Skip to content

Advertisement

Open Access

Dynamic k-Struve Sumudu solutions for fractional kinetic equations

  • Kottakkaran Sooppy Nisar1Email author and
  • Fethi Bin Muhammad Belgacem2
Advances in Difference Equations20172017:340

https://doi.org/10.1186/s13662-017-1397-6

Received: 29 May 2017

Accepted: 10 October 2017

Published: 23 October 2017

Abstract

In this present study, we investigate the solutions for fractional kinetic equations involving k-Struve function using the Sumudu transform. The graphical interpretations of the solutions involving k-Struve function and its comparison with generalized Bessel function are given. The methodology and results can be considered and applied to various related fractional problems in mathematical physics.

Keywords

fractional kinetic equationsSumudu transforms k-Struve functionfractional calculus

MSC

26A3344A2033E12

1 Introduction

The Struve function \(H_{\nu } ( x ) \) introduced by Hermann Struve in 1882, defined for \(\nu \in \mathbb{C}\) by
$$ H_{\nu } ( x ) :=\sum_{r=0}^{\infty } \frac{ ( -1 ) ^{r}}{\Gamma ( r+3/2 ) \Gamma ( r+\nu +\frac{3}{2} ) } \biggl( \frac{x}{2} \biggr) ^{2r+\nu +1}, $$
(1)
is the particular solutions of the non-homogeneous Bessel differential equations, given by
$$ x^{2}y^{{\prime \prime }} ( x ) +xy{^{\prime }} ( x ) + \bigl( x^{2}-{\nu }^{2} \bigr) y ( x ) =\frac{4 ( \frac{x}{2} ) ^{\nu +1}}{\sqrt{\pi }\Gamma ( \nu +1/2 ) }. $$
(2)
The homogeneous version of (2) has Bessel functions of the first kind, denoted as \(J_{\nu }(x)\), for solutions, which are finite at \(x = 0\), when ν is a positive fraction and all integers [1], while they tend to diverge for negative fractions ν. The Struve functions occur in certain areas of physics and applied mathematics, for example, in water-wave and surface-wave problems [2, 3], as well as in problems of unsteady aerodynamics [4]. The Struve functions are also important in particle quantum dynamical studies of spin decoherence [5] and nanotubes [6]. For more details about Struve functions, their generalizations and properties, the esteemed reader is invited to consider the references [716]. Recently, Nisar et al. [17] introduced and studied various properties of k-Struve function \(\mathtt{S}_{ \nu ,c}^{\mathtt{k}}\) defined by
$$ \mathtt{S}_{\nu ,c}^{\mathtt{k}}(x):=\sum _{r=0}^{\infty }\frac{(-c)^{r}}{ \Gamma_{\mathtt{k}}(r\mathtt{k}+\nu +\frac{3\mathtt{k}}{2})\Gamma (r+ \frac{3}{2})} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}+1}. $$
(3)
The Sumudu transform was introduced by Watugala (see [18, 19]). For more details about the Sumudu transform, see ([1, 2031]). The Sumudu transform over the set of functions
$$ A= \bigl\{ f( t) \mid \exists ~M,\tau_{1},\tau_{2}>0, \bigl\vert f( t) \bigr\vert < Me^{\vert t\vert /\tau_{j}} ,\text{ if } t\in ( -1) ^{j}\times [0,\infty ) \bigr\} $$
is defined by
$$ G ( u ) =S \bigl[ f ( t ) ;u \bigr] = \int_{0}^{ \infty }f ( ut ) e^{-t}\,dt,\quad u\in ( - \tau_{1},\tau_{2} ) . $$
(4)
The Sumudu transform of k-Struve function is given by
$$\begin{aligned} S \bigl[ \mathtt{S}_{\nu ,c}^{\mathtt{k}}(x) \bigr] &= \int_{0}^{\infty }e ^{-t}\mathtt{S}_{\nu ,c}^{\mathtt{k}}(ut)\,dt \\ &= \int_{0}^{\infty }e^{-t}\sum _{r=0}^{\infty }\frac{(-c)^{r}}{ \Gamma_{\mathtt{k}} ( r\mathtt{k}+\nu +\frac{3\mathtt{k}}{2} ) \Gamma ( r+\frac{3}{2} ) } \biggl( \frac{ut}{2} \biggr) ^{2r+\frac{ \nu }{\mathtt{k}}+1}\,dt \\ &=\sum_{r=0}^{\infty }\frac{(-c)^{r}}{\Gamma_{\mathtt{k}} ( r \mathtt{k}+\nu +\frac{3\mathtt{k}}{2} ) \Gamma ( r+ \frac{3}{2} ) } \int_{0}^{\infty }e^{-t} \biggl( \frac{ut}{2} \biggr) ^{\frac{\nu }{\mathtt{k}}+2r}\,dt \\ &=\sum_{r=0}^{\infty }\frac{(-c)^{r}\Gamma ( \frac{\nu }{ \mathtt{k}}+2r+2 ) }{\Gamma_{\mathtt{k}} ( r\mathtt{k}+\nu +\frac{3 \mathtt{k}}{2} ) \Gamma ( r+\frac{3}{2} ) } \biggl( \frac{u}{2} \biggr) ^{\frac{\nu }{\mathtt{k}}+1+2r}. \end{aligned}$$
(5)
Now, using
$$\begin{aligned} \Gamma_{\mathtt{k}} ( \gamma ) ={\mathtt{k}}^{\frac{\gamma }{ \mathtt{k}}-1}\Gamma \biggl( \frac{\gamma }{\mathtt{k}} \biggr) , \end{aligned}$$
(6)
we have the following:
$$\begin{aligned} S \bigl[ \mathtt{S}_{\nu ,c}^{\mathtt{k}}(x) \bigr] =\sum _{r=0}^{\infty }\frac{(-c)^{r}\Gamma ( \frac{\nu }{\mathtt{k}}+2r+2 ) }{ {\mathtt{k}}^{r+\frac{\nu }{\mathtt{k}}+\frac{1}{2}}\Gamma ( r+\frac{ \nu }{\mathtt{k}}+\frac{3}{2} ) \Gamma ( r+\frac{3}{2} ) } \biggl( \frac{u}{2} \biggr) ^{\frac{\nu }{\mathtt{k}}+1+2r}. \end{aligned}$$
(7)
Denoting the left-hand side by \(G(u)\), we have
$$\begin{aligned} G ( u ) &=S \bigl[ \mathtt{S}_{\nu ,c}^{\mathtt{k}}(t);u \bigr] \\ &= \biggl( \frac{u}{2} \biggr) ^{\frac{\nu }{\mathtt{k}}+1}k^{- \frac{1}{2}-\frac{\nu }{\mathtt{k}}} {}_{2}\Psi_{2}\left [ \textstyle\begin{array}{c} (\frac{\nu }{\mathtt{k}}+2,2),(1,1) \\ (\frac{\nu }{\mathtt{k}}+\frac{3}{2},1),(\frac{3}{2},1) \end{array}\displaystyle \bigg|-\frac{cu^{2}}{4\mathtt{k}} \right ] . \end{aligned}$$
(8)
Now, using the formula
$$ S^{-1} \bigl\{ u^{v};t \bigr\} = \frac{t^{v-1}}{\Gamma (v)}, \qquad \Re (v)>1, $$
(9)
we get the inverse Sumudu transform of k-Struve function as
$$\begin{aligned} S^{-1} \bigl[ \mathtt{S}_{\nu ,c}^{\mathtt{k}}(x) \bigr] &=S^{-1} \Biggl[ \sum_{r=0}^{\infty } \frac{(-c)^{r}}{\Gamma_{\mathtt{k}} ( r\mathtt{k}+ \nu +\frac{3\mathtt{k}}{2} ) \Gamma ( r+\frac{3}{2} ) } \biggl( \frac{u}{2} \biggr) ^{\frac{\nu }{\mathtt{k}}+1+2r} \Biggr] \\ &=\sum_{r=0}^{\infty }\frac{(-c)^{r}}{\Gamma_{\mathtt{k}} ( r \mathtt{k}+\nu +\frac{3\mathtt{k}}{2} ) \Gamma ( r+ \frac{3}{2} ) } \biggl( \frac{1}{2} \biggr) ^{\frac{\nu }{\mathtt{k}}+1+2r}S ^{-1} \bigl[u^{\frac{\nu }{\mathtt{k}}+1+2r} \bigr] \\ &=\sum_{r=0}^{\infty }\frac{(-c)^{r} ( \frac{1}{2} ) ^{\frac{ \nu }{\mathtt{k}}+1+2r}}{\Gamma_{\mathtt{k}} ( r\mathtt{k}+\nu +\frac{3 \mathtt{k}}{2} ) \Gamma ( r+\frac{3}{2} ) } \frac{ ( t ) ^{\frac{\nu }{\mathtt{k}}+2r}}{\Gamma ( \frac{\nu }{\mathtt{k}}+1+2r ) }. \end{aligned}$$
(10)
Applying (6) in (10), we get
$$ S^{-1} \bigl[ \mathtt{S}_{\nu ,c}^{\mathtt{k}}(x) \bigr] = \biggl( \frac{t}{2} \biggr) ^{\frac{\nu }{\mathtt{k}}}k^{-\frac{1}{2}-\frac{\nu }{\mathtt{k}}}{}_{1} \Psi_{3} \left [ \textstyle\begin{array}{c} (1,1) \\ (\frac{\nu }{\mathtt{k}}+\frac{3}{2},1),(\frac{3}{2},1), (\frac{\nu }{\mathtt{k}}, 2) \end{array}\displaystyle \Big|-\frac{ct^{2}}{4\mathtt{k}} \right ] . $$
(11)
In the field of mathematics, many techniques are used to solve various types of problems [3234]. In this paper, we use the Sumudu transform technique to obtain the solutions of fractional kinetic equations by considering (3). The applications of fractional order calculus are found in many papers (see [3537]), and it has attracted researchers’ attention in various fields [3846] because of its importance and efficiency. The fractional differential equation between a chemical reaction or a production scheme (such as in birth-death processes) was established and treated by Haubold and Mathai [47] (also see [21, 38, 48]).

2 Solution of generalized fractional kinetic equations for k-Struve function

Let the arbitrary reaction be described by a time-dependent quantity \(N= ( N_{t} ) \). The rate of change \(\frac{dN}{dt}\) is a balance between the destruction rate \(\mathfrak{d}\) and the production rate \(\mathfrak{p}\) of N, that is, \(\frac{dN}{dt}=-\mathfrak{d}+ \mathfrak{p}\). Generally, destruction and production depend on the quantity N itself, that is,
$$ \frac{dN}{dt}=-\mathfrak{d} ( N_{t} ) +\mathfrak{p} ( N _{t} ) , $$
(12)
where \(N_{t}\) is described by \(N_{t} ( t^{\ast } ) =N ( t-t ^{\ast } ) ,t^{\ast }>0\). Another form of (12) is
$$ \frac{dN_{i}}{dt}=-c_{i}N_{i} ( t ) , $$
(13)
with \(N_{i} ( t=0 ) =N_{0}\), which is the number of density of species i at time \(t=0\) and \(c_{i}>0\). The solution of (13) is
$$ N_{i} ( t ) =N_{0}e^{-c_{i}t}. $$
(14)
Integrating (13) gives
$$ N ( t ) -N_{0}=-c\cdot{}_{0}D_{t}^{-1}N ( t ) , $$
(15)
where \({}_{0}D_{t}^{-1}\) is the particular case of the Riemann-Liouville integral operator and c is a constant. The fractional form of (15) due to [47] is
$$ N ( t ) -N_{0}=-c_{0}^{\upsilon }D_{t}^{-\upsilon }N ( t ) , $$
(16)
where \({}_{0}D_{t}^{-\upsilon }\) is defined as
$$ _{0}D_{t}^{-\upsilon }f ( t ) =\frac{1}{\Gamma ( \upsilon ) } \int _{0}^{t} ( t-s ) ^{\upsilon -1}f ( s )\,ds,\quad \Re ( \upsilon ) >0. $$
(17)
Suppose that \(f(t)\) is a real- or complex-valued function of the (time) variable \(t > 0\) and s is a real or complex parameter. The Laplace transform of \(f(t)\) is defined by
$$ F ( p ) =L \bigl[ f(t):p \bigr] = \int _{0}^{\infty }e ^{-pt}f ( t )\,dt,\quad \Re ( p ) >0. $$
(18)
The Mittag-Leffler functions \(E_{\rho } ( z ) \) (see [49]) and \(E_{\rho ,\lambda } ( x ) \) [50] are defined respectively as follows:
$$ E_{\rho } ( z ) =\sum_{n=0}^{\infty } \frac{z^{n}}{\Gamma ( \rho n+1 ) } \quad \bigl( z,\rho \in \mathbb{C}; \vert z \vert < 0, \Re ( \rho ) >0 \bigr) . $$
(19)
$$ E_{\rho ,\lambda } ( x ) =\sum_{n=0}^{\infty } \frac{x^{n}}{ \Gamma ( \rho n+\lambda ) } \quad \bigl( z,\rho , \lambda \in \mathbb{C};\Re ( \rho ) >0, \Re ( \lambda ) >0 \bigr) . $$
(20)

Theorem 1

If \(d>0,\nu >0, \mu , c, t\in \mathbb{C}\) and \(\mu >-\frac{3}{2} \mathtt{k}\), then the solution of the generalized fractional kinetic equation
$$ N ( t ) =N_{0}~\mathtt{S}_{\mu ,c}^{\mathtt{k}} \bigl( d^{ \nu }t^{\nu } \bigr) -d^{\nu }\text{ }_{0}D_{t}^{-\nu }N ( t ) $$
(21)
is given by the following formula:
$$\begin{aligned} N ( t ) &=N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [ \nu ( 2r+\frac{\mu }{\mathtt{k}}+1 ) +1 ] }{ \Gamma_{\mathtt{k}} ( r\mathtt{k}+\mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \frac{1}{t} \biggl( \frac{d^{\nu }t ^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{\mathtt{k}}+1} \\ &\quad \times E_{\nu ,\nu (2r+\frac{\mu }{\mathtt{k}})+1} \bigl( -d ^{\nu }t^{\nu } \bigr) , \end{aligned}$$
(22)
where \(E_{\nu ,\nu (2r+\frac{\mu }{\mathtt{k}})+1} ( -d^{\nu }t ^{\nu } ) \) is given in (20).

Proof

The Sumudu transform of Riemann-Liouville fractional integral operators is given by
$$\begin{aligned} S \bigl\{ {}_{0}D_{t}^{-\nu }f(t);u \bigr\} =u^{\nu }G(u), \end{aligned}$$
(23)
where \(G(u)\) is defined in (8). Now, applying the Sumudu transform to both sides of (21) and applying the definition of k-Struve function given in (3), we have
$$\begin{aligned} N^{*}(u) &=S \bigl[ N ( t ) ;u \bigr] \\ &=N_{0}S \bigl[ \mathtt{S}_{\mu ,c}^{\mathtt{k}} \bigl( d^{\nu }t^{ \nu } \bigr) ;u \bigr] -d^{\nu }S \bigl[ {}_{0}D_{t}^{-\nu }N ( t ) ;u \bigr] \\ &=N_{0} \Biggl[ \int_{0}^{\infty }e^{-pt}\sum _{r=0}^{\infty }\frac{ ( -c ) ^{r}}{\Gamma_{\mathtt{k}} ( r\mathtt{k}+\mu + \frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \biggl( \frac{d^{\nu }(ut)^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{ \mathtt{k}}+1}\,dt \Biggr] \\ &\quad {}-d^{\nu }u^{\nu }N^{*} ( u ) , \end{aligned}$$
(24)
where
$$\begin{aligned} S \bigl\{ t^{\mu -1} \bigr\} =u^{\mu -1}\Gamma (\mu ). \end{aligned}$$
(25)
By rearranging terms, we get
$$\begin{aligned} &N^{*} ( u ) +d^{\nu }u^{\nu }N^{*} ( u ) \\ &\quad =N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}}{ \Gamma_{\mathtt{k}} ( r\mathtt{k}+\mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \biggl( \frac{d^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{\mathtt{k}}+1} \\ &\quad \quad {}\times \int_{0}^{\infty }e^{-t} ( ut ) ^{\nu (2r+\frac{ \mu }{\mathtt{k}}+1)}\,dt \\ &\quad =N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [\nu (2r+\frac{ \mu }{\mathtt{}k}+1)+1]}{\Gamma_{\mathtt{k}} ( r\mathtt{k}+ \mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \biggl( \frac{u^{\nu }d^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{\mathtt{k}}+1}. \end{aligned}$$
Therefore
$$\begin{aligned} N^{*} ( u ) &=N_{0}\sum _{r=0}^{\infty }\frac{ ( -c ) ^{r}\Gamma [\nu (2r+\frac{\mu }{\mathtt{}k}+1)+1]}{\Gamma_{\mathtt{k}} ( r\mathtt{k}+\mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+ \frac{3}{2} ) } \biggl( \frac{d^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{ \mathtt{k}}+1} \\ &\times \Biggl\{ u^{\nu (2r+\frac{\mu }{\mathtt{k}}+1)}\sum_{n=0}^{ \infty } \bigl[ -(du)^{\nu } \bigr] ^{n} \Biggr\} . \end{aligned}$$
(26)
Taking the inverse Sumudu transform of (26) and by using
$$\begin{aligned} S^{-1} \bigl\{ u^{\nu };t \bigr\} = \frac{t^{\nu -1}}{\Gamma ( \nu ) },\quad \Re ( \nu ) >0, \end{aligned}$$
(27)
we have
$$\begin{aligned} S^{-1} \bigl\{ N^{*} ( u ) \bigr\} &=N_{0}\sum _{r=0}^{\infty }\frac{ ( -c ) ^{r}\Gamma [\nu (2r+\frac{\mu }{\mathtt{}k}+1)+1]}{ \Gamma_{\mathtt{k}} ( r\mathtt{k}+\mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \biggl( \frac{d^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{\mathtt{k}}+1} \\ &\quad \times S^{-1} \Biggl\{ \sum_{n=0}^{\infty }(-1)^{n}(d)^{\nu n}u^{ \nu (2r+\frac{\mu }{\mathtt{k}}+n+1)} \Biggr\} , \end{aligned}$$
which gives
$$\begin{aligned} N(t) &=N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [ \nu (2r+\frac{\mu }{\mathtt{k}}+1)+1]}{\Gamma_{\mathtt{k}} ( r \mathtt{k}+\mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+ \frac{3}{2} ) } \biggl( \frac{d^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{ \mathtt{k}}+1} \\ & \quad {}\times \Biggl\{ \sum_{n=0}^{\infty }(-1)^{n}(d)^{\nu n} \frac{t^{ \nu ( 2r+\frac{\mu }{\mathtt{k}}+n+1 ) -1}}{\Gamma [ \nu ( 2r+\frac{\mu }{\mathtt{k}}+n+1 ) ] } \Biggr\} \\ & =N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [\nu (2r+\frac{ \mu }{\mathtt{k}}+1)+1]}{\Gamma_{\mathtt{k}} ( r\mathtt{k}+ \mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \frac{1}{t} \biggl( \frac{d^{\nu }t^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{ \mathtt{k}}+1} \\ & \quad {}\times \Biggl\{ \sum_{n=0}^{\infty }(-1)^{n}(d)^{\nu n} \frac{t^{ \nu }}{\Gamma [ \nu ( 2r+\frac{\mu }{\mathtt{k}}+n+1 ) ] } \Biggr\} \\ & =N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [ \nu ( 2r+\frac{\mu }{\mathtt{k}}+1 ) +1 ] }{\Gamma_{ \mathtt{k}} ( r\mathtt{k}+\mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \frac{1}{t} \biggl( \frac{d^{\nu }t ^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{\mathtt{k}}+1} \\ &\quad \times E_{\nu ,\nu (2r+\frac{\mu }{\mathtt{k}})+1} \bigl( -d^{\nu }t ^{\nu } \bigr) , \end{aligned}$$
which is the desired result. □

Corollary 1

If we put \(\mathtt{k}=1\) in ( 22 ), then we get the solution of involving the classical Struve function as follows: If \(d>0,\nu >0, \mu , c, t\in \mathbb{C}\) and \(\mu >-\frac{3}{2}\), then the equation
$$ N ( t ) =N_{0}~\mathtt{S}_{\mu ,c}^{1} \bigl( d^{\nu }t^{ \nu } \bigr) -d^{\nu }\text{ }_{0}D_{t}^{-\nu }N ( t ) $$
(28)
has the solution
$$\begin{aligned} N ( t ) &=N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [ \nu ( 2r+\mu +1 ) +1 ] }{\Gamma ( r+ \mu +\frac{3}{2} ) \Gamma ( r+\frac{3}{2} ) } \frac{1}{t} \biggl( \frac{d^{\nu }t^{\nu }}{2} \biggr) ^{2r+\mu +1} \\ &\quad {}\times E_{\nu ,\nu (2r+\mu )+1} \bigl( -d^{\nu }t^{\nu } \bigr) . \end{aligned}$$
(29)

Theorem 2

If \(\mathfrak{a}>0, d>0, \nu >0,c,\mu ,t\in \mathbb{C}, \mathfrak{a} \neq d\) and \(\mu >-\frac{3}{2}\mathtt{k}\), then the solution of equation
$$ N ( t ) =N_{0}~\mathtt{S}_{\mu ,c}^{\mathtt{k}} \bigl( {d} ^{\nu }t^{\nu } \bigr) -{\mathfrak{a}}^{\nu }\text{ }_{0}D_{t}^{- \nu }N ( t ) $$
(30)
is given by
$$\begin{aligned} N ( t ) &=N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [ \nu ( 2r+\frac{\mu }{\mathtt{k}}+1 ) +1 ] }{ \Gamma_{\mathtt{k}} ( r\mathtt{k}+\mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \frac{1}{t} \biggl( \frac{d^{\nu }t ^{\nu }}{2} \biggr) ^{2r+\frac{\mu }{\mathtt{k}}+1} \\ &\quad {}\times E_{\nu ,\nu (2r+\frac{\mu }{\mathtt{k}})+1} \bigl( -{\mathfrak{a}} ^{\nu }t^{\nu } \bigr) , \end{aligned}$$
(31)
where \(E_{\nu ,\nu (2r+\frac{\mu }{\mathtt{k}})+1}(\cdot)\) is given in (20).

Proof

Theorem 2 can be proved in parallel with the proof of Theorem 1. So the details of proofs are omitted. □

Corollary 2

By putting \(\mathtt{k}=1\) in Theorem 2, we get the solution of fractional kinetic equation involving classical Struve function: If \(\mathfrak{a}>0, d>0, \nu >0,c,\mu ,t\in \mathbb{C}, \mathfrak{a} \neq d\) and \(\mu >-\frac{3}{2}\), then the equation
$$ N ( t ) =N_{0}~\mathtt{S}_{\mu ,c}^{1} \bigl( {d}^{\nu }t^{ \nu } \bigr) -{\mathfrak{a}}^{\nu }\text{ }_{0}D_{t}^{-\nu }N ( t ) $$
(32)
is given by the following formula:
$$\begin{aligned} N ( t ) &=N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [ \nu ( 2r+\mu +1 ) +1 ] }{\Gamma ( r+ \mu +\frac{3}{2} ) \Gamma ( r+\frac{3}{2} ) } \frac{1}{t} \biggl( \frac{d^{\nu }t^{\nu }}{2} \biggr) ^{2r+\mu +1} E_{\nu ,\nu (2r+\mu )+1} \bigl( -{\mathfrak{a}}^{\nu }t^{ \nu } \bigr) . \end{aligned}$$
(33)

Theorem 3

If \(d>0,\nu >0,c,\mu ,t\in \mathbb{C}\) and \(\mu >-\frac{3}{2} \mathtt{k}\), then the solution of
$$ N ( t ) =N_{0}~\mathtt{S}_{\mu ,c}^{\mathtt{k}} \bigl( t^{ \nu } \bigr) -d^{\nu } {}_{0}D_{t}^{-\nu }N ( t ) $$
(34)
is given by
$$\begin{aligned} N ( t ) &=N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [ \nu ( 2r+\frac{\mu }{\mathtt{k}}+1 ) +1 ] }{ \Gamma_{\mathtt{k}} ( r\mathtt{k}+\mu +\frac{3}{2}\mathtt{k} ) \Gamma ( r+\frac{3}{2} ) } \frac{1}{t} \biggl( \frac{t}{2} \biggr) ^{2r+\frac{\mu }{\mathtt{k}}+1} \\ &\quad {}\times E_{\nu ,\nu (2r+\frac{\mu }{\mathtt{k}})+1} \bigl( -{{d}}^{ \nu }t^{\nu } \bigr) , \end{aligned}$$
(35)
where \(E_{\nu ,\nu (2r+\frac{\mu }{\mathtt{k}})+1}(\cdot)\) is given in (20).

Proof

The proofs of Theorem 3 would run parallel to those of Theorem 1. □

Corollary 3

If we set \(\mathtt{k}=1\), then (35) is reduced as follows: If \(d>0,\nu >0,c,\mu ,t\in \mathbb{C}\) and \(\mu >-\frac{3}{2}\), then the solution of the following equation
$$ N ( t ) =N_{0}~\mathtt{S}_{\mu ,c}^{1} \bigl( t^{\nu } \bigr) -d ^{\nu } {}_{0}D_{t}^{-\nu }N ( t ) $$
(36)
is given by the formula
$$\begin{aligned} N ( t ) &=N_{0}\sum_{r=0}^{\infty } \frac{ ( -c ) ^{r}\Gamma [ \nu ( 2r+\mu +1 ) +1 ] }{\Gamma ( r+ \mu +\frac{3}{2} ) \Gamma ( r+\frac{3}{2} ) } \frac{1}{t} \biggl( \frac{t}{2} \biggr) ^{2r+\mu +1} \\ &\quad {}\times E_{\nu ,\nu (2r+\mu )+1} \bigl( -{{d}}^{\nu }t^{\nu } \bigr) . \end{aligned}$$
(37)

3 Graphical interpretation

In this section, first we plot the graphs of our solutions of the fractional kinetic equation, which is established in (22). In each graph, we give three solutions of the results on the basis of assigning different values to the parameters. In Figure 1, we take \(\mathtt{k}=1\) and \(\nu =0.5, 0.7, 0.9,1, 1.5\). Similarly, Figures 2, 3 are plotted respectively by taking \(\mathtt{k}=2\) and 3. Figures 4, 5, 6 are plotted by considering the solution given in (35) by taking \(\nu =0.5, 0.7, 0.9, 1, 1.5\) and \(\mathtt{k}=1,2,3\). Other than ν and k, all other parameters are fixed by 1. Observing these figures, we see that \(N{(t)}>0\) for \(t>0\) and the behavior of the solutions for different parameters and time interval can be studied and observed very easily. In this study, we choose first 50 terms of Mittag-Leffler function and first 50 terms of our solutions to plot the graphs. Also, the comparison between solutions of generalized fractional kinetic equations involving generalized Bessel function (solid green line) and k-Struve function (dashed red line) are shown in Figure 7.
Figure 1

Solution ( 22 ) for \(\pmb{N(t),\mathtt{k}=1}\) .

Figure 2

Solution ( 22 ) for \(\pmb{N(t),\mathtt{k}=2}\) .

Figure 3

Solution ( 22 ) for \(\pmb{N(t),\mathtt{k}=3}\) .

Figure 4

Solution ( 35 ) for \(\pmb{N(t),\mathtt{k}=1}\) .

Figure 5

Solution ( 35 ) for \(\pmb{N(t),\mathtt{k}=2}\) .

Figure 6

Solution ( 35 ) for \(\pmb{N(t),\mathtt{k}=3}\) .

Figure 7

Comparison between solutions ( 22 ) and (18) of [ 51 ].

4 Conclusion

In this work, we have established the solution of fractional kinetic equation involving k-Struve function with the help of the Sumudu transform and provided its graphical interpretations. From the close relationship of the k-Struve function with other special functions, one can easily construct various known and new fractional kinetic equations.

Declarations

Authors’ contributions

The authors have contributed equally to this manuscript. They read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, College of Arts and Science at Wadi Aldawaser, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
(2)
Department of Mathematics, Faculty of Basic Education, PAAET, Al-Ardhiya, Kuwait

References

  1. Belgacem, FBM: Applications with the Sumudu transform to Bessel functions and equations. Appl. Math. Sci. 4, 3665-3686 (2010) MATHMathSciNetGoogle Scholar
  2. Ahmadi, AL, Widnall, SE: Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech. 153, 59-81 (1985) View ArticleMATHGoogle Scholar
  3. Hirata, MH: Flow near the bow of a steadily turning ship. J. Fluid Mech. 71(2), 283-291 (1975) View ArticleMATHGoogle Scholar
  4. Shaw, DC: Perturbational results for diffraction of water-waves by nearly-vertical barriers. IMA J. Appl. Math. 34, 99-117 (1985) View ArticleMATHMathSciNetGoogle Scholar
  5. Shao, J, Hanggi, P: Decoherent dynamics of a two-level system coupled to a sea of spins. Phys. Rev. Lett. 81(26), 5710-5713 (1998) View ArticleGoogle Scholar
  6. Pedersen, TG: Variational approach to excitons in carbon nanotubes. Phys. Rev. B 67, Article ID 073401 (2003). doi:10.1103/PhysRevB.67.073401 View ArticleGoogle Scholar
  7. Orhan, H, Yagmur, N: Geometric properties of generalized Struve functions. An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat. (2014). doi:10.2478/aicu-2014-0007 MATHGoogle Scholar
  8. Yagmur, N, Orhan, H: Starlikeness and convexity of generalized Struve functions. Abstr. Appl. Anal. 2013, Article ID 954513 (2013). doi:10.1155/2013/954513 View ArticleMATHMathSciNetGoogle Scholar
  9. Bhowmick, KN: Some relations between a generalized Struve’s function and hypergeometric functions. Vijnana Parishad Anusandhan Patrika 5, 93-99 (1962) MATHMathSciNetGoogle Scholar
  10. Bhowmick, KN: A generalized Struve’s function and its recurrence formula. Vijnana Parishad Anusandhan Patrika 6, 1-11 (1963) MathSciNetGoogle Scholar
  11. Kanth, BN: Integrals involving generalized Struve’s function. Nepali Math. Sci. Rep. 6, 61-64 (1981) MATHMathSciNetGoogle Scholar
  12. Singh, RP: Generalized Struve’s function and its recurrence relations. Ranchi Univ. Math. J. 5, 67-75 (1974) MATHMathSciNetGoogle Scholar
  13. Singh, RP: Generalized Struve’s function and its recurrence equation. Vijnana Parishad Anusandhan Patrika 28(3), 287-292 (1985) MATHMathSciNetGoogle Scholar
  14. Singh, RP: Some integral representation of generalized Struve’s function. Math. Educ. 22(3), 91-94 (1988) MATHMathSciNetGoogle Scholar
  15. Singh, RP: On definite integrals involving generalized Struve’s function. Math. Educ. 22(2), 62-66 (1988) MATHMathSciNetGoogle Scholar
  16. Singh, RP: Infinite integrals involving generalized Struve function. Math. Educ. 23(1), 30-36 (1989) MATHMathSciNetGoogle Scholar
  17. Nisar, KS, Mondal, SR, Choi, J: Certain inequalities involving the k-Struve function. J. Inequal. Appl. 17, Article ID 71 (2017). doi:10.1186/s13660-017-1343-x View ArticleMATHMathSciNetGoogle Scholar
  18. Watugala, GK: Sumudu transform: a new integral transform to solve differential equations and control engineering problems. Int. J. Math. Educ. Sci. Technol. 24, 35-43 (1993) View ArticleMATHMathSciNetGoogle Scholar
  19. Watugala, GK: The Sumudu transform for functions of two variables. Math. Eng. Ind. 8, 293-302 (2002) MATHMathSciNetGoogle Scholar
  20. Asiru, MA: Sumudu transform and the solution of integral equation of convolution type. Int. J. Math. Educ. Sci. Technol. 32, 906-910 (2001) View ArticleMATHMathSciNetGoogle Scholar
  21. Belgacem, FBM, Karaballi, AA, Kalla, SL: Analytical investigations of the Sumudu transform and applications to integral production equations. J. Math. Probl. Eng. 3, 103-118 (2003) View ArticleMATHMathSciNetGoogle Scholar
  22. Belgacem, FBM, Karaballi, AA: Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. 2006, Article ID 91083 (2006). doi:10.1155/JAMSA/2006/91083 View ArticleMATHMathSciNetGoogle Scholar
  23. Belgacem, FBM: Introducing and analyzing deeper Sumudu properties. Nonlinear Stud. 13, 23-42 (2006) MATHMathSciNetGoogle Scholar
  24. Belgacem, FBM: Sumudu applications to Maxwell’s equations. PIERS Online 5, 355-360 (2009) View ArticleGoogle Scholar
  25. Belgacem, FBM, Silambarasan, R: A distinctive Sumudu treatment of trigonometric functions. J. Comput. Appl. Math. 312, 74-81 (2017) View ArticleMATHMathSciNetGoogle Scholar
  26. Belgacem, FBM, Al-Shemas, EH, Silambarasan, R: Sumudu computation of the transient magnetic field in a Lossy medium. Appl. Math. Inf. Sci. 6, 1-9 (2016) Google Scholar
  27. Chaurasia, VBL, Dubey, RS, Belgacem, FBM: Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms. Int. J. Math. Eng. Sci. Aerosp. 3(2), 179-188 (2012) MATHGoogle Scholar
  28. Hussain, MGM, Belgacem, FBM: Transient solutions of Maxwell’s equations based on Sumudu transformation. J. Progr. Electromagn. Res. (PIER) 74, 273-289 (2007) View ArticleGoogle Scholar
  29. Atangana, A, Baleanu, D: Nonlinear fractional Jaulent-Miodek and Whitham-Broer-Kaup equations within Sumudu transform. Abstr. Appl. Anal. 2013, Article ID 160681 (2013). doi:10.1155/2013/160681 MATHMathSciNetGoogle Scholar
  30. Srivastava, HM, Golmankhaneh, AK, Baleanu, D, Yang, X-J: Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr. Appl. Anal. 2014, Article ID 620529 (2014) MathSciNetGoogle Scholar
  31. Ziane, D, Baleanu, D, Belghaba, K, Hamdi Cherif, M: Local fractional sumudu decomposition method for linear partial differential equations with local fractional derivative. J. King Saud Univ., Sci. (2017). doi:10.1016/j.jksus.2017.05.002 Google Scholar
  32. Marin, M: On weak solutions in elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82(1-2), 291-297 (1997) View ArticleMATHMathSciNetGoogle Scholar
  33. Marin, M: Harmonic vibrations in thermoelasticity of microstretch materials. J. Vib. Acoust. ASME 132(4), 044501-044506 (2010). doi:10.1115/1.4000971 View ArticleGoogle Scholar
  34. Sharma, K, Marin, M: Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space. UPB Sci. Bull., Ser. A, Appl. Math. Phys. 75(2), 121-132 (2013) MATHMathSciNetGoogle Scholar
  35. Yang, X-J: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Therm. Sci. 21(3), 1161-1171 (2017) View ArticleGoogle Scholar
  36. Yang, X-J, Srivastava, HM, Tenreiro Machado, JA: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm. Sci. 20(2), 753-756 (2016) View ArticleGoogle Scholar
  37. Yang, X-J, Tenreiro Machado, JA: A new fractional operator of variable order: application in the description of anomalous diffusion. Phys. A, Stat. Mech. Appl. 481, 276-283 (2017) View ArticleMathSciNetGoogle Scholar
  38. Gupta, VG, Sharma, B, Belgacem, FBM: On the solutions of generalized fractional kinetic equations. Appl. Math. Sci. 5(19), 899-910 (2011) MATHMathSciNetGoogle Scholar
  39. Nisar, KS, Purohit, SD, Mondal, SR: Generalized fractional kinetic equations involving generalized Struve function of the first kind. J. King Saud Univ., Sci. 28(2), 167-171 (2016) View ArticleGoogle Scholar
  40. Saichev, A, Zaslavsky, M: Fractional kinetic equations: solutions and applications. Chaos 7, 753-764 (1997) View ArticleMATHMathSciNetGoogle Scholar
  41. Saxena, RK, Mathai, AM, Haubold, HJ: On fractional kinetic equations. Astrophys. Space Sci. 282, 281-287 (2002) View ArticleGoogle Scholar
  42. Saxena, RK, Mathai, AM, Haubold, HJ: On generalized fractional kinetic equations. Physica A 344, 657-664 (2004) View ArticleMathSciNetGoogle Scholar
  43. Saxena, RK, Mathai, AM, Haubold, HJ: Solution of generalized fractional reaction-diffusion equations. Astrophys. Space Sci. 305, 305-313 (2006) View ArticleMATHGoogle Scholar
  44. Saxena, RK, Kalla, SL: On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 199, 504-511 (2008) MATHMathSciNetGoogle Scholar
  45. Zaslavsky, GM: Fractional kinetic equation for Hamiltonian chaos. Physica D 76, 110-122 (1994) View ArticleMATHMathSciNetGoogle Scholar
  46. Katatbeh, QK, Belgacem, FBM: Applications of the Sumudu transform to fractional differential equations. Nonlinear Stud. 18(1), 99-112 (2011) MATHMathSciNetGoogle Scholar
  47. Haubold, HJ, Mathai, AM: The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 327, 53-63 (2000) View ArticleMATHGoogle Scholar
  48. Chaurasia, VBL, Pandey, SC: On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions. Astrophys. Space Sci. 317, 213-219 (2008) View ArticleGoogle Scholar
  49. Mittag-Leffler, GM: Sur la representation analytiqie d’une fonction monogene cinquieme note. Acta Math. 29, 101-181 (1905) View ArticleMATHMathSciNetGoogle Scholar
  50. Wiman, A: Uber den fundamental satz in der theorie der funktionen \(E_{\alpha } ( z ) \). Acta Math. 29, 191-201 (1905) View ArticleMATHMathSciNetGoogle Scholar
  51. Kumar, D, Purohit, SD, Secer, A, Atangana, A: On generalized fractional kinetic equations involving generalized Bessel function of the first kind. Math. Probl. Eng. 2015, Article ID 289387 (2015). doi:10.1155/2015/289387 View ArticleMathSciNetGoogle Scholar

Copyright

© The Author(s) 2017