• Research
• Open Access

# On multiplicity of solutions to nonlinear partial difference equations with delay

https://doi.org/10.1186/s13662-018-1651-6

• Accepted: 30 May 2018
• Published:

## Abstract

In this paper, we present an existence criterion for multiple positive solutions of nonlinear neutral delay partial difference equations. Such equations can be regarded as a discrete analog of neutral delay partial differential equations. Our main result relies on fixed point index theory. An example is constructed to show the applicability of the obtained result.

## Keywords

• Partial difference equations
• Multiple positive solutions
• Fixed point index

• 35R10
• 39A11

## 1 Introduction

Partial difference equations constitute an important and interesting area of research in mathematics. For some classical results concerning the solvability of some classes of partial difference equations, see [1]. The qualitative analysis of partial difference equations has been studied later, especially in recent years; see [2, 3].

Many researchers recently investigated solvability and oscillation criteria for partial difference equations with two variables. For some solvability results, we refer the reader to a series of papers [410] and the references therein, while some recent work on the oscillation and nonoscillation criteria for partial difference equations can be found in the articles [1118]. However, to the best of our knowledge, the topic of existence of multiple positive solutions for partial difference equations has yet to be addressed.

The goal of this paper is to discuss the multiplicity of positive solutions of nonlinear neutral partial difference equation with the aid of the fixed point index theory. Precisely, we consider the following neutral partial difference equation:
$$\triangle_{n}^{h}\triangle_{m}^{r}( y_{m, n}-c_{m,n}y_{m-k, n-l})+(-1)^{h+r+1}P_{m, n}f(y_{m-\sigma, n-\tau})=0,$$
(1.1)
where $$h, r\in\textbf{N}^{+}$$, $$k, l, \sigma,\tau\in\textbf{N}(0)$$; $$\{P_{m, n}\}_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty}$$ and $$\{c_{m, n}\}_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty}$$ are nonnegative sequences; $$f(x)$$ is a real-valued continuous function of x.

Equation (1.1) can be considered as a discrete analog of neutral delay partial differential equations. Such equations appear frequently in random walk problems, molecular orbit structures, dynamical systems, economics, biology, population dynamics, and other fields. Finite difference methods applied to partial differential equations also give rise to an equation of the form (1.1).

The forward differences $$\triangle_{m}$$ and $$\triangle_{n}$$ are defined in the usual manner as
$$\triangle_{m}y_{m, n}=y_{m+1, n}-y_{m, n} \quad\text{and} \quad\triangle_{n}y_{m, n}=y_{m, n+1}-y_{m, n}.$$
The higher order forward differences for positive integers r and h are given by
$$\begin{gathered} \triangle_{m}^{r}y_{m, n}=\triangle_{m} \bigl(\triangle _{m}^{r-1}y_{m, n}\bigr),\qquad \triangle_{m}^{0}y_{m, n}=y_{m, n}, \\ \triangle_{n}^{h}y_{m, n}=\triangle_{n} \bigl(\triangle _{n}^{h-1}y_{m, n}\bigr),\qquad \triangle_{n}^{0}y_{m, n}=y_{m, n}.\end{gathered}$$

In the sequel, we denote by $$\textbf{N}=\{0,1,\ldots\}$$ the set of integers and by $$\textbf{N}^{+}=\{1,2,\ldots\}$$ the set of positive integers; $$\textbf{N}(a)=\{a,a+1,\ldots\}$$, where $$a\in\textbf{N}$$, $$\textbf{N}(a,b)=\{a,a+1,\ldots,b\}$$ with $$a< b<\infty$$ and $$a,b\in \textbf{N}$$. Any one of these three sets will be denoted by $$\overline{\textbf{N}}$$. For $$t \in R$$, we define the usual factorial expression $$(t)^{(m)} =t(t-1)\cdots(t-m+1)$$ with $$(t)^{0}=1$$.

The space $$l_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty}$$ is the set of double real sequences defined on the set of positive integer pairs, where any individual double sequence is bounded with respect to the usual supremum norm, that is,
$$\Vert y \Vert =\sup_{m\in\textbf{N}(m_{0}), n\in\textbf{N}(n_{0})} \vert y_{m, n} \vert < \infty.$$
It is well known that $$l_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty}$$ is a Banach space under the supremum norm.
Let
$$P=\bigl\{ y\in l_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty}\mid y_{m, n}\geq 0,m\in \textbf{N}(m_{0}), n\in\textbf{N}(n_{0})\bigr\} .$$
Then it is easy to see that P is a cone. We define a partial order ≤ in $$l_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty}$$ as follows:
$$\mbox{for any } x, y \in l_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty},\quad x\leq y\quad \Leftrightarrow \quad y-x \in P.$$

### Definition 1

([16])

A set Ω of double sequences in $$l_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty}$$ is uniformly Cauchy (or equi-Cauchy) if for every $$\varepsilon>0$$, there exist positive integers $$m_{1}$$ and $$n_{1}$$ such that, for any $$x=\{x_{m, n}\}$$ in Ω,
$$\vert x_{m, n}-x_{m^{\prime}, n^{\prime}} \vert < \varepsilon$$
holds whenever $$(m, n)\in D^{\prime}, (m^{\prime}, n^{\prime})\in D^{\prime}$$, where $$D^{\prime}=D_{1}^{\prime}\cup D_{2}^{\prime}\cup D_{3}^{\prime}$$, $$D_{1}^{\prime}=\{(m, n)\mid m> m_{1}, n> n_{1}\}$$, $$D_{2}^{\prime}=\{(m, n)\mid m_{0}\leq m\leq m_{1}, n> n_{1}\}$$, $$D_{3}^{\prime}=\{(m, n)\mid m> m_{1}, n_{0}\leq n \leq n_{1}\}$$.

### Definition 2

([19])

An operator $$A : D\to E$$ is called a k-set-contraction ($$k \geq0$$) if it is continuous, bounded and
$$\gamma\bigl(A(S)\bigr) < k\gamma(S)$$
for any bounded set $$S\subset D$$, where $$\gamma(S)$$ denotes the measure of noncompactness of S. A k-set-contraction is called a strict set contraction if $$k < 1$$.

### Definition 3

Let K be a retract of a Banach space X, $$\Omega\subset K$$ an open set and $$f :\overline{\Omega}\to K$$ a compact map such that $$f (x)\neq x$$ on Ω. If $$r: X\to K$$ is a retraction, then $$\operatorname{deg} (I-fr, r^{-1}(\Omega), \theta )$$ is defined, where deg denotes the Leray–Schauder degree, this number is called the fixed point index of f over Ω with respect to K, $$i(f,\Omega, K)$$ for short.

The fixed point index $$i(f,\Omega, K)$$ has the following properties:
1. (i)

Normalization: for every constant map f mapping Ω̅ into Ω, $$i (f,\Omega, K) = 1$$.

2. (ii)
Additivity: for every pair of disjoint open subsets $$\Omega_{1}$$, $$\Omega_{2}$$ of Ω such that f has no fixed points on $$\overline{\Omega}\setminus(\Omega_{1}\cup\Omega_{2})$$,
$$i(f,\overline{\Omega},K) = i(A,\Omega_{1},K) + i(f, \Omega_{2},K),$$
where $$i (f, \Omega_{n}, K) = i (f|_{\overline{\Omega}_{n}}, \Omega_{n}, K)$$ for $$n = 1,2$$.

3. (iii)

Homotopy invariance: for every compact interval $$[a, b] \subset\mathbb{R}$$ and every compact map $$h : [a, b]\times\Omega\to K$$ such that $$h (\lambda, x)\neq x$$ for $$(\lambda, x)\in[a, b]\times\partial\Omega$$, $$i(h (\lambda,\cdot ),\Omega, K)$$ is well defined and independent of $$\lambda\in[a, b]$$.

Now we state some well-known lemmas which will be used in the next section.

### Lemma 1

([16] (Discrete Arzela–Ascoli’s theorem))

A bounded, uniformly Cauchy subset Ω of $$l_{m=m_{0},}^{\infty}{}_{n=n_{0}}^{\infty}$$ is relatively compact.

### Lemma 2

([19])

Let P be a cone in a real Banach space X and Ω be a nonempty bounded open convex subset of P. Suppose that $$T: \overline{\Omega}\rightarrow P$$ is a strict set contraction operator and $$T(\Omega)\subset\Omega$$, where Ω̅ denotes the closure of Ω in P. Then the fixed point index $$i(T, \Omega, P) = 1$$.

## 2 Main result

### Theorem 1

Assume that
$$(R_{1})$$

there exists a constant c such that $$0\leq c_{m, n}\leq c < 1$$, $$m\in\mathbf{N}(m_{0})$$, $$n\in \mathbf{N}(n_{0})$$;

$$(R_{2})$$
for any $$m\in\mathbf{N}(m_{0})$$, $$n\in\mathbf{N}(n_{0})$$, $$P_{m, n}>0$$, $$xf(x)>0$$ ($$x\neq0$$) with
$$\lim_{x\rightarrow0+}\frac{f(x)}{x}=0,\qquad\lim_{x\rightarrow +\infty} \frac{f(x)}{x}=0;$$
$$(R_{3})$$
for $$\delta_{1}=\max\{k, \sigma\}$$, $$\delta_{2}=\min\{k, \sigma\}$$, $$\eta_{1}=\max\{l, \tau\}$$, $$\eta_{2}=\min\{l, \tau\}$$, there exist positive integers $$m_{1}$$, $$n_{1}$$ satisfying $$m_{1}-\delta_{1}\in\mathbf{N}(m_{0})$$ and $$n_{1}-\eta_{1}\in\mathbf{N}(n_{0})$$ such that
$$0< c_{0}\stackrel{\Delta}{=}\sum_{i=m_{1}}^{\infty} \sum_{j=n_{1}}^{\infty} \frac{(i+r-1)^{(r-1)}(j+h-1)^{(h-1)}}{(r-1)! (h-1)!}P_{i, j}< + \infty;$$
$$(R_{4})$$
there exist constants $$c_{1}$$ and $$u_{0}>0$$ such that $$f(x)\geq c_{1}u_{0}$$ for $$x\geq u_{0}$$, and furthermore there exist positive integers $$b_{1}$$, $$b_{2}$$ satisfying $$b_{1} > m_{1}$$, $$b_{2}>n_{1}$$ such that
$$c_{1}c_{2}>1,$$
where
$$c_{2}\stackrel{\Delta}{=}\sum_{i=b_{1}}^{b_{1} + \delta_{2}} \sum_{j=b_{2}}^{b_{2} + \eta_{2}} \frac{(i-b_{1}+r-1)^{(r-1)}(j-b_{2}+h-1)^{(h-1)}}{(r-1)! (h-1)!}P_{i, j} > 0.$$
Then Eq. (1.1) has at least two positive solutions $$x^{*}$$ and $$y^{*}$$ satisfying the relation:
$$\inf_{m\in\mathbf{N}(a_{1}, b_{1})\atop n\in\mathbf{N}(a_{2}, b_{2})}x_{m, n}^{*}< u_{0} < \inf_{m\in\mathbf{N}(a_{1}, b_{1})\atop n\in\mathbf{N}(a_{2}, b_{2})}y_{m, n}^{*},$$
where $$a_{1}$$ and $$a_{2}$$ are positive integers with $$a_{1}\in[m_{1}-\delta _{1}, b_{1}-\delta_{1})$$, $$a_{2}\in[n_{1}-\eta_{1}, b_{2}-\eta_{1})$$.

### Proof

Set
$$\begin{gathered} D=\bigl\{ (m,n)\mid m\geq m_{0}, n\geq n_{0}\bigr\} , \\ D_{1}=\bigl\{ (m,n)\mid m\geq m_{1}, n\geq n_{1}\bigr\} , \\ D_{2}=\bigl\{ (m,n)\mid m_{0}\leq m< m_{1}, n \geq n_{1}\bigr\} , \\ D_{3}=\bigl\{ (m,n)\mid m\geq m_{1}, n_{0}\leq n< n_{1}\bigr\} , \\ D_{4}=\bigl\{ (m,n)\mid m_{0}\leq m< m_{1},n_{0} \leq n< n_{1}\bigr\} .\end{gathered}$$
For any $$y\in P$$, define operators $$T_{1}$$ and $$T_{2}$$ as follows:

## 3 Conclusions

In the past years, the qualitative theory of partial difference equations has been developed by means of different tools such as comparison principle, Schauder type fixed point theorem, Banach’s contraction principle, method of upper and lower solutions, the method of positive operators, etc. However, the issue of existence of multiple positive solutions for neutral delay partial difference equations has yet to be addressed. Here we have investigated this topic with the aid of the fixed point index theory and obtained a criterion ensuring the existence of multiple positive solutions to Eq. (1.1). Thus the present work opens a new avenue in the field of partial difference equations and contributes significantly to the existing literature on the subject.

## Declarations

### Acknowledgements

The authors are grateful to the reviewers for their valuable comments.

Not applicable.

### Funding

The work was supported by the National Natural Science Foundation of China (No. 11671339).

### Authors’ contributions

Each of the authors, YZ, BA, YYZ and AA contributed equally to each part of this work. All authors read and approved the final manuscript.

### Competing interests

The authors declare that they have no competing interests.

## Authors’ Affiliations

(1)
Faculty of Mathematics and Computational Science, Xiangtan University, Hunan, P.R. China
(2)
Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

## References

1. Jordan, C.: Calculus of Finite Differences. Chelsea, New York (1956)
2. Petropoulou, E.N. (ed.): Some Recent Advances in Partial Difference Equations. Bentham Science Publishers, Sharjah (2010)
3. Cao, J.: Homogeneous q-partial difference equations and some applications. Adv. Appl. Math. 84, 47–72 (2017)
4. Stević, S.: Note on the binomial partial difference equation. Electron. J. Qual. Theory Differ. Equ. 2015, Article ID 96 (2015)
5. Stević, S.: Solvability of boundary value problems for a class of partial difference equations on the combinatorial domain. Adv. Differ. Equ. 2016, Article ID 262 (2016)
6. Stević, S.: Solvability of boundary-value problems for a linear partial difference equation. Electron. J. Differ. Equ. 2017, Article ID 17 (2017)
7. Stević, S.: On an extension of a recurrent relation from combinatorics. Electron. J. Qual. Theory Differ. Equ. 2017, Article ID 84 (2017)
8. Ibrahim, T.F.: Behavior of some higher order nonlinear rational partial difference equations. J. Egypt. Math. Soc. 24(4), 532–537 (2016)
9. Zhang, B.G., Zhou, Y.: Nonexistence of monotone solutions of neutral partial difference equations. Dyn. Syst. Appl. 14, 225–244 (2005)
10. Zhang, B.G., Zhou, Y., Huang, Y.Q.: Existence of positive solutions for certain nonlinear partial difference equations. Math. Comput. Model. 38, 331–337 (2003)
11. Zhang, B.G., Zhou, Y.: Qualitative Analysis of Delay Partial Difference Equations. Hindawi Publishing Corporation, New York (2007)
12. Li, W.N., Sheng, W.: Forced oscillation for solutions of boundary value problems of fractional partial difference equations. Adv. Differ. Equ. 2016, Article ID 263 (2016)
13. Wong, P.J.Y., Agarwal, R.P.: Nonexistence of unbounded non-oscillatory solutions of partial difference equations. J. Math. Anal. Appl. 214, 503–523 (1997)
14. Zhang, B.G., Zhou, Y.: New oscillations criteria of delay partial difference equations. Dyn. Syst. Appl. 16, 267–276 (2007)
15. Li, C.F., Zhou, Y.: Existence of bounded and unbounded nonoscillatory solutions of partial difference equations. Math. Comput. Model. 45, 825–833 (2007)
16. Zhou, Y.: Existence of bounded and unbounded nonoscillatory solutions of nonlinear partial difference equations. J. Math. Anal. Appl. 332(2), 1267–1277 (2007)
17. Zhou, Y., O’Regan, D., Agarwal, R.P.: Existence of non-oscillatory solutions of higher order partial difference equations of neutral type. Dyn. Syst. Appl. 12, 509–520 (2003)
18. Liu, B.: The existence of multiple positive solution of nonlinear neutral difference equation. Ann. Differ. Equ. 16(2), 145–152 (2000)
19. Guo, D.J., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, New York (1998)