Skip to main content

Theory and Modern Applications

Certain fractional calculus formulas involving extended generalized Mathieu series

Abstract

We establish fractional integral and derivative formulas by using fractional calculus operators involving the extended generalized Mathieu series. Next, we develop their composition formulas by applying the integral transforms. Finally, we discuss special cases.

1 Introduction and preliminaries

Fractional calculus is a very rapidly growing subject of mathematics which deals with the study of fractional order derivatives and integrals. Fractional calculus is an efficient tool to study many complex real world systems [1]. It is demonstrated that the fractional order representation of complex processes appearing in various fields of science, engineering and finance, provides a more realistic approach with memory effects to study these problems (see e.g. [2–13]). Among the research work developing the theory of fractional calculus and presenting some applications, we point out some literature. Kumar et al. [14] analyzed the fractional model of a modified Kawahara equation by using a newly introduced Caputo–Fabrizio fractional derivative. One also [15] studied a heat transfer problem and presented a new non-integer model for convective straight fins with temperature-dependent thermal conductivity associated with Caputo–Fabrizio fractional derivative. Recently, one [16] presented a new fractional extension of regularized long wave equation by using an Atangana–Baleano fractional operator. In [17] one introduced a new numerical scheme for a fractional Fitzhugh–Nagumo equation arising in the transmission of new impulses. In [18] one constituted a modified numerical scheme to study fractional model of Lienard’s equations. Hajipour et al. [19] formulated a new scheme for a class of fractional chaotic systems. Baleanu et al. [20] proposed a new formulation of the fractional control problems involving a Mittag-Leffler non-singular kernel. In another work, Baleanu et al. [21] studied the motion of a bead sliding on a wire in a fractional analysis. Jajarmi et al. [22] analyzed a hyperchaotic financial system and its chaos control and synchronization by using fractional calculus.

For mathematical modeling of many complex problems appearing in various fields of science and engineering such as fluid dynamics, plasma physics, astrophysics, image processing, stochastic dynamical system, controlled thermonuclear fusion, nonlinear control theory, nonlinear biological systems, quantum physics and heat transfer problems, the fractional calculus operators involving various special functions have been used successfully. There is a rich literature available revealing the notable development in fractional order derivatives and integrals (see [1, 10, 11, 23–28]). Recently, Caputo and Fabrizio [29] introduced a new fractional derivative which is more suitable than the classical Caputo fractional derivative for many engineering and thermodynamical processes. Atangana [30] used a new fractional derivative to study the nature of Fisher’s reaction diffusion equation. Riemann and Caputo fractional derivative operators both have a singular kernel which cannot exactly represent the complete memory effect of the system. To overcome these limitations of the old derivatives, very recently Atangana and Baleanu [31] presented a new non-integer order derivative having a non-local, non-singular and Mittag-Leffler type kernel.

In recent years, many researchers have extensively studied the properties, applications and extensions of various fractional integral and differential operators involving the various special functions (for details, see [25, 32–42], etc.).

The image formulas for special functions of one or more variables are very useful in the evaluation and solution of differential and integral equations. Motivated by the above discussion, we developed new fractional calculus formulas involving extended generalized Mathieu series.

For our present study, we recall the generalized hypergeometric fractional integrals, introduced by Marichev [43], including the Saigo operators [37–39], and which were later on extended by Saigo and Maeda [40].

The generalized fractional calculus operators (the Marchichev–Saigo–Maeda operators) involving the Appell function or the Horn \(F_{3}(\cdot)\) function in the kernel are defined thus.

Definition 1

Let \(\sigma, \sigma', \nu, \nu',\eta\in\mathbb{C}\) and \(x>0\), then, for \(\Re(\eta)>0\),

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \sigma', \nu, \nu ',\eta}_{0,x}f \bigr) (x) \\ &\quad =\frac{x^{-\sigma}}{\Gamma(\eta)} \int ^{x}_{0}(x-t)^{\eta-1}t^{-\sigma'}F_{3} \biggl(\sigma, \sigma', \nu, \nu ';\eta; 1- \frac{t}{x}, 1-\frac{x}{t} \biggr)f(t)\,dt \end{aligned} $$
(1.1)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \sigma', \nu, \nu ',\eta}_{x,\infty}f \bigr) (x) \\ &\quad =\frac{x^{-\sigma'}}{\Gamma(\eta)} \int ^{\infty}_{x}(t-x)^{\eta-1}t^{-\sigma}F_{3} \biggl(\sigma, \sigma', \nu, \nu ';\eta; 1- \frac{x}{t}, 1-\frac{t}{x} \biggr)f(t)\,dt, \end{aligned} $$
(1.2)

where the function \(f(t)\) is so constrained that the integrals in (1.1) and (1.2) exist.

In (1.1) and (1.2), \(F_{3}(\cdot)\) denotes Appell’s hypergeometric function [44] in two variables defined as

$$ \begin{aligned}[b]& F_{3} \bigl(\sigma, \sigma', \nu, \nu';\eta ; x, y \bigr) \\ &\quad =\sum_{m,n=0}^{\infty}\frac{(\sigma)_{m} (\sigma')_{n}(\nu)_{m}(\nu ')_{n}}{(\eta)_{m+n}} \frac{x^{m}}{m!}\frac{x^{n}}{n!} \bigl(\max\bigl\{ |x|,|y|\bigr\} < 1 \bigr). \end{aligned} $$
(1.3)

The above fractional integral operators in Eqs. (1.1) and (1.2) can be written as follows:

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \sigma', \nu, \nu ',\eta}_{0,x}f \bigr) (x)= \biggl(\frac{d}{dx} \biggr)^{k} \bigl(I^{\sigma, \sigma', \nu+k, \nu', \eta+k}_{0,x}f \bigr) (x) \\ &\quad \bigl(\Re(\eta)\leq0; k= \bigl[-\Re(\eta)+1 \bigr] \bigr) \end{aligned} $$
(1.4)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \sigma', \nu, \nu ',\eta}_{x,\infty}f \bigr) (x)= \biggl(-\frac{d}{dx} \biggr)^{k} \bigl(I^{\sigma, \sigma', \nu, \nu'+k,\eta+k}_{x,\infty}f \bigr) (x) \\ & \quad\bigl(\Re (\eta)\leq0; k= \bigl[-\Re(\eta)+1 \bigr] \bigr). \end{aligned} $$
(1.5)

Remark 1

The Appell function defined in Eq. (1.3) reduces to the Gauss hypergeometric function \({}_{2}F_{1}\) as given in following relations:

$$ \begin{aligned}[b]& F_{3}(\sigma, \eta-\sigma, \nu, \eta - \nu; \eta; x, y)={}_{2}F_{1}(\sigma, \nu;\eta; x+y-xy); \end{aligned} $$
(1.6)

also we have

$$ \begin{aligned}[b]& F_{3} \bigl(\sigma, 0, \nu, \nu', \eta; x, y \bigr)={}_{2}F_{1}(\sigma, \nu; \eta; x) \end{aligned} $$
(1.7)

and

$$ \begin{aligned}[b]& F_{3} \bigl(0, \sigma', \nu, \nu', \eta; x, y \bigr)={}_{2}F_{1} \bigl( \sigma', \nu';\eta; y \bigr). \end{aligned} $$
(1.8)

The corresponding Saigo–Maeda fractional differential operators are given as follows.

Definition 2

Let \(\sigma, \sigma',\nu, \nu',\eta\in\mathbb{C}\) and \(x>0\), then

$$ \begin{aligned}[b]\bigl(D^{\sigma, \sigma', \nu, \nu ', \eta}_{0,x}f \bigr) (x)& = \bigl(I^{-\sigma', -\sigma, -\nu', -\nu, -\eta }_{0,x}f \bigr) (x) \\ & = \biggl(\frac{d}{dx} \biggr)^{k} \bigl(I^{-\sigma', -\sigma, -\nu'+k, -\nu, -\eta+k}_{0,x}f \bigr) (x) \quad\bigl(\Re(\eta)>0; k= \bigl[\Re(\eta) \bigr]+1 \bigr) \\ & = \frac{1}{\Gamma(k-\eta)} \biggl(\frac{d}{dx} \biggr)^{k}(x)^{\sigma'} \int^{x}_{0}(x-t)^{k-\eta-1}t^{\sigma } \\ &\quad{} \times F_{3} \biggl(-\sigma', -\sigma, k- \nu', -\nu;k-\eta; 1-\frac {t}{x}, 1-\frac{x}{t} \biggr)f(t)\,dt \end{aligned} $$
(1.9)

and

$$ \begin{aligned}[b] \bigl(D^{\sigma, \sigma', \nu, \nu ', \eta}_{x, \infty}f \bigr) (x)&= \bigl(I^{-\sigma', -\sigma, -\nu', -\nu , -\eta}_{x, \infty}f \bigr) (x) \\ & = \biggl(-\frac{d}{dx} \biggr)^{k} \bigl(I^{-\sigma', -\sigma, -\nu', -\nu+k, -\eta+k}_{x, \infty}f \bigr) (x) \quad\bigl(\Re(\eta)>0; k= \bigl[\Re(\eta) \bigr]+1 \bigr) \\ & = \frac{1}{\Gamma(k-\eta)} \biggl(-\frac{d}{dx} \biggr)^{k}(x)^{\sigma} \int^{\infty}_{x}(t-x)^{k-\eta -1}t^{\sigma'} \\ & \quad{}\times F_{3} \biggl(-\sigma', -\sigma, - \nu', k-\nu;k-\eta ; 1-\frac{x}{t}, 1-\frac{t}{x} \biggr)f(t)\,dt. \end{aligned} $$
(1.10)

In view of the above reduction formula as given in Eq. (1.7), the general fractional calculus operators reduce to the Saigo operators [37] defined as follows.

Definition 3

For \(x>0\), \(\sigma, \nu, \eta\in\mathbb{C}\) and \(\Re(\sigma)>0\)

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \nu, \eta }_{0,x}f \bigr) (x)= \frac{x^{-\sigma-\nu}}{\Gamma(\sigma)} \int ^{x}_{0}(x-t)^{\sigma-1}{}_{2}F_{1} \biggl(\sigma+\nu,-\eta; \sigma;1-\frac {t}{x} \biggr)f(t)\,dt \end{aligned} $$
(1.11)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \nu, \eta }_{x,\infty}f \bigr) (x)= \frac{1}{\Gamma(\sigma)} \int^{\infty}_{x}(t-x)^{\sigma-1}t^{-\sigma-\nu}{}_{2}F_{1} \biggl(\sigma+\nu,-\eta ; \sigma;1-\frac{x}{t} \biggr)f(t)\,dt, \end{aligned} $$
(1.12)

where \({}_{2}F_{1}(\cdot)\), a special case of the generalized hypergeomteric function, is the Gauss hypergeometric function and the function \(f(t)\) is so constrained that the integrals in Eqs. (1.11) and (1.12) converge.

Remark 2

The Saigo fractional integral operators, given in Eqs. (1.11) and (1.12) can also be written as:

For \(x>0\), \(\sigma, \nu, \eta\in\mathbb{C}\)

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \nu, \eta }_{0,x}f \bigr) (x)= \biggl(\frac{d}{dx} \biggr)^{k} \bigl(I^{\sigma+k, \nu-k, \eta-k}_{0,x}f \bigr) (x) \\ &\quad \bigl(\Re(\sigma)\leq0; k= \bigl[\Re(-\sigma) \bigr]+1 \bigr) \end{aligned} $$
(1.13)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \nu, \eta }_{x,\infty}f \bigr) (x)= \biggl(-\frac{d}{dx} \biggr)^{k} \bigl(I^{\sigma-k, \nu-k, \eta}_{x,\infty}f \bigr) (x) \\ &\quad \bigl(\Re(\sigma)\leq0; k= \bigl[\Re(-\sigma ) \bigr]+1 \bigr). \end{aligned} $$
(1.14)

And the corresponding Saigo fractional differential operators are defined as:

Definition 4

Let \(\sigma, \nu,\eta\in\mathbb{C}\) and \(x>0\), then

$$ \begin{aligned}[b] \bigl(D^{\sigma, \nu, \eta }_{0,x}f \bigr) (x)&= \bigl(I^{-\sigma, -\nu, \sigma+\eta}_{0,x}f \bigr) (x) \\ & = \biggl(\frac{d}{dx} \biggr)^{k} \bigl(I^{-\sigma+k, -\nu-k, \sigma+\eta -k}_{0,x}f \bigr) (x) \quad \bigl(\Re(\sigma)>0; k= \bigl[\Re(\sigma) \bigr]+1 \bigr) \end{aligned} $$
(1.15)

and

$$ \begin{aligned}[b] \bigl(D^{\sigma, \nu, \eta}_{x, \infty}f \bigr) (x)&= \bigl(I^{-\sigma, -\nu, \sigma+\eta}_{x, \infty }f \bigr) (x) \\ & = \biggl(-\frac{d}{dx} \biggr)^{k} \bigl(I^{-\sigma+k, -\nu-k, \sigma+\eta }_{x, \infty}f \bigr) (x) \quad \bigl(\Re(\sigma)>0; k= \bigl[\Re(\sigma) \bigr]+1 \bigr), \end{aligned} $$
(1.16)

where \([x]\) denotes the greatest integer function.

If we take \(\nu=0\) in Eqs. (1.11), (1.12), (1.15) and (1.16) we get the so-called Erdélyi–Kober fractional integral and derivative operators defined as follows [45, 46].

Definition 5

For \(x>0\), \(\sigma, \eta\in\mathbb{C}\) with \(\Re (\sigma)> 0\) [11, 26]

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\eta}_{0,x}f \bigr) (x)= \frac{x^{-\sigma-\eta}}{\Gamma(\sigma)} \int^{x}_{0}(x-t)^{\sigma -1}t^{\eta}f(t) \,dt \end{aligned} $$
(1.17)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \eta}_{x,\infty }f \bigr) (x)= \frac{x^{\eta}}{\Gamma(\sigma)} \int^{\infty }_{x}(t-x)^{\sigma-1}t^{-\sigma-\eta}f(t) \,dt, \end{aligned} $$
(1.18)

provided that the integrals in (1.17) and (1.18) converge.

The corresponding derivative operators are defined as follows.

Definition 6

For \(x>0\), \(\sigma, \eta\in\mathbb{C}\) with \(\Re (\sigma)> 0\) (see [11, 26])

$$ \begin{aligned}[b] \bigl(D^{\sigma, \eta }_{0,x}f \bigr) (x)&=x^{-\eta} \biggl(\frac{d}{dx} \biggr)^{k} \frac{1}{\Gamma (k-\sigma)} \int^{x}_{0}t^{\sigma+\eta}(x-t)^{k-\sigma-1}f(t) \,dt \\ & = \biggl(\frac{d}{dx} \biggr)^{k} \bigl(I^{-\sigma+k, -\sigma, \sigma+\eta -k}_{0,x}f \bigr) (x)\quad \bigl(k= \bigl[\Re(\sigma) \bigr]+1 \bigr) \end{aligned} $$
(1.19)

and

$$ \begin{aligned}[b] \bigl(D^{\sigma, \eta}_{x,\infty }f \bigr) (x)&=x^{\eta+\sigma} \biggl(\frac{d}{dx} \biggr)^{k} \frac{1}{\Gamma (k-\sigma)} \int^{\infty}_{x}t^{-\eta}(t-x)^{k-\sigma-1}f(t) \,dt \\ & =(-1)^{k} \biggl(\frac{d}{dx} \biggr)^{k} \bigl(I^{-\sigma+k, -\sigma, \sigma +\eta}_{x,\infty}f \bigr) (x)\quad \bigl(k= \bigl[\Re(\sigma) \bigr]+1 \bigr). \end{aligned} $$
(1.20)

When \(\nu=-\sigma\), the operators in Eqs. (1.11), (1.12), (1.15) and (1.16) give the Riemann–Liouville and the Weyl fractional integral operators (see [45, 47]) are defined as follows.

Definition 7

For \(x>0\), \(\sigma\in\mathbb{C}\) with \(\Re(\sigma )> 0\)

$$ \begin{aligned}[b]& \bigl(I^{\sigma}_{0,x}f \bigr) (x)= \frac{1}{\Gamma(\sigma)} \int^{x}_{0}(x-t)^{\sigma-1}f(t)\,dt \end{aligned} $$
(1.21)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma}_{x,\infty}f \bigr) (x)= \frac{1}{\Gamma(\sigma)} \int^{\infty}_{x}(t-x)^{\sigma-1}f(t)\,dt, \end{aligned} $$
(1.22)

provided both integrals converge.

The corresponding derivative operators are defined as follows.

Definition 8

For \(x>0\), \(\sigma\in\mathbb{C}\) with \(\Re(\sigma )> 0\)

$$ \begin{aligned}[b] \bigl(D^{\sigma}_{0,x}f \bigr) (x)&= \biggl(\frac{d}{dx} \biggr)^{k}\frac{1}{\Gamma(k-\sigma)} \int ^{x}_{0}(x-t)^{k-\sigma-1}f(t)\,dt \\ & = \biggl(\frac{d}{dx} \biggr)^{k} \bigl(I^{k-\sigma}_{0,x}f \bigr) (x) \quad\bigl(k= \bigl[\Re(\sigma) \bigr]+1 \bigr) \end{aligned} $$
(1.23)

and

$$ \begin{aligned}[b] \bigl(D^{\sigma}_{x,\infty}f \bigr) (x)&=(-1)^{k} \biggl(\frac{d}{dx} \biggr)^{k} \frac{1}{\Gamma(k-\sigma)} \int ^{\infty}_{x}(t-x)^{k-\sigma-1}f(t)\,dt \\ & =(-1)^{k} \biggl(\frac{d}{dx} \biggr)^{k} \bigl(I^{k-\sigma}_{x,\infty}f \bigr) (x) \quad\bigl(k= \bigl[\Re(\sigma) \bigr]+1 \bigr). \end{aligned} $$
(1.24)

For details of such operators along with their properties and applications one may refer to [11, 26, 45, 48, 49].

Power function formulas of the above discussed fractional operators are required for our present study as given in the following lemmas [37, 40, 50].

Lemma 1

Let σ, \(\sigma'\), ν, \(\nu'\), η and \(\rho\in\mathbb{C}\), \(x>0\) be such that \(\Re(\eta)>0\); then the following formulas hold true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \sigma', \nu, \nu', \eta}_{0,x}t^{\rho-1} \bigr) (x) \\ & \quad=\frac{\Gamma(\rho)\Gamma(\rho +\eta-\sigma-\sigma'-\nu)\Gamma(\rho+\nu'-\sigma')}{\Gamma(\rho+\nu ')\Gamma(\rho+\eta-\sigma-\sigma')\Gamma(\rho+\eta-\sigma'-\nu)}x^{\rho +\eta-\sigma-\sigma'-1} \\ &\qquad \bigl(\Re(\rho)>\max \bigl\{ 0,\Re \bigl(\sigma+\sigma'+\nu -\eta \bigr),\Re \bigl(\sigma'-\nu' \bigr) \bigr\} \bigr) \end{aligned} $$
(1.25)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \sigma', \nu, \nu', \eta}_{x,\infty}t^{\rho-1} \bigr) (x) \\ &\quad =\frac{\Gamma(1-\rho-\nu )\Gamma(1-\rho-\eta+\sigma+\sigma')\Gamma(1-\rho-\eta+\sigma+\nu ')}{\Gamma(1-\rho)\Gamma(1-\rho-\eta+\sigma+\sigma'+\nu')\Gamma(1-\rho +\sigma-\nu)}x^{\rho+\eta-\sigma-\sigma'-1} \\ & \qquad\bigl(\Re(\rho)< 1+\min \bigl\{ \Re (-\nu),\Re \bigl(\sigma+ \sigma'- \eta \bigr),\Re \bigl(\sigma+\nu'-\eta \bigr) \bigr\} \bigr). \end{aligned} $$
(1.26)

Lemma 2

Let \(\sigma, \sigma', \nu, \nu', \eta\) and \(\rho\in\mathbb{C}, x>0\) be such that \(\Re(\eta)>0\), then the following formulas hold true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma, \sigma', \nu, \nu', \eta}_{0,x}t^{\rho-1} \bigr) (x) \\ &\quad =\frac{\Gamma(\rho)\Gamma(\rho -\eta+\sigma+\sigma'+\nu')\Gamma(\rho-\nu+\sigma)}{\Gamma(\rho-\nu )\Gamma(\rho-\eta+\sigma+\sigma')\Gamma(\rho-\eta+\sigma+\nu')}x^{\rho -\eta+\sigma+\sigma'-1} \\ &\qquad \bigl(\Re(\rho)>\max \bigl\{ 0,\Re \bigl(\eta-\sigma-\sigma '- \nu' \bigr),\Re(\nu-\sigma) \bigr\} \bigr) \end{aligned} $$
(1.27)

and

$$ \begin{aligned}[b]& \bigl(D^{\sigma, \sigma', \nu, \nu', \eta}_{x,\infty}t^{\rho-1} \bigr) (x) \\ & \quad=\frac{\Gamma(1-\rho+\nu ')\Gamma(1-\rho+\eta-\sigma-\sigma')\Gamma(1-\rho+\eta-\sigma'-\nu )}{\Gamma(1-\rho)\Gamma(1-\rho+\eta-\sigma-\sigma'-\nu)\Gamma(1-\rho -\sigma'+\nu')}x^{\rho-\eta+\sigma+\sigma'-1} \\ & \qquad\bigl(\Re(\rho)< 1+\min \bigl\{ \Re \bigl(\nu' \bigr),\Re \bigl( \eta- \sigma-\sigma' \bigr),\Re \bigl(\eta-\sigma'-\nu \bigr) \bigr\} \bigr). \end{aligned} $$
(1.28)

Lemma 3

Let \(\sigma, \nu, \eta, \rho\in\mathbb{C}\), \(x>0\) be such that \(\Re(\sigma)>0\), then the following formulas hold true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\nu,\eta }_{0,x}t^{\rho-1} \bigr) (x)=\frac{\Gamma(\rho)\Gamma(\rho+\eta-\nu )}{\Gamma(\rho-\nu)\Gamma(\rho+\eta+\sigma)}x^{\rho-\nu-1} \\ & \quad\bigl(\Re(\rho )>\max \bigl\{ 0,\Re(\nu-\eta) \bigr\} \bigr) \end{aligned} $$
(1.29)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\nu,\eta}_{x, \infty}t^{\rho-1} \bigr) (x)=\frac{\Gamma(1-\rho+\nu)\Gamma(1-\rho+\eta )}{\Gamma(1-\rho)\Gamma(1-\rho+\eta+\sigma+\nu)}x^{\rho-\nu-1} \\ & \quad\bigl(\Re (\rho)< 1+\min \bigl\{ \Re(\nu),\Re(\eta) \bigr\} \bigr). \end{aligned} $$
(1.30)

Lemma 4

Let \(\sigma, \nu, \eta, \rho\in\mathbb{C}\), \(x>0\) be such that \(\Re(\sigma)>0\), then the following formulas hold true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma, \nu, \eta }_{0,x}t^{\rho-1} \bigr) (x)=\frac{\Gamma(\rho)\Gamma(\rho+\eta+\sigma +\nu)}{\Gamma(\rho+\eta)\Gamma(\rho+\nu)}x^{\rho+\nu-1} \\ & \quad\bigl(\Re(\rho )>-\min \bigl\{ 0,\Re(\sigma+\nu+\eta) \bigr\} \bigr) \end{aligned} $$
(1.31)

and

$$ \begin{aligned}[b]& \bigl(D^{\sigma, \nu, \eta }_{x,\infty}t^{\rho-1} \bigr) (x)=\frac{\Gamma(1-\rho-\nu)\Gamma(1-\rho +\sigma+\eta)}{\Gamma(1-\rho+\eta-\nu)\Gamma(1-\rho)}x^{\rho+\nu-1} \\ &\quad \bigl(\Re(\rho)< 1+\min \bigl\{ \Re(-\nu-n),\Re(\eta+\sigma) \bigr\} \textit{ and } n= \bigl[\Re (\sigma) \bigr]+1 \bigr). \end{aligned} $$
(1.32)

Lemma 5

Let \(\sigma, \eta, \rho\in\mathbb{C}\), \(x>0\) be such that \(\Re(\sigma)>0\), then the following formulas hold true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\eta }_{0,x}t^{\rho-1} \bigr) (x)=\frac{\Gamma(\rho+\eta)}{\Gamma(\rho+\eta +\sigma)}x^{\rho-1} \\ &\quad \bigl(\Re(\rho)>-\Re(\eta) \bigr) \end{aligned} $$
(1.33)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\eta}_{x, \infty }t^{\rho-1} \bigr) (x)=\frac{\Gamma(1-\rho+\eta)}{\Gamma(1-\rho+\eta +\sigma)}x^{\rho-1} \\ &\quad \bigl(\Re(\rho)< 1+\Re(\eta) \bigr). \end{aligned} $$
(1.34)

Lemma 6

Let \(\sigma, \eta, \rho\in\mathbb{C}\), \(x>0\) be such that \(\Re(\sigma)>0\), then the following formulas hold true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma, \eta }_{0,x}t^{\rho-1} \bigr) (x)=\frac{\Gamma(\rho+\eta+\sigma)}{\Gamma(\rho +\eta)}x^{\rho-1} \\ & \quad\bigl(\Re(\rho)>-\Re(\eta+\sigma) \bigr) \end{aligned} $$
(1.35)

and

$$ \begin{aligned}[b]& \bigl(D^{\sigma, \eta}_{x,\infty }t^{\rho-1} \bigr) (x)=\frac{\Gamma(1-\rho+\sigma+\eta)}{\Gamma(1-\rho +\eta)}x^{\rho-1} \\ & \quad\bigl(\Re(\rho)< 1+\Re(\eta+\sigma)-n \textit{ and } n= \bigl[\Re (\sigma) \bigr]+1 \bigr). \end{aligned} $$
(1.36)

Lemma 7

Let \(\sigma, \rho\in\mathbb{C}\), \(x>0\) be such that \(\Re(\sigma)>0\), then the following formulas hold true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma}_{0,x}t^{\rho -1} \bigr) (x)=\frac{\Gamma(\rho)}{\Gamma(\rho+\sigma)}x^{\rho+\sigma -1} \\ &\quad \bigl(\Re(\rho)>0 \bigr) \end{aligned} $$
(1.37)

and

$$ \begin{aligned}[b]& \bigl(I^{\sigma}_{x, \infty }t^{\rho-1} \bigr) (x)=\frac{\Gamma(1-\rho-\sigma)}{\Gamma(1-\rho )}x^{\rho+\sigma-1} \\ &\quad \bigl(0< \Re(\sigma)< 1-\Re(\rho) \bigr). \end{aligned} $$
(1.38)

Lemma 8

Let \(\sigma, \rho\in\mathbb{C}\), \(x>0\) be such that \(\Re(\sigma)>0\), then the following formulas hold true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma}_{0,x}t^{\rho -1} \bigr) (x)=\frac{\Gamma(\rho)}{\Gamma(\rho-\sigma)}x^{\rho-\sigma -1} \\ & \quad\bigl(\Re(\rho)>\Re(\sigma)>0 \bigr) \end{aligned} $$
(1.39)

and

$$ \begin{aligned}[b]& \bigl(D^{\sigma}_{x,\infty }t^{\rho-1} \bigr) (x)=\frac{\Gamma(1-\rho+\sigma)}{\Gamma(1-\rho )}x^{\rho-\sigma-1} \\ & \quad\bigl(\Re(\rho)< 1+\Re(\sigma)-n \textit{ and } n= \bigl[\Re (\sigma) \bigr]+1 \bigr). \end{aligned} $$
(1.40)

2 Mathieu series and its generalizations

In 1890 Mathieu introduced and investigated the infinite series of the form

$$ \begin{aligned}[b]& S(r)=\sum_{n=1}^{\infty} \frac {2n}{(n^{2}+r^{2})^{2}} \quad\bigl(r\in\mathbb{R}^{+} \bigr), \end{aligned} $$
(2.1)

in his work [51] on elasticity of solid bodies; it is known as the Mathieu series.

Integral representations of \(S(r)\) are given by (see [52, 53])

$$ \begin{aligned}[b]& S(r)=\frac{1}{r} \int_{0}^{\infty }\frac{x\sin(rx)}{e^{x}-1}\,dx \quad\bigl(r\in \mathbb{R}^{+} \bigr). \end{aligned} $$
(2.2)

A generalized form of the Mathieu series with a fractional power is defined as

$$ \begin{aligned}[b]& S_{\mu}(r)=\sum _{n=1}^{\infty} \frac {2n}{(n^{2}+r^{2})^{\mu}}\quad \bigl(r\in \mathbb{R}^{+}; \mu>1 \bigr), \end{aligned} $$
(2.3)

and it has been extensively studied by Cerone and Lenard [54], Diananda [55], Tomovski and Trencevski [56] and Pogány et al. [53].

Recently, Tomovski and Pogány [57] studied the several integral representations of the generalized fractional order Mathieu-type power series (see also [58])

$$ \begin{aligned}[b]& S_{\mu}(r;z)=\sum _{n \geq1} \frac {2n z^{n}}{(n^{2}+r^{2})^{\mu+1}}\quad \bigl(\mu>0, r\in \mathbb{R}^{+}, |z|< 1 \bigr) \end{aligned} $$
(2.4)

and

$$ \begin{aligned}[b]& S_{\mu}(r;1)=S_{\mu}(r). \end{aligned} $$
(2.5)

Srivastava and Tomovski in [59] defined a family of more generalized Mathieu series as

$$ \begin{aligned}[b]& S_{\mu}^{(\alpha, \beta )}(r;a)=S_{\mu}^{(\alpha, \beta)} \bigl(r;\{a_{n}\}_{n=1}^{\infty} \bigr)=\sum _{n=1}^{\infty}\frac{2a_{n}^{\beta}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ &\quad \bigl(r,\alpha,\beta,\mu\in\mathbb{R}^{+} \bigr), \end{aligned} $$
(2.6)

where the positive sequence

$$ \begin{aligned}[b]& a=\{a_{n}\}_{n=1}^{\infty}= \{a_{1}, a_{2}, a_{3},\ldots\}\quad \Bigl(\lim _{n\to\infty} a_{n}=\infty \Bigr)\end{aligned} $$
(2.7)

is so chosen that the infinite series

$$\sum_{n=1}^{\infty}\frac{1}{a_{n}^{\mu\alpha-\beta}} $$

is convergent.

Also from Eqs. (2.1), (2.3) and (2.6), we see that

$$ \begin{gathered} S_{2}(r)=S(r), \\ S_{\mu}(r)=S_{\mu}^{(2, 1)} \bigl(r;\{n \} _{n=1}^{\infty} \bigr), \end{gathered} $$

and furthermore the special cases

$$ \begin{aligned}[b] S_{\mu}^{(2, 1)} \bigl(r;\{n \}_{n=1}^{\infty } \bigr)=S_{\mu}(r),\qquad S_{\mu}^{(2, 1)} \bigl(r; \bigl\{ n^{\gamma} \bigr\} _{n=1}^{\infty} \bigr) \quad\text{and}\quad S_{\mu}^{(\alpha, \alpha/2)} \bigl(r;\{n\} _{n=1}^{\infty} \bigr),\end{aligned} $$

of the Mathieu series were investigated by Cerone and Lenard [54], Diananda [55] and Tomovski [60]. For more details one may refer to [53, 56, 57, 59, 61–64].

Recently, Tomovski and Mehrez [65], considered a power series defined as

$$ \begin{aligned}[b]& S_{\mu,\lambda}^{(\alpha, \beta )}(r,a;z)=S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,\{a_{n}\}_{n=1}^{\infty };z \bigr)=\sum _{n=1}^{\infty}\frac{2a_{n}^{\beta}(\lambda )_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}}\frac{z^{n}}{n!} \\ &\quad \bigl(r,\alpha,\beta,\mu \in\mathbb{R}^{+}; |z|\leq1 \bigr) \end{aligned} $$
(2.8)

and

$$\begin{aligned}& S_{\mu,\lambda}^{(\alpha, \beta )}(r,a;1)=S_{\mu,\lambda}^{(\alpha, \beta)} (r,a ), \end{aligned}$$
(2.9)
$$\begin{aligned}& S_{\mu,1}^{(\alpha, \beta )}(r,a;1)=S_{\mu}^{(\alpha, \beta)} (r,a ). \end{aligned}$$
(2.10)

The concept of the Hadamard product (or the convolution) of two analytic functions is very useful in our present study. It can help us to decompose a newly emerging function into two known functions. Let

$$ \begin{aligned} f(z):=\sum_{n=0}^{\infty}a_{n}z^{n} \quad\bigl(|z|< R_{f}\bigr) \end{aligned} $$
(2.11)

and

$$ \begin{aligned} g(z):=\sum_{n=0}^{\infty}b_{n}z^{n} \quad\bigl(|z|< R_{g}\bigr) \end{aligned} $$
(2.12)

be two power series whose radii of convergence are denoted by \(R_{f}\) and \(R_{g}\), respectively. Then their Hadamard product is the power series defined by

$$ \begin{aligned} (f*g) (z):=\sum_{n=0}^{\infty}a_{n} b_{n}z^{n}=(g*f) (z) \quad\bigl(|z|< R\bigr), \end{aligned} $$
(2.13)

where

$$ \begin{aligned}[b]& R=\lim_{n \to\infty} \biggl\vert \frac {a_{n} b_{n}}{a_{n+1} b_{n+1}} \biggr\vert = \biggl(\lim_{n \to\infty} \biggl\vert \frac{a_{n}}{a_{n+1}} \biggr\vert \biggr). \biggl(\lim_{n \to\infty} \biggl\vert \frac{b_{n}}{b_{n+1}} \biggr\vert \biggr)=R_{f}.R_{g}, \end{aligned} $$
(2.14)

therefore, in general, we have \(R\geq R_{f} . R_{g}\) [66, 67]. For various investigations involving the Hadamard product (or the convolution), the interested reader may refer to recent papers on the subject (see, for example, [68, 69] and the references cited therein).

Also we require the Fox–Wright function \({}_{p}\Psi_{q}(z)\) (\(p,q\in \mathbb{N}_{0}\)) with p numerator and q denominator parameters defined for \(a_{1},\ldots,a_{p} \in\mathbb{C}\) and \(b_{1},\ldots,b_{q} \in \mathbb{C} \setminus\mathbb{Z}_{0}^{-}\) by (for details see [11, 26, 44, 45])

$$ \begin{aligned}[b]&{}_{p} \Psi_{q}\left [ \textstyle\begin{array}{c}(a_{1},\alpha_{1}),\ldots, (a_{p},\alpha_{p});\\ (b_{1},\beta_{1}),\ldots, (b_{q},\beta_{q}); \end{array}\displaystyle z \right ]=\sum^{\infty}_{n=0} \frac{\Gamma(a_{1}+\alpha_{1} n)\cdots\Gamma (a_{p}+\alpha_{p} n)}{\Gamma(b_{1}+\beta_{1} n)\cdots\Gamma(b_{q}+\beta_{q} n)}\frac {z^{n}}{n!}, \end{aligned} $$
(2.15)

where the coefficients \(\alpha_{1},\ldots,\alpha_{p}, \beta_{1},\ldots,\beta _{q}\in\mathbb{R}^{+}\) are such that

$$ \begin{aligned}[b]& 1+\sum^{q}_{j=1} \beta_{j}-\sum^{p}_{i=1} \alpha_{i}\geq0.\end{aligned} $$
(2.16)

For \(\alpha_{i}=\beta_{j}=1\) (\(i=1,\ldots,p\); \(j=1,\ldots,q\)), Eq. (2.15) reduces immediately to the generalized hypergeometric function \({}_{p}F_{q}\) (\(p,q\in\mathbb{N}_{0}\)) (see [44]):

$$ \begin{aligned}[b]&{}_{p} F_{q}\left [ \textstyle\begin{array}{c}a_{1},\ldots,a_{p};\\ b_{1},\ldots,b_{q}; \end{array}\displaystyle z \right ]=\frac{\Gamma(b_{1})\cdots\Gamma(b_{q})}{\Gamma(a_{1})\cdots\Gamma (a_{q})}{}_{p} \Psi_{q}\left [ \textstyle\begin{array}{c}(a_{1},1),\ldots, (a_{p},1);\\ (b_{1},1),\ldots, (b_{q},1); \end{array}\displaystyle z \right ]. \end{aligned} $$
(2.17)

3 Fractional integration of extended generalized Mathieu series

In this section, we present certain fractional integral formulas involving the extended generalized Mathieu series \(S_{\mu,\lambda }^{(\alpha, \beta)}(r,a;z)\) by using fractional integral operators.

Theorem 1

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\sigma+\sigma'+\nu-\eta ),\Re(\sigma'-\nu')\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\sigma',\nu,\nu ',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x)\\ &\quad=x^{\rho+\eta-\sigma-\sigma'-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;x^{\xi} \bigr) \\ &\qquad{}*{}_{3}\Psi_{3} \left [ \textstyle\begin{array}{c}(\rho,\xi), (\rho+\eta-\sigma-\sigma'-\nu, \xi), (\rho +\nu'-\sigma', \xi); \\ (\rho+\nu', \xi), (\rho+\eta-\sigma-\sigma', \xi ), (\rho+\eta-\sigma'-\nu, \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(3.1)

Proof

Using the definition (2.8) and then interchanging the order of integration and summation, we get

$$ \begin{aligned}[b] \bigl(I^{\sigma,\sigma',\nu,\nu ',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x)={}&\sum_{n=1}^{\infty} \frac{2a_{n}^{\beta }(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}}\frac{1}{n!} \\ & \times \bigl(I^{\sigma,\sigma',\nu,\nu',\eta}_{0,x}t^{\rho+\xi n-1} \bigr) (x), \end{aligned} $$
(3.2)

applying the result (1.25), Eq. (3.2) reduces to

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\sigma',\nu,\nu ',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x)\\&\quad=\sum_{n=1}^{\infty} \frac{2a_{n}^{\beta }(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}}\frac{1}{n!} \\ & \qquad{}\times\frac {\Gamma(\rho+\xi n)\Gamma(\rho+\xi n+\eta-\sigma-\sigma'-\nu)\Gamma(\rho +\xi n+\nu'-\sigma')}{\Gamma(\rho+\xi n+\nu')\Gamma(\rho+\xi n+\eta -\sigma-\sigma')\Gamma(\rho+\xi n+\eta-\sigma'-\nu)} \\ &\qquad{} \times x^{\rho +\xi n+\eta-\sigma-\sigma'-1}, \end{aligned} $$
(3.3)

after a little simplification, Eq. (3.3) reduces to

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\sigma',\nu,\nu ',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x)\\ &\quad=x^{\rho+\eta-\sigma-\sigma'-1}\sum_{n=1}^{\infty} \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu }} \\ &\qquad{} \times\frac{\Gamma(\rho+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'-\nu +\xi n)\Gamma(\rho+\nu'-\sigma'+\xi n)}{\Gamma(\rho+\nu'+\xi n)\Gamma (\rho+\eta-\sigma-\sigma'+\xi n)\Gamma(\rho+\eta-\sigma'-\nu+\xi n)}\frac{x^{\xi n}}{n!}. \end{aligned} $$
(3.4)

By applying the Hadamard product (2.13) in Eq. (3.4), which, in view of (2.8) and (2.15), gives the required result (3.1). □

Theorem 2

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta, \mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(-\nu),\Re(\sigma+\sigma '-\eta),\Re(\sigma+\nu'-\eta)\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(I^{\sigma,\sigma',\nu,\nu ',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \biggl(r,a;\frac{1}{t^{\xi}} \biggr) \biggr\} \biggr) (x)\\&\quad=x^{\rho+\eta -\sigma-\sigma'-1} S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac {1}{x^{\xi}} \biggr) \\ & \qquad{}*{}_{3}\Psi_{3} \left [ \textstyle\begin{array}{c}(1-\rho-\nu,\xi), (1-\rho-\eta+\sigma+\sigma', \xi), (1-\rho-\eta+\sigma+\nu', \xi); \\ (1-\rho, \xi), (1-\rho-\eta+\sigma +\sigma'+\nu', \xi), (1-\rho+\sigma-\nu, \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(3.5)

Proof

The proof of Theorem 2 is similar to that of Theorem 1. □

3.1 Special cases

Here we present some special cases by choosing suitable values of the parameters σ, \(\sigma'\), ν, \(\nu'\) and η. If we put \(\sigma=\sigma+\nu\), \(\sigma'=\nu'=0\), \(\nu=-\eta\), \(\eta=\sigma\) in Theorems 1 and 2, we get certain interesting results concerning the Saigo fractional integral operators given by the following corollaries.

Corollary 1

Let \(x>0\), \(\sigma, \nu, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\nu-\eta)\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\nu,\eta }_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;t^{\xi } \bigr) \bigr\} \bigr) (x) \\ &\quad =x^{\rho-\nu-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;x^{\xi} \bigr)*{}_{2}\Psi_{2} \left [ \textstyle\begin{array}{c}(\rho, \xi), (\rho+\eta-\nu, \xi); \\ (\rho-\nu, \xi), (\rho+\eta+\sigma, \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(3.6)

Corollary 2

Let \(x>0\), \(\sigma, \nu, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(\nu),\Re(\eta)\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(I^{\sigma,\nu,\eta }_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{t^{\xi}} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho-\nu-1}S_{\mu ,\lambda}^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x^{\xi}} \biggr)*{}_{2}\Psi _{2} \left [ \textstyle\begin{array}{c}(1-\rho+\nu,\xi), (1-\rho+\eta, \xi); \\ (1-\rho, \xi ), (1-\rho+\sigma+\nu+\eta, \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(3.7)

Further, if we put \(\nu=0\) in (3.6) and (3.7) then these Saigo fractional integrals reduce to the following Erdélyi–Kober type fractional integral operators.

Corollary 3

Let \(x>0\), \(\sigma, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+\xi n)>-\Re(\eta)\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x) \\ &\quad =x^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;x^{\xi } \bigr)*{}_{1}\Psi_{1} \left [ \textstyle\begin{array}{c}(\rho+\eta, \xi); \\ (\rho+\sigma+\eta, \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(3.8)

Corollary 4

Let \(x>0\), \(\sigma, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho-\xi n)<1+\Re(\eta)\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(I^{\sigma,\eta}_{x,\infty } \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac {1}{t^{\xi}} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho-1}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x^{\xi}} \biggr)*{}_{1}\Psi_{1} \left [ \textstyle\begin{array}{c}(1-\rho+\eta, \xi); \\ (1-\rho+\sigma+\eta, \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(3.9)

Further, if we put \(\nu=-\sigma\) in (3.6) and (3.7), then these Saigo fractional integrals reduce to the Riemann–Liouville and the Weyl type fractional integral operators as given in the following results.

Corollary 5

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+\xi n)>0\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x) \\ &\quad =x^{\rho+\sigma-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;x^{\xi } \bigr)*{}_{1}\Psi_{1} \left [ \textstyle\begin{array}{c}(\rho, \xi); \\ (\rho+\sigma, \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(3.10)

Corollary 6

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(1-\Re(\rho-\xi n)>\Re(\sigma)>0\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(I^{\sigma}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{t^{\xi }} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho+\sigma-1}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x^{\xi}} \biggr)*{}_{1}\Psi_{1} \left [ \textstyle\begin{array}{c}(1-\rho-\sigma, \xi); \\ (1-\rho, \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(3.11)

If we put \(\xi=1\) in (3.1), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10) and (3.11) then we get the following results.

Corollary 7

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in \mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+n)>\max\{0,\Re(\sigma+\sigma'+\nu-\eta),\Re (\sigma'-\nu')\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\sigma',\nu,\nu ',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )}(r,a;t) \bigr\} \bigr) (x) \\ &\quad =x^{\rho+\eta-\sigma-\sigma'-1}\frac {\Gamma(\rho)\Gamma(\rho+\eta-\sigma-\sigma'-\nu)\Gamma(\rho+\nu'-\sigma ')}{\Gamma(\rho+\nu')\Gamma(\rho+\eta-\sigma-\sigma')\Gamma(\rho+\eta -\sigma'-\nu)}S_{\mu,\lambda}^{(\alpha, \beta )}(r,a;x) \\ &\qquad{}*{}_{3}F_{3} \left [ \textstyle\begin{array}{c}\rho, \rho+\eta-\sigma-\sigma'-\nu, \rho+\nu'-\sigma'; \\ \rho+\nu', \rho+\eta-\sigma-\sigma', \rho+\eta-\sigma'-\nu; \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(3.12)

Corollary 8

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in \mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-n)<1+\min\{\Re(-\nu),\Re(\sigma+\sigma'-\eta ),\Re(\sigma+\nu'-\eta)\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(I^{\sigma,\sigma',\nu,\nu ',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \biggl(r,a;\frac{1}{t} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho+\eta-\sigma -\sigma'-1}\frac{\Gamma(1-\rho-\nu)\Gamma(1-\rho-\eta+\sigma+\sigma ')\Gamma(1-\rho-\eta+\sigma+\nu')}{\Gamma(1-\rho)\Gamma(1-\rho-\eta +\sigma+\sigma'+\nu')\Gamma(1-\rho+\sigma-\nu)}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a;\frac{1}{x} \biggr) \\ &\qquad{}*{}_{3}F_{3} \left [ \textstyle\begin{array}{c}1-\rho-\nu, 1-\rho-\eta+\sigma+\sigma', 1-\rho-\eta +\sigma+\nu'; \\ 1-\rho, 1-\rho-\eta+\sigma+\sigma'+\nu', 1-\rho+\sigma -\nu; \end{array}\displaystyle \frac{1}{x} \right ]. \end{aligned} $$
(3.13)

Corollary 9

Let \(x>0\), \(\sigma, \nu, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+n)>\max\{0,\Re(\nu-\eta)\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma,\nu,\eta }_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)}(r,a;t) \bigr\} \bigr) (x)\\&\quad=x^{\rho-\nu-1}\frac{\Gamma(\rho)\Gamma(\rho+\eta-\nu)}{\Gamma (\rho-\nu)\Gamma(\rho+\eta+\sigma)} S_{\mu,\lambda}^{(\alpha, \beta)}(r,a;x)*{}_{2}F_{2} \left [ \textstyle\begin{array}{c}\rho, \rho+\eta-\nu; \\ \rho-\nu, \rho+\eta+\sigma; \end{array}\displaystyle x \right ]. \end{aligned} $$
(3.14)

Corollary 10

Let \(x>0\), \(\sigma, \nu, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho-n)<1+\min\{\Re(\nu),\Re(\eta)\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(I^{\sigma,\nu,\eta }_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{t} \biggr) \biggr\} \biggr) (x)\\&\quad=x^{\rho-\nu-1}\frac{\Gamma (1-\rho+\nu)\Gamma(1-\rho+\eta)}{\Gamma(1-\rho)\Gamma(1-\rho+\sigma+\nu +\eta)} S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac {1}{x} \biggr)\\ &\qquad{}*{}_{2}F_{2} \left [ \textstyle\begin{array}{c}1-\rho+\nu, 1-\rho+\eta; \\ 1-\rho, 1-\rho+\sigma+\nu +\eta; \end{array}\displaystyle \frac{1}{x} \right ]. \end{aligned} $$
(3.15)

Corollary 11

Let \(x>0\), \(\sigma, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+n)>-\Re(\eta)\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma, \eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)}(r,a;t) \bigr\} \bigr) (x) \\ & \quad=x^{\rho-1}\frac{\Gamma(\rho+\eta)}{\Gamma(\rho+\sigma+\eta)} S_{\mu ,\lambda}^{(\alpha, \beta)}(r,a;x)*{}_{1}F_{1} \left [ \textstyle\begin{array}{c}\rho+\eta; \\ \rho+\sigma+\eta; \end{array}\displaystyle x \right ]. \end{aligned} $$
(3.16)

Corollary 12

Let \(x>0\), \(\sigma, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho-n)<1+\Re(\eta)\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(I^{\sigma,\eta}_{x,\infty } \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac {1}{t} \biggr) \biggr\} \biggr) (x) \\ &\quad =x^{\rho-1}\frac{\Gamma(1-\rho+\eta )}{\Gamma(1-\rho+\sigma+\eta)}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x} \biggr)*{}_{1}F_{1} \left [ \textstyle\begin{array}{c}1-\rho+\eta; \\ 1-\rho+\sigma+\eta; \end{array}\displaystyle \frac{1}{x} \right ]. \end{aligned} $$
(3.17)

Corollary 13

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+n)>0\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \bigl(I^{\sigma}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)}(r,a;t) \bigr\} \bigr) (x) \\ &\quad =x^{\rho+\sigma-1}\frac{\Gamma(\rho)}{\Gamma(\rho+\sigma)}S_{\mu,\lambda }^{(\alpha, \beta)}(r,a;x)*{}_{1}F_{1} \left [ \textstyle\begin{array}{c}\rho; \\ \rho+\sigma; \end{array}\displaystyle x \right ]. \end{aligned} $$
(3.18)

Corollary 14

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(1-\Re(\rho-n)>\Re(\sigma)>0\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(I^{\sigma}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{t} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho+\sigma-1}\frac{\Gamma(1-\rho-\sigma )}{\Gamma(1-\rho)}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \frac {1}{x} \biggr)*{}_{1}F_{1} \left [ \textstyle\begin{array}{c}1-\rho-\sigma; \\ 1-\rho; \end{array}\displaystyle \frac{1}{x} \right ]. \end{aligned} $$
(3.19)

4 Fractional differentiation of extended generalized Mathieu series

In this section we present certain fractional differential formulas involving the extended generalized Mathieu series \(S_{\mu,\lambda }^{(\alpha, \beta)}(r,a;z)\) by using fractional differential operators.

Theorem 3

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\eta-\sigma-\sigma'-\nu '),\Re(\nu-\sigma)\}\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma,\sigma',\nu,\nu ',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x)\\ &\quad=x^{\rho-\eta+\sigma+\sigma'-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;x^{\xi} \bigr) \\ & \qquad *{}_{3}\Psi_{3} \left [ \textstyle\begin{array}{c} (\rho, \xi), (\rho-\eta+\sigma+\sigma'+\nu', \xi), (\rho-\nu+\sigma, \xi); \\ (\rho-\nu, \xi), (\rho-\eta+\sigma+\sigma', \xi), (\rho-\eta+\sigma+\nu', \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(4.1)

Proof

For convenience, we denote the left-hand side of the result (4.1) by \(\mathscr{D}\). Then by using (2.8) and then changing the order of differentiation and summation, we get

$$ \begin{aligned}[b]& \mathscr{D}=\sum_{n=1}^{\infty } \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}}\frac {1}{n!} \bigl(D^{\sigma,\sigma',\nu,\nu',\eta}_{0,x}t^{\rho+\xi n-1} \bigr) (x) .\end{aligned} $$
(4.2)

Applying the result (1.27), Eq. (4.2) reduces to

$$ \begin{aligned}[b]& \mathscr{D}=\sum_{n=1}^{\infty } \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}}\frac {1}{n!} \\ & \quad{}\times\frac{\Gamma(\rho+\xi n)\Gamma(\rho-\eta+\sigma+\sigma '+\nu'+\xi n)\Gamma(\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma (\rho-\eta+\sigma+\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu'+\xi n)} \\ &\quad{} \times x^{\rho+\xi n-\eta+\sigma+\sigma'-1}; \end{aligned} $$
(4.3)

after simplification, Eq. (4.3) reduces to

$$ \begin{aligned}[b]& \mathscr{D}=x^{\rho-\eta+\sigma +\sigma'-1}\sum _{n=1}^{\infty}\frac{2a_{n}^{\beta}(\lambda )_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ & \quad{}\times\frac{\Gamma(\rho+\xi n)\Gamma (\rho-\eta+\sigma+\sigma'+\nu'+\xi n)\Gamma(\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\xi n)\Gamma (\rho-\eta+\sigma+\nu'+\xi n)}\frac{x^{\xi n}}{n!},\end{aligned} $$
(4.4)

and interpreting the above equation, from the point of view of (2.8), (2.13) and (2.15), we have the required result. □

Theorem 4

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(\nu'),\Re(\eta-\sigma -\sigma'),\Re(\eta-\sigma'-\nu)\}\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \biggl(D^{\sigma,\sigma',\nu,\nu ',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \biggl(r,a;\frac{1}{t^{\xi}} \biggr) \biggr\} \biggr) (x)\\ &\quad=x^{\rho-\eta +\sigma+\sigma'-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac {1}{x^{\xi}} \biggr) \\ &\qquad{} *{}_{3}\Psi_{3} \left [ \textstyle\begin{array}{c} (1-\rho+\nu', \xi), (1-\rho+\eta-\sigma-\sigma', \xi ), (1-\rho+\eta-\sigma'-\nu, \xi); \\ (1-\rho, \xi), (1-\rho+\eta-\sigma -\sigma'-\nu, \xi), (1-\rho-\sigma'+\nu', \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(4.5)

Proof

The proof of Theorem 4 is similar to that of Theorem 3. □

4.1 Special cases

Here we present some special cases by choosing suitable values of the parameters σ, \(\sigma'\), ν, \(\nu'\) and η. If we put \(\sigma=\sigma+\nu\), \(\sigma'=\nu'=0\), \(\nu=-\eta\), \(\eta=\sigma\) in Theorems 3 and 4, we get certain interesting results concerning the Saigo fractional differential operator given in the following corollaries.

Corollary 15

Let \(x>0\), \(\sigma, \nu, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+\xi n)>-\min\{0,\Re(\sigma+\nu+\eta)\}\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma,\nu,\eta }_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;t^{\xi } \bigr) \bigr\} \bigr) (x) \\ &\quad =x^{\rho+\nu-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;x^{\xi} \bigr)*{}_{2}\Psi_{2} \left [ \textstyle\begin{array}{c}(\rho, \xi), (\rho+\eta+\sigma+\nu, \xi); \\ (\rho+\eta , \xi), (\rho+\nu, \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(4.6)

Corollary 16

Let \(x>0,\sigma, \nu, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}; |1/t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(-\nu-n^{*}),\Re(\eta +\sigma)\}\) where \(n^{*}=[\Re(\sigma)]+1\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \biggl(D^{\sigma,\nu,\eta }_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{t^{\xi}} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho+\nu-1}S_{\mu ,\lambda}^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x^{\xi}} \biggr)*{}_{2}\Psi _{2} \left [ \textstyle\begin{array}{c}(1-\rho-\nu, \xi), (1-\rho+\sigma+\eta, \xi); \\ (1-\rho, \xi), (1-\rho+\eta-\nu, \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(4.7)

Further, if we put \(\nu=0\) in (4.6) and (4.7) then these Saigo fractional differential formulas reduce to the following fractional differential formulas.

Corollary 17

Let \(x>0\), \(\sigma, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+\xi n)>-\Re(\eta+\sigma)\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma, \eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x) \\ & \quad=x^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;x^{\xi } \bigr)*{}_{1}\Psi_{1} \left [ \textstyle\begin{array}{c}(\rho+\eta+\sigma, \xi); \\ (\rho+\eta, \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(4.8)

Corollary 18

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho-\xi n)<1+\Re(\eta+\sigma)-n^{*}\) where \(n^{*}=[\Re(\sigma)]+1\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \biggl(D^{\sigma,\eta}_{x,\infty } \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac {1}{t^{\xi}} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho-1}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x^{\xi}} \biggr)*{}_{1}\Psi_{1} \left [ \textstyle\begin{array}{c}(1-\rho+\sigma+\eta, \xi); \\ (1-\rho+\eta, \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(4.9)

Further, if we put \(\nu=-\sigma\) in (4.6) and (4.7), then these Saigo fractional derivatives reduce to the following Riemann–Liouville and the Weyl type fractional derivative formulas.

Corollary 19

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+\xi n)>\Re(\sigma)>0\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;t^{\xi} \bigr) \bigr\} \bigr) (x) \\ & \quad=x^{\rho-\sigma-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;x^{\xi } \bigr)*{}_{1}\Psi_{1} \left [ \textstyle\begin{array}{c}(\rho, \xi); \\ (\rho-\sigma, \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(4.10)

Corollary 20

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\rho-\xi n)<1+\Re(\sigma)-n^{*}\) where \(n^{*}=[\Re(\sigma)]+1\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \biggl(D^{\sigma}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{t^{\xi }} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho-\sigma-1}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x^{\xi}} \biggr)*{}_{1}\Psi_{1} \left [ \textstyle\begin{array}{c}(1-\rho+\sigma, \xi); \\ (1-\rho, \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(4.11)

If we put \(\xi=1\) in Theorems 3, 4 and corollaries (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11), we get interesting results given in the following corollaries.

Corollary 21

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in \mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+n)>\max\{0,\Re(\eta-\sigma-\sigma'-\nu'),\Re (\nu-\sigma)\}\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma,\sigma',\nu,\nu ',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )}(r,a;t) \bigr\} \bigr) (x) \\ &\quad =x^{\rho-\eta+\sigma+\sigma'-1} \frac {\Gamma(\rho)\Gamma(\rho-\eta+\sigma+\sigma'+\nu')\Gamma(\rho-\nu+\sigma )}{\Gamma(\rho-\nu)\Gamma(\rho-\eta+\sigma+\sigma')\Gamma(\rho-\eta +\sigma+\nu')}S_{\mu,\lambda}^{(\alpha, \beta )}(r,a;x) \\ & \qquad{}*{}_{3}F_{3} \left [ \textstyle\begin{array}{c} \rho, \rho-\eta+\sigma+\sigma'+\nu', \rho-\nu+\sigma; \\ \rho-\nu, \rho-\eta+\sigma+\sigma', \rho-\eta+\sigma+\nu'; \end{array}\displaystyle x \right ]. \end{aligned} $$
(4.12)

Corollary 22

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in \mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-n)<1+\min\{\Re(\nu'),\Re(\eta-\sigma-\sigma '),\Re(\eta-\sigma'-\nu)\}\) then the following fractional integral formula holds true:

$$ \begin{aligned}[b]& \biggl(D^{\sigma,\sigma',\nu,\nu ',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \biggl(r,a;\frac{1}{t} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho-\eta+\sigma +\sigma'-1}\frac{\Gamma(1-\rho+\nu')\Gamma(1-\rho+\eta-\sigma-\sigma ')\Gamma(1-\rho+\eta-\sigma'-\nu)}{\Gamma(1-\rho)\Gamma(1-\rho+\eta -\sigma-\sigma'-\nu)\Gamma(1-\rho-\sigma'+\nu')} S_{\mu ,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{x} \biggr) \\ & \qquad *{}_{3}F_{3} \left [ \textstyle\begin{array}{c}1-\rho+\nu', 1-\rho+\eta-\sigma-\sigma', 1-\rho+\eta -\sigma'-\nu; \\ 1-\rho, 1-\rho+\eta-\sigma-\sigma'-\nu, 1-\rho-\sigma '+\nu'; \end{array}\displaystyle \frac{1}{x} \right ]. \end{aligned} $$
(4.13)

Corollary 23

Let \(x>0\), \(\sigma, \nu, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+n)>-\min\{0,\Re(\eta+\sigma+\nu)\}\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma,\nu,\eta }_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)}(r,a;t) \bigr\} \bigr) (x) \\ & \quad=x^{\rho+\nu-1}\frac{\Gamma(\rho)\Gamma(\rho+\eta+\sigma +\nu)}{\Gamma(\rho+\eta)\Gamma(\rho+\nu)}S_{\mu,\lambda}^{(\alpha, \beta )}(r,a;x)*{}_{2}F_{2} \left [ \textstyle\begin{array}{c}\rho, \rho+\eta+\sigma+\nu; \\ \rho+\eta, \rho+\nu; \end{array}\displaystyle x \right ]. \end{aligned} $$
(4.14)

Corollary 24

Let \(x>0\), \(\sigma, \nu, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho-n)<1+\min\{\Re(-\nu-n^{*}),\Re(\eta+\sigma )\}\) where \(n^{*}=[\Re(\sigma)]+1\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \biggl(D^{\sigma,\nu,\eta }_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{t} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho+\nu-1}\frac{\Gamma (1-\rho-\nu)\Gamma(1-\rho+\sigma+\eta)}{\Gamma(1-\rho)\Gamma(1-\rho+\eta -\nu)} S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac {1}{x} \biggr) \\ &\qquad{}*{}_{2}F_{2} \left [ \textstyle\begin{array}{c} 1-\rho-\nu, 1-\rho+\sigma+\eta; \\ 1-\rho, 1-\rho+\eta -\nu; \end{array}\displaystyle \frac{1}{x} \right ]. \end{aligned} $$
(4.15)

Corollary 25

Let \(x>0\), \(\sigma, \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+n)>-\Re(\eta+\sigma)\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma, \eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)}(r,a;t) \bigr\} \bigr) (x) \\ &\quad =x^{\rho-1}\frac{\Gamma(\rho+\eta+\sigma)}{\Gamma(\rho+\eta)}S_{\mu ,\lambda}^{(\alpha, \beta)}(r,a;x)*{}_{1}F_{1} \left [ \textstyle\begin{array}{c}\rho+\eta+\sigma; \\ \rho+\eta; \end{array}\displaystyle x \right ]. \end{aligned} $$
(4.16)

Corollary 26

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho-n)<1+\Re(\eta+\sigma)-n^{*}\) where \(n^{*}=[\Re (\sigma)]+1\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \biggl(D^{\sigma,\eta}_{x,\infty } \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac {1}{t} \biggr) \biggr\} \biggr) (x) \\ &\quad =x^{\rho-1}\frac{\Gamma(1-\rho+\sigma +\eta)}{\Gamma(1-\rho+\eta)}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x} \biggr)*{}_{1}F_{1} \left [ \textstyle\begin{array}{c}1-\rho+\sigma+\eta; \\ 1-\rho+\eta; \end{array}\displaystyle \frac{1}{x} \right ]. \end{aligned} $$
(4.17)

Corollary 27

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\sigma)>0\) and \(\Re(\rho+n)>\Re(\sigma)>0\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \bigl(D^{\sigma}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)}(r,a;t) \bigr\} \bigr) (x) \\ &\quad =x^{\rho-\sigma-1}\frac{\Gamma(\rho)}{\Gamma(\rho-\sigma)}S_{\mu,\lambda }^{(\alpha, \beta)}(r,a;x)*{}_{1}F_{1} \left [ \textstyle\begin{array}{c}\rho; \\ \rho-\sigma; \end{array}\displaystyle x \right ]. \end{aligned} $$
(4.18)

Corollary 28

Let \(x>0\), \(\sigma, \rho\in\mathbb{C}\) and \(r,\alpha ,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\rho-n)<1+\Re(\sigma)-n^{*}\) where \(n^{*}=[\Re(\sigma)]+1\) then the following fractional derivative formula holds true:

$$ \begin{aligned}[b]& \biggl(D^{\sigma}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a;\frac{1}{t} \biggr) \biggr\} \biggr) (x) \\ & \quad=x^{\rho-\sigma-1}\frac{\Gamma(1-\rho+\sigma )}{\Gamma(1-\rho)}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \frac {1}{x} \biggr)*{}_{1}F_{1} \left [ \textstyle\begin{array}{c}1-\rho+\sigma; \\ 1-\rho; \end{array}\displaystyle \frac{1}{x} \right ]. \end{aligned} $$
(4.19)

5 Integral transform formulas of the extended generalized Mathieu series

In this section, we establish certain theorems involving the results obtained in the previous sections associated with the integral transforms like the beta transform, the Laplace transform and the Whittaker transform.

5.1 Beta transform

Definition 9

The beta transform of the function \(f(z)\) is defined as [70]:

$$ B \bigl\{ f(z):l,m \bigr\} = \int_{0}^{1}z^{l-1}(1-z)^{m-1}f(z)\,dz. $$
(5.1)

Theorem 5

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\sigma+\sigma'+\nu-\eta ),\Re(\sigma'-\nu')\}\) then the following formula holds:

$$ \begin{aligned}[b]& B \bigl\{ \bigl(I^{\sigma,\sigma ',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x): l,m \bigr\} \\ &\quad =x^{\rho+\eta -\sigma-\sigma'-1}\Gamma(m) S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;x^{\xi } \bigr) \\ & \qquad{}*{}_{4}\Psi_{4} \left [ \textstyle\begin{array}{c}(l,\xi),(\rho,\xi), (\rho+\eta-\sigma-\sigma'-\nu, \xi ), (\rho+\nu'-\sigma', \xi); \\ (l+m,\xi),(\rho+\nu', \xi), (\rho+\eta -\sigma-\sigma', \xi), (\rho+\eta-\sigma'-\nu, \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(5.2)

Proof

In order to prove (5.2), we use the definition of the beta transform as given in Eq. (5.1), to get

$$ \begin{aligned}[b]& B \bigl\{ \bigl(I^{\sigma,\sigma ',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x): l,m \bigr\} \\ &\quad = \int _{0}^{1}z^{l-1}(1-z)^{m-1} \bigl\{ \bigl(I^{\sigma,\sigma',\nu,\nu',\eta }_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(tz)^{\xi } \bigr) \bigr\} \bigr) (x) \bigr\} \,dz. \end{aligned} $$
(5.3)

Applying the result (1.25), Eq. (5.3) reduces to

$$ \begin{aligned}[b]& = \int_{0}^{1}z^{l+\xi n-1}(1-z)^{m-1} \Biggl(x^{\rho+\eta-\sigma-\sigma'-1}\sum_{n=1}^{\infty } \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ &\quad{} \times\frac{\Gamma(\rho+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'-\nu +\xi n)\Gamma(\rho+\nu'-\sigma'+\xi n)}{\Gamma(\rho+\nu'+\xi n)\Gamma (\rho+\eta-\sigma-\sigma'+\xi n)\Gamma(\rho+\eta-\sigma'-\nu+\xi n)}\frac{x^{\xi n}}{n!} \Biggr)\,dz. \end{aligned} $$
(5.4)

Interchanging the order of integration and summation, we have

$$ \begin{aligned}[b]& =x^{\rho+\eta-\sigma-\sigma '-1}\sum _{n=1}^{\infty} \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha }+r^{2})^{\mu}} \\ &\quad{} \times\frac{\Gamma(\rho+\xi n)\Gamma(\rho+\eta-\sigma -\sigma'-\nu+\xi n)\Gamma(\rho+\nu'-\sigma'+\xi n)}{\Gamma(\rho+\nu '+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'+\xi n)\Gamma(\rho+\eta-\sigma '-\nu+\xi n)}\frac{x^{\xi n}}{n!} \\ & \quad{}\times \int_{0}^{1}z^{l+\xi n-1}(1-z)^{m-1}\,dz. \end{aligned} $$
(5.5)

After a little simplification, we have

$$ \begin{aligned}[b]& =x^{\rho+\eta-\sigma-\sigma '-1}\Gamma(m)\sum _{n=1}^{\infty}\frac{2a_{n}^{\beta}(\lambda )_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ & \quad\times\frac{\Gamma(l+\xi n)\Gamma (\rho+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'-\nu+\xi n)\Gamma(\rho+\nu '-\sigma'+\xi n)}{\Gamma(l+m+\xi n)\Gamma(\rho+\nu'+\xi n)\Gamma(\rho +\eta-\sigma-\sigma'+\xi n)\Gamma(\rho+\eta-\sigma'-\nu+\xi n)}\frac {x^{\xi n}}{n!}.\end{aligned} $$
(5.6)

By applying the Hadamard product (2.13) in Eq. (5.6), which in view of (2.8) and (2.15), gives the required result (5.2). □

Theorem 6

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(-\nu),\Re(\sigma+\sigma '-\eta),\Re(\sigma+\nu'-\eta)\}\) then the following formula holds:

$$ \begin{aligned}[b]& B \biggl\{ \biggl(I^{\sigma,\sigma ',\nu,\nu',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{z}{t} \biggr)^{\xi} \biggr) \biggr\} \biggr) (x): l,m \biggr\} \\ &\quad =x^{\rho+\eta-\sigma-\sigma'-1}\Gamma(m) S_{\mu ,\lambda}^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x^{\xi}} \biggr) \\ &\qquad{} *{}_{4}\Psi_{4} \left [ \textstyle\begin{array}{c}(l,\xi),(1-\rho-\nu,\xi), (1-\rho-\eta+\sigma+\sigma', \xi), (1-\rho-\eta+\sigma+\nu', \xi); \\ (l+m,\xi),(1-\rho, \xi), (1-\rho-\eta+\sigma+\sigma'+\nu', \xi), (1-\rho+\sigma-\nu, \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(5.7)

Proof

The proof of Theorem 6 is similar to as that of Theorem 5, therefore, we omit the details. □

Theorem 7

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\eta-\sigma-\sigma'-\nu '),\Re(\nu-\sigma)\}\) then the following formula holds:

$$ \begin{aligned}[b]& B \bigl\{ \bigl(D^{\sigma,\sigma ',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x): l,m \bigr\} \\ & \quad=x^{\rho-\eta +\sigma+\sigma'-1}\Gamma(m) S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;x^{\xi } \bigr) \\ &\qquad{} *{}_{4}\Psi_{4} \left [ \textstyle\begin{array}{c}(l,\xi),(\rho,\xi), (\rho-\eta+\sigma+\sigma'+\nu', \xi ), (\rho-\nu+\sigma, \xi); \\ (l+m,\xi),(\rho-\nu, \xi), (\rho-\eta +\sigma+\sigma', \xi), (\rho-\eta+\sigma+\nu', \xi); \end{array}\displaystyle x^{\xi} \right ]. \end{aligned} $$
(5.8)

Proof

In order to prove (5.8), we use definition of beta transform as given in Eq. (5.1), we get

$$ \begin{aligned}[b]& B \bigl\{ \bigl(D^{\sigma,\sigma ',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta )} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x): l,m \bigr\} \\ & \quad= \int _{0}^{1}z^{l-1}(1-z)^{m-1} \bigl\{ \bigl(D^{\sigma,\sigma',\nu,\nu',\eta }_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(tz)^{\xi } \bigr) \bigr\} \bigr) (x) \bigr\} \,dz, \end{aligned} $$
(5.9)

applying the result (1.27), Eq. (5.9) reduces to

$$ \begin{aligned}[b]& = \int_{0}^{1}z^{l+\xi n-1}(1-z)^{m-1}x^{\rho-\eta+\sigma+\sigma'-1} \sum_{n=1}^{\infty}\frac {2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ & \quad{}\times\frac {\Gamma(\rho+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\nu'+\xi n)\Gamma (\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma(\rho-\eta+\sigma +\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu'+\xi n)}\frac{x^{\xi n}}{n!}. \end{aligned} $$
(5.10)

Interchanging the order of integration and summation, we have

$$ \begin{aligned}[b]& =x^{\rho-\eta+\sigma+\sigma '-1}\sum _{n=1}^{\infty} \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha }+r^{2})^{\mu}} \\ &\quad{} \times\frac{\Gamma(\rho+\xi n)\Gamma(\rho-\eta+\sigma +\sigma'+\nu'+\xi n)\Gamma(\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu '+\xi n)}\frac{x^{\xi n}}{n!} \\ & \quad{}\times \int_{0}^{1}z^{l+\xi n-1}(1-z)^{m-1}\,dz. \end{aligned} $$
(5.11)

After a little simplification, we have

$$ \begin{aligned}[b]& =x^{\rho-\eta+\sigma+\sigma '-1}\Gamma(m)\sum _{n=1}^{\infty}\frac{2a_{n}^{\beta}(\lambda )_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ &\quad{} \times\frac{\Gamma(l+\xi n) \Gamma (\rho+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\nu'+\xi n)\Gamma(\rho-\nu +\sigma+\xi n)}{\Gamma(l+m+\xi n) \Gamma(\rho-\nu+\xi n)\Gamma(\rho -\eta+\sigma+\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu'+\xi n)}\frac {x^{\xi n}}{n!}.\end{aligned} $$
(5.12)

Applying the Hadamard product (2.13) in Eq. (5.12), in view of (2.8) and (2.15), gives the required result (5.8). □

Theorem 8

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(\nu'),\Re(\eta-\sigma -\sigma'),\Re(\eta-\sigma'-\nu)\}\) then the following formula holds:

$$ \begin{aligned}[b]& B \biggl\{ \biggl(D^{\sigma,\sigma ',\nu,\nu',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{z}{t} \biggr)^{\xi} \biggr) \biggr\} \biggr) (x): l,m \biggr\} \\ & \quad=x^{\rho-\eta+\sigma+\sigma'-1}\Gamma(m) S_{\mu ,\lambda}^{(\alpha, \beta)} \biggl(r,a; \frac{1}{x^{\xi}} \biggr) \\ & \qquad{}*{}_{4}\Psi_{4} \left [ \textstyle\begin{array}{c}(l,\xi),(1-\rho+\nu',\xi), (1-\rho+\eta-\sigma-\sigma ', \xi), (1-\rho+\eta-\sigma'-\nu, \xi); \\ (l+m,\xi),(1-\rho, \xi), (1-\rho+\eta-\sigma-\sigma'-\nu, \xi), (1-\rho-\sigma'+\nu', \xi); \end{array}\displaystyle \frac{1}{x^{\xi}} \right ]. \end{aligned} $$
(5.13)

Proof

The proof of Theorem 8 is similar to as that of Theorem 7. Therefore, we omit the details. □

5.2 Laplace transform

Definition 10

The Laplace transform of \(f(z)\) is defined as [70, 71]:

$$ L \bigl\{ f(z) \bigr\} = \int_{0}^{\infty}e^{-sz}f(z)\,dz. $$
(5.14)

Theorem 9

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta, \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\sigma+\sigma'+\nu-\eta ),\Re(\sigma'-\nu')\}\) then the following formula holds:

$$ \begin{aligned}[b]& L \bigl\{ z^{l-1} \bigl(I^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \\ & \quad=\frac{x^{\rho+\eta -\sigma-\sigma'-1}}{s^{l}}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{x}{s} \biggr)^{\xi} \biggr) \\ &\qquad{} *{}_{4}\Psi_{3} \left [ \textstyle\begin{array}{c}(l,\xi),(\rho,\xi), (\rho+\eta-\sigma-\sigma'-\nu, \xi ), (\rho+\nu'-\sigma', \xi); \\ (\rho+\nu', \xi), (\rho+\eta-\sigma -\sigma', \xi), (\rho+\eta-\sigma'-\nu, \xi); \end{array}\displaystyle \biggl(\frac{x}{s} \biggr)^{\xi} \right ]. \end{aligned} $$
(5.15)

Proof

In order to prove (5.15), we use definition of the Laplace transform as given in Eq. (5.14), to get

$$ \begin{aligned}[b]& L \bigl\{ z^{l-1} \bigl(I^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \\ &\quad = \int_{0}^{\infty }e^{-sz}z^{l-1} \bigl\{ \bigl(I^{\sigma,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \end{aligned} $$
(5.16)

and applying the result (1.25) and interchanging the order of integration and summation, Eq. (5.16) reduces to

$$ \begin{aligned}[b]& =x^{\rho+\eta-\sigma-\sigma '-1}\sum _{n=1}^{\infty} \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha }+r^{2})^{\mu}} \\ &\quad{} \times\frac{\Gamma(\rho+\xi n)\Gamma(\rho+\eta-\sigma -\sigma'-\nu+\xi n)\Gamma(\rho+\nu'-\sigma'+\xi n)}{\Gamma(\rho+\nu '+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'+\xi n)\Gamma(\rho+\eta-\sigma '-\nu+\xi n)}\frac{x^{\xi n}}{n!} \\ &\quad{} \times \int_{0}^{\infty}z^{l+\xi n-1}e^{-sz}\,dz. \end{aligned} $$
(5.17)

After a little simplification, we have

$$ \begin{aligned}[b]& =\frac{x^{\rho+\eta-\sigma -\sigma'-1}}{s^{l}}\sum _{n=1}^{\infty} \frac{2a_{n}^{\beta}(\lambda )_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ & \quad{}\times\frac{\Gamma(l+\xi n)\Gamma (\rho+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'-\nu+\xi n)\Gamma(\rho+\nu '-\sigma'+\xi n)}{\Gamma(\rho+\nu'+\xi n)\Gamma(\rho+\eta-\sigma-\sigma '+\xi n)\Gamma(\rho+\eta-\sigma'-\nu+\xi n)}\frac{(x/s)^{\xi n}}{n!},\end{aligned} $$
(5.18)

and interpreting the above equation, from the point of view of (2.13), (2.8) and (2.15), we have the required result. □

Theorem 10

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta , \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(-\nu),\Re(\sigma+\sigma '-\eta),\Re(\sigma+\nu'-\eta)\}\) then the following formula holds:

$$ \begin{aligned}[b]& L \biggl\{ z^{l-1} \biggl(I^{\sigma ,\sigma',\nu,\nu',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{z}{t} \biggr)^{\xi} \biggr) \biggr\} \biggr) (x) \biggr\} \\ & \quad=\frac{x^{\rho+\eta-\sigma-\sigma '-1}}{s^{l}}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac {1}{sx} \biggr)^{\xi} \biggr) \\ & \quad\quad{}*{}_{4}\Psi_{3} \left [ \textstyle\begin{array}{c}(l,\xi), (1-\rho-\nu,\xi), (1-\rho-\eta+\sigma+\sigma ', \xi), (1-\rho-\eta+\sigma+\nu', \xi); \\ (1-\rho, \xi), (1-\rho-\eta +\sigma+\sigma'+\nu', \xi), (1-\rho+\sigma-\nu, \xi); \end{array}\displaystyle \biggl(\frac{1}{sx} \biggr)^{\xi} \right ]. \end{aligned} $$
(5.19)

Proof

The proof of Theorem 10 is similar to that of Theorem 9. Therefore, we omit the details. □

Theorem 11

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta , \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\eta-\sigma-\sigma'-\nu '),\Re(\nu-\sigma)\}\) then the following formula holds:

$$ \begin{aligned}[b]& L \bigl\{ z^{l-1} \bigl(D^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \\ &\quad =\frac{x^{\rho-\eta +\sigma+\sigma'-1}}{s^{l}} S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{x}{s} \biggr)^{\xi} \biggr) \\ & \qquad{}*{}_{4}\Psi_{3} \left [ \textstyle\begin{array}{c} (l, \xi), (\rho, \xi), (\rho-\eta+\sigma+\sigma'+\nu ', \xi), (\rho-\nu+\sigma, \xi); \\ (\rho-\nu, \xi), (\rho-\eta+\sigma +\sigma', \xi), (\rho-\eta+\sigma+\nu', \xi); \end{array}\displaystyle \biggl(\frac{x}{s} \biggr)^{\xi} \right ]. \end{aligned} $$
(5.20)

Proof

In order to prove (5.20), we use definition of the Laplace transform as given in Eq. (5.14), we get

$$ \begin{aligned}[b]& L \bigl\{ z^{l-1} \bigl(D^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \\ &\quad = \int_{0}^{\infty }e^{-sz} \bigl\{ z^{l-1} \bigl(D^{\sigma,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(tz)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \end{aligned} $$
(5.21)

applying the result (1.27), Eq. (5.21) reduces to

$$ \begin{aligned}[b]& = \int_{0}^{\infty}z^{l+\xi n-1}e^{-sz}x^{\rho-\eta+\sigma+\sigma'-1} \sum_{n=1}^{\infty}\frac {2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ & \quad{}\times\frac {\Gamma(\rho+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\nu'+\xi n)\Gamma (\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma(\rho-\eta+\sigma +\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu'+\xi n)}\frac{x^{\xi n}}{n!}\,dz. \end{aligned} $$
(5.22)

Interchanging the order of integration and summation, we have

$$ \begin{aligned}[b]& =x^{\rho-\eta+\sigma+\sigma '-1}\sum _{n=1}^{\infty} \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha }+r^{2})^{\mu}} \\ & \quad{}\times\frac{\Gamma(\rho+\xi n)\Gamma(\rho-\eta+\sigma +\sigma'+\nu'+\xi n)\Gamma(\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu '+\xi n)}\frac{x^{\xi n}}{n!} \\ & \quad{}\times \int_{0}^{\infty}z^{l+\xi n-1}e^{-sz}\,dz. \end{aligned} $$
(5.23)

After a little simplification we have

$$ \begin{aligned}[b]& =\frac{x^{\rho-\eta+\sigma +\sigma'-1}}{s^{l}}\sum _{n=1}^{\infty} \frac{2a_{n}^{\beta}(\lambda )_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ &\quad{} \times\frac{\Gamma(l+\xi n)\Gamma (\rho+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\nu'+\xi n)\Gamma(\rho-\nu +\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma(\rho-\eta+\sigma+\sigma '+\xi n)\Gamma(\rho-\eta+\sigma+\nu'+\xi n)}\frac{(x/s)^{\xi n}}{n!},\end{aligned} $$
(5.24)

and interpreting the above equation, in the view of of (2.13), (2.8) and (2.15), we have the required result. □

Theorem 12

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta , \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(\nu'),\Re(\eta-\sigma -\sigma'),\Re(\eta-\sigma'-\nu)\}\) then the following formula holds:

$$ \begin{aligned}[b]& L \biggl\{ z^{l-1} \biggl(D^{\sigma ,\sigma',\nu,\nu',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{z}{t} \biggr)^{\xi} \biggr) \biggr\} \biggr) (x) \biggr\} \\ &\quad =\frac{x^{\rho-\eta+\sigma+\sigma '-1}}{s^{l}}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac {1}{sx} \biggr)^{\xi} \biggr) \\ & \qquad{}*{}_{3}\Psi_{3} \left [ \textstyle\begin{array}{c} (1-\rho+\nu', \xi), (1-\rho+\eta-\sigma-\sigma', \xi ), (1-\rho+\eta-\sigma'-\nu, \xi); \\ (1-\rho, \xi), (1-\rho+\eta-\sigma -\sigma'-\nu, \xi), (1-\rho-\sigma'+\nu', \xi); \end{array}\displaystyle \biggl(\frac{1}{sx} \biggr)^{\xi} \right ]. \end{aligned} $$
(5.25)

Proof

The proof of the Theorem 12 would run parallel to Theorem 11. Therefore, we omit the details. □

5.3 Whittaker transform

Definition 11

The Whittaker transform is defined as [70]

$$ \begin{aligned}[b]& \int_{0}^{\infty} t^{l-1}e^{-t/2}W_{\tau, \zeta}(t)\,dt= \frac{\Gamma(1/2+\zeta+l)\Gamma (1/2-\zeta+l)}{\Gamma(1/2-\tau+l)}.\end{aligned} $$
(5.26)

Theorem 13

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta , \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\sigma+\sigma'+\nu-\eta ),\Re(\sigma'-\nu')\}\) then the following formula holds:

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \bigl\{ \bigl(I^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(wzt)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \\ & \quad=\frac{x^{\rho +\eta-\sigma-\sigma'-1}}{\delta^{l}}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{wx}{\delta} \biggr)^{\xi} \biggr)\\ &\qquad{}*{}_{5} \Psi_{4} \left [ \textstyle\begin{array}{c}(1/2+\zeta+l, \xi), (1/2-\zeta+l,\xi),\\ (1/2-\tau+l, \xi), \end{array}\displaystyle \right . \\ &\qquad{} \left . \textstyle\begin{array}{c} (\rho, \xi), (\rho+\eta-\sigma-\sigma'-\nu, \xi), (\rho+\nu'-\sigma', \xi); \\ (\rho+\nu', \xi), (\rho+\eta-\sigma-\sigma ', \xi), (\rho+\eta-\sigma'-\nu, \xi); \end{array}\displaystyle \biggl(\frac{wx}{\delta} \biggr)^{\xi} \right ]. \end{aligned} $$
(5.27)

Proof

To prove (5.27), by using the definition of the Whittaker transform and by using the result obtained in Eq. (3.4), we have

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \bigl\{ \bigl(I^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(wzt)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \\ &\quad =x^{\rho+\eta -\sigma-\sigma'-1}\sum_{n=1}^{\infty} \frac{2a_{n}^{\beta}(\lambda )_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ &\qquad{} \times\frac{\Gamma(\rho+\xi n)\Gamma (\rho+\eta-\sigma-\sigma'-\nu+\xi n)\Gamma(\rho+\nu'-\sigma'+\xi n)}{\Gamma(\rho+\nu'+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'+\xi n)\Gamma (\rho+\eta-\sigma'-\nu+\xi n)}\frac{(wx)^{\xi n}}{n!} \\ & \qquad{}\times \int _{0}^{\infty}z^{l+\xi n-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z)\,dz. \end{aligned} $$
(5.28)

By substituting \(\delta z = y\) and after a little simplification, we have

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \bigl\{ \bigl(I^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(wzt)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \\ &\quad =\frac{x^{\rho +\eta-\sigma-\sigma'-1}}{\delta^{l}}\sum_{n=1}^{\infty} \frac{2a_{n}^{\beta }(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ &\qquad{} \times\frac{\Gamma(\rho+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'-\nu+\xi n)\Gamma(\rho+\nu'-\sigma '+\xi n)}{\Gamma(\rho+\nu'+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'+\xi n)\Gamma(\rho+\eta-\sigma'-\nu+\xi n)} \biggl(\frac{wx}{\delta} \biggr)^{\xi n} \frac{1}{n!} \\ &\qquad{} \times \int_{0}^{\infty}y^{l+\xi n-1}e^{-y/2}W_{\tau,\zeta}(y)\,dy. \end{aligned} $$
(5.29)

By using the integral formula involving the Whittaker function, we have

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \bigl\{ \bigl(I^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(wzt)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \\ &\quad =\frac{x^{\rho +\eta-\sigma-\sigma'-1}}{\delta^{l}}\sum_{n=1}^{\infty} \frac{2a_{n}^{\beta }(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}}\frac{\Gamma(1/2+\zeta+l+\xi n)\Gamma(1/2-\zeta+l+\xi n)}{\Gamma(1/2-\tau+l+\xi n)} \\ & \qquad\times\frac {\Gamma(\rho+\xi n)\Gamma(\rho+\eta-\sigma-\sigma'-\nu+\xi n)\Gamma(\rho +\nu'-\sigma'+\xi n)}{\Gamma(\rho+\nu'+\xi n)\Gamma(\rho+\eta-\sigma -\sigma'+\xi n)\Gamma(\rho+\eta-\sigma'-\nu+\xi n)} \biggl(\frac {wx}{\delta} \biggr)^{\xi n} \frac{1}{n!}, \end{aligned} $$
(5.30)

and interpreting the above equation, from the point of view of (2.13), (2.8) and (2.15), we have the required result. □

Theorem 14

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta , \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(-\nu),\Re(\sigma+\sigma '-\eta),\Re(\sigma+\nu'-\eta)\}\) then the following formula holds:

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \biggl\{ \biggl(I^{\sigma ,\sigma',\nu,\nu',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{wz}{t} \biggr)^{\xi} \biggr) \biggr\} \biggr) (x) \biggr\} \,dz \\ & \quad=\frac{x^{\rho+\eta-\sigma-\sigma '-1}}{\delta^{l}}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac {w}{\delta x} \biggr)^{\xi} \biggr)\\ &\qquad{}*{}_{5} \Psi_{4} \left [ \textstyle\begin{array}{c}(1/2+\zeta+l, \xi), (1/2-\zeta+l,\xi),\\ (1/2-\tau +l,\xi), \end{array}\displaystyle \right . \\ &\qquad \left . \textstyle\begin{array}{c} (1-\rho-\nu,\xi), (1-\rho-\eta+\sigma+\sigma', \xi), (1-\rho-\eta+\sigma+\nu', \xi); \\ (1-\rho, \xi), (1-\rho-\eta+\sigma +\sigma'+\nu', \xi), (1-\rho+\sigma-\nu, \xi); \end{array}\displaystyle \biggl(\frac{w}{\delta x} \biggr)^{\xi} \right ]. \end{aligned} $$
(5.31)

Proof

The proof of Theorem 14 would run parallel to Theorem 13. Therefore, we omit the details. □

Theorem 15

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta , \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho+\xi n)>\max\{0,\Re(\eta-\sigma-\sigma'-\nu '),\Re(\nu-\sigma)\}\) then the following formula holds:

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \bigl\{ \bigl(D^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(wzt)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \\ & \quad=\frac{x^{\rho -\eta+\sigma+\sigma'-1}}{\delta^{l}}S_{\mu,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{wx}{\delta} \biggr)^{\xi} \biggr)\\&\qquad{}*{}_{5} \Psi_{4} \left [ \textstyle\begin{array}{c}(1/2+\zeta+l, \xi), (1/2-\zeta+l,\xi),\\ (1/2-\tau+l, \xi), \end{array}\displaystyle \right . \\ &\qquad \left . \textstyle\begin{array}{c} (\rho,\xi), (\rho-\eta+\sigma+\sigma'+\nu', \xi), (\rho-\nu+\sigma, \xi); \\ (\rho-\nu, \xi), (\rho-\eta+\sigma+\sigma', \xi), (\rho-\eta+\sigma+\nu', \xi); \end{array}\displaystyle \biggl(\frac{wx}{\delta} \biggr)^{\xi} \right ]. \end{aligned} $$
(5.32)

Proof

To prove (5.32), by using the definition of the Whittaker transform as given in Eq. (5.26) and by using the result obtained in Eq. (4.4), we have

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \bigl\{ \bigl(D^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(wzt)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \\ &\quad =x^{\rho-\eta+\sigma+\sigma'-1}\sum_{n=1}^{\infty} \frac {2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ &\qquad \times\frac {\Gamma(\rho+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\nu'+\xi n)\Gamma (\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma(\rho-\eta+\sigma +\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu'+\xi n)}\frac{(wx)^{\xi n}}{n!} \\ & \qquad\times \int_{0}^{\infty}z^{l+\xi n-1}e^{-\delta z/2}W_{\tau ,\zeta}( \delta z)\,dz. \end{aligned} $$
(5.33)

By putting \(\delta z = y\) and after a little simplification, we have

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \bigl\{ \bigl(D^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(wzt)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \\ &\quad =\frac{x^{\rho-\eta+\sigma+\sigma'-1}}{\delta^{l}}\sum_{n=1}^{\infty } \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}} \\ & \qquad{}\times \frac{\Gamma(\rho+\xi n)\Gamma(\rho-\eta+\sigma+\sigma'+\nu'+\xi n)\Gamma(\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma(\rho-\eta +\sigma+\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu'+\xi n)} \biggl(\frac {wx}{\delta} \biggr)^{\xi n} \frac{1}{n!} \\ & \qquad{}\times \int_{0}^{\infty }y^{l+\xi n-1}e^{-y/2}W_{\tau,\zeta}(y)\,dy, \end{aligned} $$
(5.34)

By using the definition of the Whittaker transform, we have

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \bigl\{ \bigl(D^{\sigma ,\sigma',\nu,\nu',\eta}_{0,x} \bigl\{ t^{\rho-1}S_{\mu,\lambda}^{(\alpha, \beta)} \bigl(r,a;(wzt)^{\xi} \bigr) \bigr\} \bigr) (x) \bigr\} \,dz \\ & \quad=\frac{x^{\rho-\eta+\sigma+\sigma'-1}}{\delta^{l}}\sum_{n=1}^{\infty } \frac{2a_{n}^{\beta}(\lambda)_{n}}{(a_{n}^{\alpha}+r^{2})^{\mu}}\frac{\Gamma (1/2+\zeta+l+\xi n)\Gamma(1/2-\zeta+l+\xi n)}{\Gamma(1/2-\tau+l+\xi n)} \\ & \qquad{}\times\frac{\Gamma(\rho+\xi n)\Gamma(\rho-\eta+\sigma+\sigma '+\nu'+\xi n)\Gamma(\rho-\nu+\sigma+\xi n)}{\Gamma(\rho-\nu+\xi n)\Gamma (\rho-\eta+\sigma+\sigma'+\xi n)\Gamma(\rho-\eta+\sigma+\nu'+\xi n)} \biggl(\frac{wx}{\delta} \biggr)^{\xi n} \frac{1}{n!},\end{aligned} $$
(5.35)

and interpreting the above equation, from the point of view of (2.13), (2.8) and (2.15), we get the required result. □

Theorem 16

Let \(x>0\), \(\sigma, \sigma', \nu, \nu', \eta , \rho\in\mathbb{C}\) and \(r,\alpha,\beta,\mu\in\mathbb{R}^{+}\); \(|1/t|\leq1\) be such that \(\Re(\eta)>0\) and \(\Re(\rho-\xi n)<1+\min\{\Re(\nu'),\Re(\eta-\sigma -\sigma'),\Re(\eta-\sigma'-\nu)\}\). Then the following formula holds:

$$ \begin{aligned}[b]& \int_{0}^{\infty }z^{l-1}e^{-\delta z/2}W_{\tau,\zeta}( \delta z) \biggl\{ \biggl(D^{\sigma ,\sigma',\nu,\nu',\eta}_{x,\infty} \biggl\{ t^{\rho-1}S_{\mu,\lambda }^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{wz}{t} \biggr)^{\xi} \biggr) \biggr\} \biggr) (x) \biggr\} \,dz \\ & \quad=\frac{x^{\rho-\eta+\sigma+\sigma'-1}}{\delta^{l}}S_{\mu ,\lambda}^{(\alpha, \beta)} \biggl(r,a; \biggl( \frac{w}{\delta x} \biggr)^{\xi} \biggr)\\ &\qquad{}*{}_{5} \Psi_{4} \left [ \textstyle\begin{array}{c}(1/2+\zeta+l, \xi), (1/2-\zeta+l,\xi),\\ (1/2-\tau +l+\xi), \end{array}\displaystyle \right . \\ & \quad\quad \left . \textstyle\begin{array}{c} (1-\rho+\nu',\xi), (1-\rho+\eta-\sigma-\sigma', \xi), (1-\rho+\eta-\sigma'-\nu, \xi); \\ (1-\rho, \xi), (1-\rho+\eta-\sigma -\sigma'-\nu, \xi), (1-\rho-\sigma'+\nu', \xi); \end{array}\displaystyle \biggl(\frac{w}{\delta x} \biggr)^{\xi} \right ]. \end{aligned} $$
(5.36)

Proof

The proof of Theorem 16 would run parallel to Theorem 15. Therefore, we omit the details. □

6 Conclusion

The applications of fractional integral and differential formulas in communication theory, probability theory and groundwater pumping modeling were showed by many authors. Therefore, the fractional integral and differential formulas (of Marichev–Saigo–Maeda type) involving the extended generalized Mathieu series established in this paper will be very useful in the application point of view. Also, we expect to find some applications in obtaining the solutions of differential equations.

References

  1. Hilfer, R.: Applications of Fractional Calculus in Physics, pp. 87–130. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  2. Magin, R.L.: Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 32(1), 1–104 (2004)

    Article  Google Scholar 

  3. Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017)

    Article  MathSciNet  Google Scholar 

  4. Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)

    Article  Google Scholar 

  5. Abdelkawy, M.A., Zaky, M.A., Bhrawy, A.H., Baleanu, D.: Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model. Rom. Rep. Phys. 67(3), 773–791 (2015)

    Google Scholar 

  6. Zhao, J., Zheng, L., Chen, X., Zhang, X., Liu, F.: Unsteady Marangoni convection heat transfer of fractional Maxwell fluid with Cattaneo heat flux. Appl. Math. Model. 44, 497–507 (2017)

    Article  MathSciNet  Google Scholar 

  7. Moghaddam, B.P., Machado, J.A.T.: A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput. Math. Appl. 73(6), 1262–1269 (2017)

    Article  MathSciNet  Google Scholar 

  8. Sin, C.S., Zheng, L., Sin, J.S., Liu, F., Liu, L.: Unsteady flow of viscoelastic fluid with the fractional K-BKZ model between two parallel plates. Appl. Math. Model. 47, 114–127 (2017)

    Article  MathSciNet  Google Scholar 

  9. Razminia, A., Baleanu, D., Majd, V.J.: Conditional optimization problems: fractional order case. J. Optim. Theory Appl. 156(1), 45–55 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  12. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, Berlin (2012)

    Book  MATH  Google Scholar 

  13. Huang, L.L., Baleanu, D., Wu, G.C., Zeng, S.D.: A new application of the fractional logistic map. Rom. J. Phys. 61(7–8), 1172–1179 (2016)

    Google Scholar 

  14. Kumar, D., Singh, J., Baleanu, D.: Modified Kawahara equation within a fractional derivative with non-singular kernel. Therm. Sci. (2017). https://doi.org/10.2298/TSCI160826008K

    Google Scholar 

  15. Kumar, D., Singh, J., Baleanu, D.: A new fractional model for convective straight fins with temperature-dependent thermal conductivity. Therm. Sci. (2017). https://doi.org/10.2298/TSCI170129096K

    Google Scholar 

  16. Kumar, D., Singh, J., Baleanu, D., Sushila: Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Physica A 492, 155–167 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kumar, D., Singh, J., Baleanu, D.: New numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 91, 307–317 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. (2017). https://doi.org/10.1016/j.cam.2017.03.011

    Google Scholar 

  19. Hajipour, M., Jajarmi, A., Baleanu, D.: An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlinear Dyn. 13(2), Article ID 021013 (2017)

    Article  Google Scholar 

  20. Baleanu, D., Jajarmi, A., Hajipour, M.: A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. J. Optim. Theory Appl. 175(3), 718–737 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baleanu, D., Jajarmi, A., Asad, J.H., Blaszczyk, T.: The motion of a bead sliding on a wire in fractional sense. Acta Phys. Pol. A 131(6), 1561–1564 (2017)

    Article  Google Scholar 

  22. Jajarmi, A., Hajipour, M., Baleanu, D.: New aspects of the adaptive synchronization and hyperchaos suppression of a financial model. Chaos Solitons Fractals 99, 285–296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  24. Baleanu, D., Guvenc, Z.B., Machado, J.A.T. (eds.): New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht (2010)

    Google Scholar 

  25. Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series, vol. 301. Longman, Harlow (1994)

    MATH  Google Scholar 

  26. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)

    MATH  Google Scholar 

  27. Yang, X.J., Srivastava, H.M., Machado, J.A.T.: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm. Sci. 20, 753–756 (2016)

    Article  Google Scholar 

  28. Caputo, M.: Elasticita e Dissipazione. Zani-Chelli, Bologna (1969)

    Google Scholar 

  29. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  30. Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)

    MathSciNet  Google Scholar 

  31. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  32. McBride, A.C.: Fractional powers of a class of ordinary differential operators. Proc. Lond. Math. Soc. (3) 45, 519–546 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kalla, S.L.: Integral operators involving Fox’s H-function I. Acta Mex. Cienc. Tecnol. 3, 117–122 (1969)

    MathSciNet  MATH  Google Scholar 

  34. Kalla, S.L.: Integral operators involving Fox’s H-function II. Acta Mex. Cienc. Tecnol. 7, 72–79 (1969)

    MathSciNet  MATH  Google Scholar 

  35. Kalla, S.L., Saxena, R.K.: Integral operators involving hypergeometric functions. Math. Z. 108, 231–234 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kalla, S.L., Saxena, R.K.: Integral operators involving hypergeometric functions II. Rev. Univ. Nac. Tucumán Ser. A 24, 31–36 (1974)

    MathSciNet  MATH  Google Scholar 

  37. Saigo, M.: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 11, 135–143 (1978)

    MathSciNet  MATH  Google Scholar 

  38. Saigo, M.: A certain boundary value problem for the Euler–Darboux equation I. Math. Jpn. 24(4), 377–385 (1979)

    MathSciNet  MATH  Google Scholar 

  39. Saigo, M.: A certain boundary value problem for the Euler–Darboux equation II. Math. Jpn. 25(2), 211–220 (1980)

    MathSciNet  MATH  Google Scholar 

  40. Saigo, M., Maeda, N.: More generalization of fractional calculus. In: Transform Methods and Special Functions, pp. 386–400 (1996)

    Google Scholar 

  41. Kiryakova, V.: A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11(2), 203–220 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Baleanu, D., Kumar, D., Purohit, S.D.: Generalized fractional integrals of product of two H-functions and a general class of polynomials. Int. J. Comput. Math. (2015). https://doi.org/10.1080/00207160.2015.1045886

    MATH  Google Scholar 

  43. Marichev, O.I.: Volterra equation of Mellin convolution type with a Horn function in the kernel. Izv. Akad. Nauk. BSSR, Ser. Fiz.-Mat. Nauk 1, 128–129 (1974) (in Russian)

    Google Scholar 

  44. Srivastava, H.M., Karlson, P.W.: Multiple Gaussian Hypergeometric Series. Halsted Press, Chichester; Wiley, New York (1985)

    Google Scholar 

  45. Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-Functions: Theory and Applications. Springer, New York (2010)

    Book  MATH  Google Scholar 

  46. Kober, H.: On fractional integrals and derivatives. Q. J. Math. 11, 193–212 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  47. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  48. Kiryakova, V.S.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series. Longman, Harlow; Wiley, New York (1993)

    MATH  Google Scholar 

  49. Srivastava, H.M., Saxena, R.K.: Operators of fractional integration and their applications. Appl. Math. Comput. 118, 1–52 (2001)

    MathSciNet  MATH  Google Scholar 

  50. Saxena, R.K., Saigo, M.: Generalized fractional calculus of the H-function associated with the Appell function. J. Fract. Calc. 19, 89–104 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Mathieu, E.L.: Traité de Physique Mathématique, VI–VII: Théorie de L’élasticité des Corps Solides. Gauthier-Villars, Paris (1890)

    Google Scholar 

  52. Emersleben, O.: Uber die Reihe. Math. Ann. 125, 165–171 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pogány, T.K., Srivastava, H.M., Tomovski, Ž.: Some families of Mathieu a-series and alternating Mathieu a-series. Appl. Math. Comput. 173, 69–108 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Cerone, P., Lenard, C.T.: On integral forms of generalized Mathieu series. JIPAM. J. Inequal. Pure Appl. Math. 4, Article ID 100 (2003)

    MATH  Google Scholar 

  55. Diananda, P.H.: Some inequalities related to an inequality of Mathieu. Math. Ann. 250, 95–98 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tomovski, Ž., Trencevski, K.: On an open problem of Bai-Ni Guo and Feng Qi. J. Inequal. Pure Appl. Math. 4(2), Article ID 29 (2003)

    MathSciNet  MATH  Google Scholar 

  57. Tomovski, Ž., Pogány, T.K.: Integral expressions for Mathieu-type power series and for the Butzer–Flocke–Hauss Ω-function. Fract. Calc. Appl. Anal. 14(4), 623–634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Milovanović, G.V., Pogány, T.K.: New integral forms of generalized Mathieu series and related applications. Appl. Anal. Discrete Math. 7, 180–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Srivastava, H.M., Tomovski, Ž.: Some problems and solutions involving Mathieu’ series and its generalizations. J. Inequal. Pure Appl. Math. 5(2), Article ID 45 (2004)

    MathSciNet  MATH  Google Scholar 

  60. Tomovski, Ž.: New double inequality for Mathieu series. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. 15, 79–83 (2004)

    MathSciNet  MATH  Google Scholar 

  61. Elezovic, N., Srivastava, H.M., Tomovski, Ž.: Integral representations and integral transforms of some families of Mathieu type series. Integral Transforms Spec. Funct. 19(7), 481–495 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Srivastava, H.M., Tomovski, Ž., Leskovski, D.: Some families of Mathieu-type series and Hurwitz–Lerch Zeta functions and associated probability distributions. Appl. Comput. Math. 14(3), 349–380 (2015)

    MathSciNet  MATH  Google Scholar 

  63. Tomovski, Ž.: Integral representations of generalized Mathieu series via Mittag-Leffler type functions. Fract. Calc. Appl. Anal. 10(2), 127–138 (2007)

    MathSciNet  MATH  Google Scholar 

  64. Tomovski, Ž.: New integral and series representations of the generalized Mathieu series. Appl. Anal. Discrete Math. 2(2), 205–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tomovski, Ž., Mehrez, M.: Some families of generalized Mathieu-type power series, associated probability distributions and related functional inequalities involving complete monotonicity and log-convexity. Math. Inequal. Appl. 20(4), 973–986 (2017)

    MathSciNet  MATH  Google Scholar 

  66. Kiryakova, V.: On two Saigo’s fractional integral operators in the class of univalent functions. Fract. Calc. Appl. Anal. 9, 159–176 (2006)

    MathSciNet  MATH  Google Scholar 

  67. Pohlen, T.: The Hadamard product and universal power series. Ph.D. thesis, Universität Trier, Trier, Germany (2009)

  68. Srivastava, H.M., Agarwal, R., Jain, S.: Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions. Math. Methods Appl. Sci. 40, 255–273 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  69. Srivastava, H.M., Agarwal, R., Jain, S.: A family of the incomplete hypergeometric functions and associated integral transform and fractional derivative formulas. Filomat 31, 125–140 (2017)

    Article  MathSciNet  Google Scholar 

  70. Sneddon, I.N.: The Use of Integral Transforms. Tata McGraw-Hill, New Delhi (1979)

    MATH  Google Scholar 

  71. Schiff, J.L.: The Laplace Transform, Theory and Applications. Springer, New York (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the present investigation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Serkan Araci.

Ethics declarations

Competing interests

The authors declare to have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Agarwal, P., Araci, S. et al. Certain fractional calculus formulas involving extended generalized Mathieu series. Adv Differ Equ 2018, 144 (2018). https://doi.org/10.1186/s13662-018-1596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-018-1596-9

MSC

Keywords