(v_{0}(x,t)=E_{\alpha }(x^{\alpha })\) to be the initial guess.

Let us choose the linear operator as follows:
$$ \textit{\pounds}_{\alpha } \bigl[\varphi (x,t;p) \bigr]=\frac{\partial ^{ \alpha }}{\partial t^{\alpha }} \bigl[ \varphi (x,t;p) \bigr], $$
(74)
with the property \(\textit{\pounds}_{\alpha }[C]=0\), where C is an integral constant.
We define the nonlinear operator:
$$\begin{aligned} N \bigl[\varphi (x,t;p) \bigr] =&\frac{\partial ^{\alpha }\varphi (x,t;p)}{ \partial t^{\alpha }}-\frac{\partial ^{2\alpha }\varphi (x,t;p)}{ \partial x^{2\alpha }}+ \frac{\partial ^{\alpha }\varphi (x,t;p)}{ \partial x^{\alpha }} \\ &{}-\varphi (x,t;p)\frac{\partial ^{\alpha }\varphi (x,t;p)}{\partial x ^{\alpha }}+\varphi ^{2}(x,t;p)-\varphi (x,t;p). \end{aligned}$$
(75)
We construct the zero-order deformation equation as follows:
$$ (1-p)\textit{\pounds}_{\alpha } \bigl[\varphi (x,t;p)-v_{0}(x,t) \bigr]=p \hslash H(x,t)N \bigl[\varphi (x,t;p) \bigr]. $$
(76)
Obviously, when \(p=0\) and \(p=1\),
$$ \varphi (x,t;0)=v_{0}(x,t) \quad \mbox{and} \quad \varphi (x,t;1)=v(x,t). $$
(77)
Then the Mth-order deformation equation is defined as follows:
$$ \textit{\pounds}_{\alpha } \bigl[v_{m}(x,t)-\chi _{m}v_{m-1}(x,t) \bigr]= \hslash H(x,t)R_{m}( \mathbf{v}_{m-1},x,t), $$
(78)
where
$$\begin{aligned} R_{m}(\mathbf{v}_{m-1},x,t) =&\frac{\partial ^{\alpha }v_{m-1}(x,t)}{ \partial t^{\alpha }}- \frac{\partial ^{2\alpha }v_{m-1}(x,t)}{\partial x^{2\alpha }}+\frac{\partial ^{\alpha }v_{m-1}(x,t)}{\partial x^{ \alpha }} \\ &{}-v_{m-1}(x,t)\frac{\partial ^{\alpha }v_{m-1}(x,t)}{\partial x^{ \alpha }}+v_{m-1}^{2}(x,t)-v_{m-1}(x,t). \end{aligned}$$
(79)
Putting \(H(x,t)=1\) and applying the local fractional integral on the Mth-order deformation Eq. (78), we deduce
$$\begin{aligned} v_{m}(x,t) =&(\chi_{m}+\hslash)v_{m-1}(x,t)-(\chi_{m}+\hslash)v_{m-1}(x,0)+\hslash \, {}_{\beta}I^{(\alpha)}_{\eta}\Biggl[\frac{\partial^{\alpha}v_{m-1}(x,t)}{\partial x^{\alpha}}-\frac{\partial^{2\alpha}v_{m-1}(x,t)}{\partial x^{2\alpha}} \\ &{}-\sum_{i=0}^{m-1}v_{i}(x,t)\frac{\partial^{2\alpha }v_{m-1-i}(x,t)}{\partial x^{2\alpha}}+\sum_{i=0}^{m}v_{i}(x,t)v_{m-i}(x,t)-v_{m-1}(x,t)\Biggr]. \end{aligned}$$
(80)
For \(m=1\), Eq. (80) yields
$$\begin{aligned} {v}_{m}(x,t) =&\hslash\, {}_{\beta}I^{(\alpha)}_{\eta}\Biggl[\frac{\partial^{\alpha}v_{m-1}(x,t)}{\partial x^{\alpha}}-\frac{\partial^{2\alpha}v_{m-1}(x,t)}{\partial x^{2\alpha}} \\ &{}-\sum_{i=0}^{m-1}v_{i}(x,t)\frac{\partial^{2\alpha }v_{m-1-i}(x,t)}{\partial x^{2\alpha}}+\sum_{i=0}^{m}v_{i}(x,t)v_{m-i}(x,t)-v_{m-1}(x,t)\Biggr]. \end{aligned}$$
(81)
And for \(m\geq 2\), Eq. (80) yields
$$\begin{aligned} v_{m}(x,t) =&(\chi_{m}+\hslash)v_{m-1}(x,t)+\hslash\,{}_{\beta}I^{(\alpha)}_{\eta}\Biggl[\frac{\partial^{\alpha}v_{m-1}(x,t)}{\partial x^{\alpha}}-\frac{\partial^{2\alpha}v_{m-1}(x,t)}{\partial x^{2\alpha}} \\ &{}-\sum_{i=0}^{m-1}v_{i}(x,t)\frac{\partial^{2\alpha }v_{m-1-i}(x,t)}{\partial x^{2\alpha}}+\sum_{i=0}^{m}v_{i}(x,t)v_{m-i}(x,t)-v_{m-1}(x,t)\Biggr]. \end{aligned}$$
(82)
Thus
$$\begin{aligned}& v_{0}(x,t)=E_{\alpha}(x^{\alpha}), \\ & v_{1}(x,t)=\hslash\,{}_{\beta}I^{(\alpha)}_{\eta}\biggl[\frac{\partial^{\alpha}v_{0}(x,t)}{\partial x^{\alpha}}-\frac{\partial^{2\alpha}v_{0}(x,t)}{\partial x^{2\alpha}}-v_{0}(x,t)\frac{\partial^{2\alpha }v_{0}(x,t)}{\partial x^{2\alpha}}+v_{0}^{2}(x,t)-v_{0}(x,t)\biggr] \\ & \hphantom{v_{1}(x,t)}=-\hslash E_{\alpha}(x^{\alpha})\frac{t^{\alpha}}{\Gamma(\alpha+1)}, \\ & v_{2}(x,t)=(\hslash+1)v_{1}(x,t) \\ & \hphantom{v_{2}(x,t)={}}{}-\hslash\,{}_{\beta}I^{(\alpha)}_{\eta}\biggl[\frac{\partial^{\alpha}v_{1}(x,t)}{\partial x^{\alpha}}-\frac{\partial^{2\alpha}v_{1}(x,t)}{\partial x^{2\alpha}}-v_{0}(x,t)\frac{\partial^{2\alpha }v_{1}(x,t)}{\partial x^{2\alpha}}-v_{1}(x,t)\frac{\partial^{2\alpha }v_{0}(x,t)}{\partial x^{2\alpha}} \\ & \hphantom{v_{2}(x,t)={}}{}+2v_{0}(x,t)v_{1}(x,t)-v_{1}(x,t)\biggr] \\ & \hphantom{v_{2}(x,t)}=\hslash^{2} E_{\alpha}(x^{\alpha})\frac{t^{2\alpha}}{\Gamma(2\alpha+1)}, \\ & \vdots \end{aligned}$$
and so on.
Then, choosing the convergence-control parameter \(\hslash =-1\), the series solutions of Eq. (72) are given by
$$\begin{aligned} v(x,t) =&v_{0}(x,t)+\sum _{m=1}^{+\infty }v_{m}(x,t) \\ =&E_{\alpha }\bigl(x^{\alpha }\bigr) \biggl(1+\frac{t^{\alpha }}{\varGamma (\alpha +1)}+ \frac{t^{2\alpha }}{\varGamma (2\alpha +1)}+\frac{t^{3\alpha }}{ \varGamma (3\alpha +1)}+\cdots \biggr) \\ =&E_{\alpha }\bigl(x^{\alpha }\bigr)\sum_{i=0}^{\infty } \frac{t^{i\alpha }}{ \varGamma (i\alpha +1)} \\ =&E_{\alpha }\bigl(x^{\alpha }\bigr)E_{\alpha } \bigl(t^{\alpha }\bigr). \end{aligned}$$
(83)
The result obtained in Eq. (83) is the same as that of the local fractional homotopy analysis method [56].
Figures 3: The surface solution behavior of Eq. (72) for \(\alpha =1\) is presented in Fig. 3(a). Surface solution behavior of Eq. (72) for (\(\alpha =\frac{1}{2}\)) is illustrated in Fig. 3(b). The non-differentiable surface solution behavior for \(\alpha =\frac{\ln (2)}{\ln (3)}\) is depicted in Fig. 3(c). 2D surface solutions for different values of \(\alpha =1,\frac{1}{2},\frac{\ln (2)}{ \ln (3)}\) are presented in Fig. 3(d). The absolute error analysis for 10th and 20th-order approximations of the LFHAM is given in Fig. 3(e) and Fig. 3(f), respectively. The 10th and 20th-order absolute error analysis of the non-differentiable problem for \(\alpha =\frac{\ln (2)}{\ln (3)}\) is depicted in Fig. 3(g) and Fig. 3(h), respectively.
Figure 3
Figure 3

(a) Numerical solution of Eq. (72) for \(\alpha =1\), (b) 3D surface solution for \(\alpha =\frac{1}{2}\), (c) Non-differentiable surface solution behavior for \(\alpha =\frac{\ln (2)}{\ln (3)}\), (d) Approximate solutions for \(\alpha =1,\frac{1}{2}\) and \(\frac{\ln (2)}{\ln (3)}\), (e) Absolute error \(E_{10}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\), \(\alpha =1\), (f) Absolute error \(E_{20}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\), \(\alpha =1\), (g) Absolute error of the LFHAM \(E_{10}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\) for \(\alpha =\frac{\ln (2)}{\ln (3)}\), (h) Absolute error of the LFHAM \(E_{20}(v(x,t))=|v_{\mathrm{ext}.}(x,t)-v_{\mathrm{appr}.}(x,t)|\) for \(\alpha =\frac{\ln (2)}{\ln (3)}\)

5 Conclusion

In this paper, we introduced a modified version of the well-known homotopy analysis method (HAM) called the local fractional homotopy analysis method (LFHAM) for solving non-differential models arising on Cantor sets. The suggested method was successfully applied to some non-differentiable problems, and the results obtained were entirely in agreement with the results of the existing methods. It is further shown that when the nonzero convergence-control parameter \(\hslash =-1\), the results of the local fractional homotopy perturbation method (LFHPM) are recovered as a particular case of the proposed technique. The most significant advantage of this technique over the existing methods is not only the highest degree of freedom to adjust and control the convergence of the series solutions, but also the great privilege to choose the initial approximation, the deformation-functions, and the auxiliary linear operator. Thus, we conclude that the LFHAM is a powerful semi-analytical technique for solving non-differentiable partial differential equations and can be regarded as a modification of the homotopy analysis method.

Declarations

Acknowledgements

The authors would like to thank the anonymous reviewers and the editors for their valuable suggestions and comments on this paper.

Funding

This research is partially supported by the National Natural Science Foundation of China (No. 11571206). The first author also acknowledges the financial support of China Scholarship Council (CSC) in Shandong University (CSC No. 2017GXZ025381).

Authors’ contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics, Shandong University, Jinan, People’s Republic of China

References

  1. Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 34, 593–600 (2010) MathSciNetMATHGoogle Scholar
  2. Ganjiani, M.: Solution of nonlinear fractional differential equations using homotopy analysis method. Appl. Math. Model. 34, 1634–1641 (2010) MathSciNetMATHGoogle Scholar
  3. Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 14, 2006–2012 (2009) MathSciNetMATHGoogle Scholar
  4. Algahtani, O.J.J.: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model. Chaos Solitons Fractals 89, 552–559 (2016) MathSciNetMATHGoogle Scholar
  5. Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 273, 948–956 (2016) MathSciNetMATHGoogle Scholar
  6. Kumar, D., Singh, J., Baleanu, D.: A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. 40(15), 5642–5653 (2017). https://doi.org/10.1002/mma.4414 MathSciNetMATHGoogle Scholar
  7. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968) MathSciNetMATHGoogle Scholar
  8. Atangana, A., Gomez-Aguilar, J.F.: Numerical approximation of Riemann–Liouville definition of fractional derivative: from Riemann–Liouville to Atangana–Baleanu. Numer. Methods Partial Differ. Equ. 34(5), 1502–1523 (2018). https://doi.org/10.1002/num.22195 MathSciNetMATHGoogle Scholar
  9. Prodanov, D.: Fractional velocity as a tool for the study of non-linear problems. Fractal Fract. 2(4), 1–23 (2018) Google Scholar
  10. Maitama, S.: An efficient technique for solving linear and nonlinear fractional partial differential equations. Math. Eng. Sci. Aerosp. 8(4), 521–534 (2017) Google Scholar
  11. Maitama, S., Abdullahi, I.: A new analytical method for solving linear and nonlinear fractional partial differential equations. Prog. Fract. Differ. Appl. 2(4), 247–256 (2016) Google Scholar
  12. Jumarie, G.: Fractional master equation: non-standard analysis and Liouville–Riemann derivative. Chaos Solitons Fractals 12, 2577–2587 (2001) MathSciNetMATHGoogle Scholar
  13. Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to \((dt)^{a}\). Appl. Math. Lett. 18, 739–748 (2005) MathSciNetMATHGoogle Scholar
  14. Yang, X.J.: Local Fractional Functional Analysis and Its Applications. Asian Academic, Hong Kong (2011) Google Scholar
  15. Yang, X.J.: Local Fractional Calculus and Its Applications. World, New York (2012) Google Scholar
  16. Yang, A.M., Zhang, Y.Z., Cattani, C., Xie, G.N., Rashidi, M.M., Zhou, Y.J., Yang, X.J.: Application of local fractional series expansion method to solve Klein–Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014(2014), 1 (2014) MathSciNetMATHGoogle Scholar
  17. Hemeda, A.A., Eladdad, E.E., Lairje, I.A.: Local fractional analytical methods for solving wave equations with local fractional derivative. Math. Methods Appl. Sci. 41(6), 2515–2529 (2018). https://doi.org/10.1002/mma.4756 MathSciNetMATHGoogle Scholar
  18. Yang, X.J., Tenreiro, J.A.M., Baleanu, D., Gao, F.: A new numerical technique for local fractional diffusion equation in fractal heat transfer. J. Nonlinear Sci. Appl. 9, 5621–5628 (2016) MathSciNetMATHGoogle Scholar
  19. Hu, M.-S., Agarwal, R.P., Yang, X.J.: Local fractional Fourier series with applications to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012, Article ID 567401 (2012) MathSciNetMATHGoogle Scholar
  20. Zhao, D., Singh, J., Kumar, D., Rathore, S., Yang, X.J.: An efficient computational technique for local fractional heat conduction equation in fractal media. J. Nonlinear Sci. Appl. 10, 1478–1486 (2017) MathSciNetGoogle Scholar
  21. Wang, S.Q., Yang, Y.J., Kamil, H.J.: Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstr. Appl. Anal. 2014(2014), 1 (2014) MathSciNetMATHGoogle Scholar
  22. Chen, Y., Yan, Y., Zhang, K.: On the local fractional derivative. J. Math. Anal. Appl. 362, 17–33 (2010) MathSciNetMATHGoogle Scholar
  23. Yang, X.J., Baleanu, D., Zhong, W.P.: Approximate solutions for diffusion equations on Cantor space-time. Proc. Rom. Acad., Ser. A 14, 127–133 (2013) MathSciNetGoogle Scholar
  24. Golmankhaneh, A.K., Yang, X.J., Baleanu, D.: Einsten field equations within local fractional calculus. Rom. J. Phys. 60, 22–31 (2015) Google Scholar
  25. Singh, J., Kumar, D., Nieto, J.J.: A reliable algorithm for local fractional Tricomi equation arising in fractal transonic flow. Entropy 18, 1–8 (2016) MathSciNetGoogle Scholar
  26. Yang, X.J., Srivastava, H.M., He, J.H., Baleanu, D.: Cantor-type cylindrical-coordinate fractional derivatives. Proc. Rom. Acad., Ser. A 14, 127–133 (2013) Google Scholar
  27. Yang, X.J., Kang, Z., Liu, C.: Local fractional Fourier’s transform based on local fractional calculus. In: The 2010 ICECE 2010, IEEE Computer Society, pp. 1242–1245 (2010) Google Scholar
  28. Yang, X.J.: Local fractional Laplace transform based on the local fractional calculus. In: Shen, G., Huang, X. (eds.) Advanced Research on Computer Science and Information Engineering (Communications in Computer and Information Science, vol. 153. Springer, Berlin (2011) Google Scholar
  29. Liu, K., Hu, R.J., Cattani, C., Xie, G.N., Yang, X.J., Zhao, Y.: Local fractional Z-transforms with applications to signals on Cantor sets. Abstr. Appl. Anal. 2013, Article ID 638648 (2014) MathSciNetMATHGoogle Scholar
  30. Srivastava, H.M., Golmankhaneh, A.K., Baleanu, D., Yang, X.J.: Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr. Appl. Anal. 2014, Article ID 176395 (2014) MathSciNetMATHGoogle Scholar
  31. Kolwankar, K.M., Gangal, A.D.: Hölder exponents of irregular signals and local fractional derivatives. Pramana J. Phys. 48, 49–68 (1997) Google Scholar
  32. Kolwankar, K.M., Gangal, A.D.: Local fractional Fokker–Planck equation. Phys. Rev. Lett. 80, 214–217 (1998) MathSciNetMATHGoogle Scholar
  33. Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 6, 505–513 (1996) MathSciNetMATHGoogle Scholar
  34. Jafari, H., Tajadodi, H., Johnston, S.J.: A decomposition method for solving diffusion equation via local fractional time derivative. Therm. Sci. 19(1), S123–S129 (2015) Google Scholar
  35. Kumar, D., Singh, J., Mehmet, H.B., Bulut, H.: An effective computational approach to local fractional telegraph equations. Nonlinear Sci. Lett. A 8(2), 200–206 (2017) Google Scholar
  36. Kumar, D., Singh, J., Baleanu, D.: A hybrid computational approach for Klein–Gordon equations on Cantor sets. Nonlinear Dyn. 87, 511–517 (2017) MathSciNetMATHGoogle Scholar
  37. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press, San Diego (2015) MATHGoogle Scholar
  38. Baleanu, D., Güvenc, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Berlin (2010) MATHGoogle Scholar
  39. Oldham, K.B., Spanier, J.: The Fractional Calculus. Acadamic Press, New York (1974) MATHGoogle Scholar
  40. Alsead, A., Baleanu, D., Eternad, S., Rezapour, S.: On coupled system of time-fractional differential problem by using a new fractional derivative. J. Funct. Spaces 2016, 466940 (2016) MathSciNetGoogle Scholar
  41. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2, 731–785 (2015) Google Scholar
  42. Atangana, A., Koca, I.: New direction in fractional differentiation. Math. Nat. Sci. 1, 18–25 (2017) Google Scholar
  43. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016) Google Scholar
  44. Kumar, D., Singh, J., Baleanu, D.: A new analysis of the Fornberg–Whitham equation pertaining to a fractional derivative with Mittag-Leffler type kernel. Eur. Phys. J. Plus 133(70), 1–10 (2018) Google Scholar
  45. Kumar, D., Singh, J., Baleanu, D., Baleanu, S.: Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Physica A 492, 155–167 (2018) MathSciNetGoogle Scholar
  46. Singh, J., Kumar, D., Baleanu, D., Rathore, S.: On the local fractional wave equation in fractal strings. Math. Methods Appl. Sci. 1–8 (2019). https://doi.org/10.1002/mma.5458
  47. Atangana, A., Owolabi, K.: New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 13, 1–21 (2018) MathSciNetMATHGoogle Scholar
  48. Srivastava, H.M., Saad, K.M.: Some new models of the time-fractional gas dynamics equation. Adv. Math. Model. Appl. 3(1), 5–17 (2018) Google Scholar
  49. Kumar, D., Singh, J., Baleanu, D., Rathore, S.: Analysis of a fractional model of the Ambartsumian equation. Eur. Phys. J. Plus 133, 259 (2018) Google Scholar
  50. Kumar, D., Singh, J., Purohit, S.D., Swroop, R.: A hybrid analytical algorithm for nonlinear fractional wave-like equations. Math. Model. Nat. Phenom. 14, 304 (2019) MathSciNetGoogle Scholar
  51. Singh, J., Kumar, D., Baleanu, D.: New aspects of fractional Biswas–Milovic model with Mittag-Leffler law. Math. Model. Nat. Phenom. 14(3), 1–23 (2019) MathSciNetGoogle Scholar
  52. Nayfeh, A.H.: Perturbation Methods. Wiley, New YorK (2000) MATHGoogle Scholar
  53. Jassim, H.K.: Local fractional Laplace decomposition method for nonhomogeneous heat equation arising in fractal heat flow with local fractional derivative. Int. J. Adv. Appl. Math. Mech. 2, 1–7 (2015) MathSciNetMATHGoogle Scholar
  54. Yan, S.P., Jafari, H., Jassim, H.K.: Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators. Adv. Math. Phys. 2014(2014), 1–8 (2014) MathSciNetMATHGoogle Scholar
  55. Yang, X.J., Srivastava, H.M., Cattani, C.: Local fractional homotopy perturbation method for solving fractional partial differential equations arising in mathematical physics. Rom. Rep. Phys. 67, 752–761 (2015) Google Scholar
  56. Zhang, Y., Cattani, C., Yang, X.J.: Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains. Entropy 17, 6753–6764 (2015) MathSciNetGoogle Scholar
  57. Yang, X.J., Baleanu, D., Yang, X.J.: A local fractional variational iteration method for Laplace equation within local fractional operators. Abstr. Appl. Anal. 2013, Article ID 202650 (2013) MathSciNetMATHGoogle Scholar
  58. Yang, A.M., Li, J., Srivastava, H.M., Xie, G.N., Yang, X.J.: Local fractional variational iteration method for solving linear partial differential equation with local fractional derivative. Discrete Dyn. Nat. Soc. 2014, Article ID 365981 (2014) MathSciNetGoogle Scholar
  59. Jafari, H., Kamil, H.J.: Local fractional variational iteration method for solving nonlinear partial differential equations within local fractional operators. Appl. Appl. Math. 10(2), 1055–1065 (2015) MathSciNetMATHGoogle Scholar
  60. Jafari, H., Ünlü, C., Moshoa, S.P., Khalique, C.M.: Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators. Entropy 2015, Article ID 309870 (2015) MathSciNetMATHGoogle Scholar
  61. Ziane, D., Baleanu, D., Belghaba, K., Cherif, M.: Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative. J. King Saud Univ., Sci. 31(1), 83–88 (2019). https://doi.org/10.1016/j.jksus.2017.05.002 Google Scholar
  62. Maitama, S.: Local fractional natural homotopy perturbation method for solving partial differential equations with local fractional derivative. Prog. Fract. Differ. Appl. 4(3), 219–228 (2018) Google Scholar
  63. Liao, S.J.: An approximate solution technique not depending on small parameters: a special example. Int. J. Non-Linear Mech. 30, 371–380 (1995) MathSciNetMATHGoogle Scholar
  64. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2003) Google Scholar
  65. Liao, S.J.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169(2), 1186–1194 (2005) MathSciNetMATHGoogle Scholar
  66. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 362, 2003–2016 (2010) MathSciNetMATHGoogle Scholar
  67. Liao, S.J.: Homotopy Analysis Method in Nonlinear Differential Equations. Springer, Heidelberg (2012) MATHGoogle Scholar
  68. Marinca, V., Herisanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 35, 710–715 (2008) Google Scholar
  69. Niu, Z., Wang, C.: A one-step optimal homotopy analysis method for nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2026–2036 (2010) MathSciNetMATHGoogle Scholar
  70. Motsa, S.S., Sibanda, P., Shateyi, S.: A new spectral homotopy analysis method for solving a nonlinear second order BVP. Commun. Nonlinear Sci. Numer. Simul. 15, 2293–2302 (2010) MathSciNetMATHGoogle Scholar
  71. Abbabandy, S., Magyari, E., Shivanian, E.: The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 14, 3530–3536 (2009) MathSciNetMATHGoogle Scholar
  72. Singh, J., Kumar, D., Baleanu, D., Rathore, S.: An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Appl. Math. Comput. 335, 12–24 (2018) MathSciNetGoogle Scholar
  73. Songxin, L., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. Commun. Nonlinear Sci. Numer. Simul. 14(12), 4057–4064 (2009) MathSciNetMATHGoogle Scholar
  74. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solutions of time-dependent Emden–Fowler type equations by homotopy analysis method. Phys. Lett. A 371, 72–82 (2007) MATHGoogle Scholar
  75. Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane–Emden equation. Phys. Lett. A 372, 6060–6065 (2008) MathSciNetMATHGoogle Scholar
  76. Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007) MATHGoogle Scholar
  77. Sajid, M., Hayat, T.: Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations. Nonlinear Anal. (B) 9, 2290–2295 (2008) MathSciNetMATHGoogle Scholar

Copyright

© The Author(s) 2019

Advertisement