Skip to content

Advertisement

Open Access

Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent

Advances in Difference Equations20162016:291

https://doi.org/10.1186/s13662-016-0983-3

Received: 15 March 2016

Accepted: 26 September 2016

Published: 14 November 2016

Abstract

In this paper, we establish some interval oscillation criteria for a class of second-order nonlinear forced differential equations with variable exponent growth conditions. Our results not only give the sufficient conditions for the oscillation of equations with variable exponent growth conditions, but also they extend some existing results in the literature for equations with a Riemann-Stieltjes integral. Two examples are also considered to illustrate the main results.

Keywords

oscillationRiemann-Stieltjes integralsecond-order nonlinear equationvariable exponent

1 Introduction

In this paper, we will establish some interval oscillation criteria for the following equation:
$$ \bigl(p(t)u'(t)\bigr)'+q(t)u(t)+ \int_{a}^{b}g(t,s)\bigl\vert u(t)\bigr\vert ^{\gamma(t,s)+1-\beta(t)}\operatorname{sgn}u(t)\,\mathrm{d}\xi(s)=e(t), \quad t\geq t_{0}, $$
(1)
where \(p, q, \beta, e\in C[t_{0},+\infty)\) with \(p(t)>0\), \(\beta (t)>0\), \(a\in\mathbf{R}\), \(b\in(a,+\infty)\), \(g\in C([t_{0},+\infty )\times[a,b])\), \(\xi:[a,b]\rightarrow\mathbf{R}\) is strictly increasing, \(\gamma\in C([t_{0},+\infty)\times[a,b])\), and \(\gamma(t,\cdot )\) is strictly increasing on \([a,b]\) such that
$$0< \gamma(t,a)< \beta(t)< \gamma(t,b),\qquad \beta(t)\leq\gamma (t,a)+1, \quad t \in[t_{0},+\infty). $$
Here \(\int_{a}^{b}f(s)\,\mathrm{d}\xi(s)\) denotes the Riemann-Stieltjes integral of the function f on \([a, b]\) with respect to ξ.

As usual, a nontrivial solution \(u(t)\) of equation (1) is called oscillatory if it has arbitrary large zeroes, otherwise it is called nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory.

For the particular case when \(\gamma(t,s)=\alpha(s)\), \(a=0\), and \(\beta (t)\equiv1\), equation (1) reduces to the following equation:
$$ \bigl(p(t)u'(t)\bigr)'+q(t)u(t)+ \int_{0}^{b}g(t,s)\bigl\vert u(t)\bigr\vert ^{\alpha(s)}\operatorname{sgn}u(t)\,\mathrm{d}\xi(s)=e(t), $$
(2)
which have been observed in Sun and Kong [1].
For the particular case when \(a=1\), \(b=l+m+1\), where \(l, m\in\mathbf {N}\) and for \(s\in[0,l+m+1)\), \(\xi(s)=\sum_{j=1}^{l+m}\chi(s-j)\) with
$$\chi(s)=\left \{ \textstyle\begin{array}{l@{\quad}l} 1, &s\geq0, \\ 0, &s< 0, \end{array}\displaystyle \right . $$
\(\gamma\in C([t_{0},+\infty)\times[0,l+m+1))\) such that
$$\gamma(t,j)=\alpha_{j}(t), \quad j=1,2,\ldots,m; \qquad \gamma(t,m+i)=\theta _{i}(t), \quad i=1,2,\ldots,l, $$
satisfying \(0<\alpha_{1}(t)<\cdots<\alpha_{m}(t)<\beta(t)<\theta_{1}(t)<\cdots<\theta _{l}(t)\), \(\beta(t)\leq\alpha_{1}(t)+1\), \(t\in[t_{0},+\infty)\),
$$\begin{aligned}& g(t,j)=A_{j}(t)\in C[t_{0},+\infty), \quad j=1,2,\ldots,m; \\& g(t,m+i)=B_{i}(t)\in C[t_{0},+\infty), \quad i=1,2,\ldots,l. \end{aligned}$$
Then equation (1) reduces to the following equation with variable exponent growth conditions:
$$\begin{aligned}& \bigl(p(t)u'(t)\bigr)'+q(t)u(t)+\sum _{j=1}^{m}A_{j}(t)\bigl\vert u(t)\bigr\vert ^{\alpha_{j}(t)+1-\beta(t)}\operatorname{sgn}u(t) \\& \quad {}+\sum_{i=1}^{l}B_{i}(t) \bigl\vert u(t)\bigr\vert ^{\theta_{i}(t)+1-\beta(t)}\operatorname{sgn}u(t) =e(t). \end{aligned}$$
(3)
For the particular case when \(p(t)\equiv1\), \(q(t)\equiv0\), \(m=1\), \(\alpha_{1}(t)\equiv\alpha\neq1\), \(\beta(t)\equiv1\), \(B_{i}(t)\equiv0\), \(i=1,2,\ldots,l\), equation (3) reduces to the well-known Emden-Fowler equation,
$$ u''(t)+q(t)\bigl\vert u(t)\bigr\vert ^{\alpha}\operatorname{sgn}u(t)=0. $$
(4)

In the past 50 years, extensive work has been done and great progress has been made on oscillation of equation (4) and more general equations (see [124] and the references therein). On the other hand, with wide use in the nonlinear elasticity theory and electrorheological fluids (see [25, 26]), the differential equations and variational problems with variable exponent growth conditions have been investigated by many authors in recent years (see [2737]). However, we notice that no criteria were found for equation (1) even for the special case of equation (3) to be oscillatory so far in the literature. The purpose of this paper is to establish some interval oscillation results for equation (1) which involves variable exponent growth conditions. Clearly, our work is of significance because equation (1) allows an infinite number of nonlinear terms and even a continuum of nonlinearities determined by the function ξ.

The organization of this article is as follows. After this introduction, in Section 2, we establish interval oscillation criteria of both the El-Sayed type and the Kong type for equation (1). In Section 3, we give two examples to illustrate our main results.

2 Main results

In the sequel, we denote by \(L_{\xi}[a, b]\) the set of Riemann-Stieltjes integrable functions on \([a, b]\) with respect to ξ. We further assume that for any \(t\in[t_{0},+\infty)\), \(\gamma(t,\cdot), 1/\gamma(t,\cdot)\in L_{\xi}[a, b]\).

Lemma 2.1

Suppose that \(\gamma\in C([t_{0},+\infty)\times [a,b])\), and for any \(t\in[t_{0},+\infty)\), \(\gamma(t,\cdot)\) is strictly increasing on \([a,b]\), \(\beta\in C[t_{0},+\infty)\) such that
$$0< \gamma(t,a)< \beta(t)< \gamma(t,b),\qquad \beta(t)\leq\gamma (t,a)+1, \quad t \in[t_{0},+\infty). $$
Let \(h=\sup\{s\in(a,b):\gamma(t,s)\leq\beta(t), t\in[t_{0},+\infty) \}\), and
$$\begin{aligned}& m_{1}(t):= \int_{h}^{b}\frac{\beta^{2}(t)}{\gamma(t,s)} \biggl( \int_{h}^{b}\mathrm{d}\xi(s) \biggr)^{-1} \,\mathrm{d}\xi(s), \quad t\in[t_{0},+\infty), \\& m_{2}(t):= \int_{a}^{h}\frac{\beta^{2}(t)}{\gamma(t,s)} \biggl( \int_{a}^{h}\mathrm{d}\xi(s) \biggr)^{-1} \,\mathrm{d}\xi(s), \quad t\in[t_{0},+\infty). \end{aligned}$$
Then, for any function θ satisfying \(\theta(t)\in (m_{1}(t),m_{2}(t))\) for \(t\in[t_{0},+\infty)\), there exists \(\eta:[t_{0},+\infty)\times[a,b]\rightarrow(0, +\infty)\) satisfying for any \(t\in[t_{0},+\infty)\), \(\eta(t,\cdot)\in L_{\xi}[a,b]\), such that
$$ \int_{a}^{b}\gamma(t,s)\eta(t,s)\,\mathrm{d}\xi(s)= \beta^{2}(t), \quad (t,s)\in[t_{0},+\infty) \times[a,b], $$
(5)
and
$$ \int_{a}^{b}\eta(t,s)\,\mathrm{d}\xi(s)=\theta(t), \quad (t,s)\in[t_{0},+\infty)\times[a,b]. $$
(6)

Proof

Define
$$ \eta_{1}(t,s)=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{\beta^{2}(t)}{\gamma(t,s)} (\int_{h}^{b}\mathrm{d}\xi(s) )^{-1}, &(t,s)\in[t_{0},+\infty)\times[h,b], \\ 0, &(t,s)\in[t_{0},+\infty)\times[a,h), \end{array}\displaystyle \right . $$
(7)
and
$$ \eta_{2}(t,s)=\left \{ \textstyle\begin{array}{l@{\quad}l} 0, &(t,s)\in[t_{0},+\infty)\times[h,b], \\ \frac{\beta^{2}(t)}{\gamma(t,s)} (\int_{a}^{h}\mathrm{d}\xi(s) )^{-1}, &(t,s)\in[t_{0},+\infty)\times[a,h). \end{array}\displaystyle \right . $$
(8)
Note that, for any \(t\in[t_{0},+\infty)\), \(1/\gamma(t,\cdot)\in L_{\xi}[a, b]\). Thus, for any \(t\in[t_{0},+\infty)\), \(\eta_{i}(t,\cdot)\in L_{\xi}[a, b]\), and
$$ \int_{a}^{b}\gamma(t,s)\eta_{i}(t,s)\, \mathrm{d}\xi(s)=\beta^{2}(t),\quad i=1,2. $$
(9)
Moreover, by the choice of h, we can easily get, for any \(t\in [t_{0},+\infty)\),
$$\begin{aligned}& m_{1}(t) = \int_{h}^{b}\frac{\beta^{2}(t)}{\gamma(t,s)} \biggl( \int_{h}^{b}\mathrm{d}\xi (s) \biggr)^{-1} \,\mathrm{d}\xi(s) \\& \hphantom{m_{1}(t)}= \beta(t) \biggl( \int_{h}^{b}\mathrm{d}\xi(s) \biggr)^{-1} \int_{h}^{b}\frac{\beta (t)}{\gamma(t,s)}\,\mathrm{d}\xi(s) \\& \hphantom{m_{1}(t)} < \beta(t) \biggl( \int_{h}^{b}\mathrm{d}\xi(s) \biggr)^{-1} \int_{h}^{b}\mathrm{d}\xi(s) \\& \hphantom{m_{1}(t)} = \beta(t), \end{aligned}$$
(10)
$$\begin{aligned}& m_{2}(t) = \int_{a}^{h}\frac{\beta^{2}(t)}{\gamma(t,s)} \biggl( \int_{a}^{h}\mathrm{d}\xi (s) \biggr)^{-1}\,\mathrm{d}\xi(s) \\& \hphantom{m_{2}(t)}= \beta(t) \biggl( \int_{a}^{h}\mathrm{d}\xi(s) \biggr)^{-1} \int_{a}^{h}\frac{\beta (t)}{\gamma(t,s)}\,\mathrm{d}\xi(s) \\& \hphantom{m_{2}(t)} > \beta(t) \biggl( \int_{a}^{h}\mathrm{d}\xi(s) \biggr)^{-1} \int_{a}^{h}\mathrm{d}\xi(s) \\& \hphantom{m_{2}(t)} = \beta(t). \end{aligned}$$
(11)
Therefore, for any \(\theta(t)\in(m_{1}(t),m_{2}(t))\), \(t\in[t_{0},+\infty)\), there exists a function \(p^{*}:[t_{0},+\infty)\rightarrow(0,1)\) such that
$$ \bigl[1-p^{*}(t)\bigr]m_{1}(t)+p^{*}(t)m_{2}(t)= \theta(t). $$
(12)
Let
$$ \eta(t,s)=\bigl[1-p^{*}(t)\bigr]\eta_{1}(t,s)+p^{*}(t) \eta_{2}(t,s), \quad \mbox{for } (t,s)\in[t_{0},+\infty) \times[a,b], $$
(13)
then \(\eta(t,s)>0\) for \((t,s)\in[t_{0},+\infty)\times[a,b]\), and for any \(t\in[t_{0},+\infty)\), \(\eta(t,\cdot)\in L_{\xi}[a,b]\). From (10)-(13), we get
$$\begin{aligned} \int_{a}^{b}\eta(t,s)\,\mathrm{d}\xi(s) =& \bigl[1-p^{*}(t)\bigr] \int _{a}^{b}\eta_{1}(t,s)\,\mathrm{d} \xi(s)+p^{*}(t) \int_{a}^{b}\eta_{2}(t,s)\,\mathrm{d}\xi (s) \\ =&\bigl[1-p^{*}(t)\bigr]m_{1}(t)+p^{*}(t)m_{2}(t) \\ =&\theta(t). \end{aligned}$$
Also from (9) and (13), we have
$$\begin{aligned} \int_{a}^{b}\gamma(t,s)\eta(t,s)\,\mathrm{d}\xi(s) =&\bigl[1-p^{*}(t)\bigr] \int_{a}^{b}\gamma(t,s)\eta_{1}(t,s)\, \mathrm{d}\xi(s) \\ &{}+p^{*}(t) \int_{a}^{b}\gamma(t,s)\eta_{2}(t,s)\, \mathrm{d}\xi(s) \\ =&\bigl[1-p^{*}(t)\bigr]\beta^{2}(t)+p^{*}(t)\beta^{2}(t) \\ =&\beta^{2}(t). \end{aligned}$$
This completes the proof of Lemma 2.1. □

Remark 2.1

We will see from the proof of Lemma 2.1 that the function η can be constructed explicitly for any nondecreasing function ξ.

Remark 2.2

If we take \(\gamma(t,s)=\alpha(s)\), \(a=0\), and \(\beta(t)\equiv1\), then Lemma 2.1 reduces to Lemma 2.1 in [1].

Lemma 2.2

Let functions \(\theta:[t_{0},+\infty )\rightarrow(0,+\infty)\), \(w:[t_{0},+\infty)\times[a,b]\rightarrow [0,+\infty)\), \(\eta:[t_{0},+\infty)\times[a,b]\rightarrow(0,+\infty)\) satisfy for any \(t\in[t_{0},+\infty)\), \(\omega(t,\cdot)\in L_{\xi}[a,b]\), \(\eta(t,\cdot)\in L_{\xi}[a,b]\), and
$$ \int_{a}^{b}\eta(t,s)\,\mathrm{d}\xi(s)=\theta(t), \quad (t,s)\in [t_{0},+\infty)\times[a,b]. $$
(14)
Then, for any \(t\in[t_{0},+\infty)\),
$$ \int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s)\geq \exp \biggl(\frac{\int_{a}^{b}\eta (t,s)\ln[\theta(t)w(t,s)]\,\mathrm{d}\xi(s)}{\theta(t)} \biggr), $$
(15)
where we use the convention that \(\ln0=-\infty\) and \(e^{-\infty}= 0\).

Proof

Without loss of generality we assume that, for any \(t\in[t_{0},+\infty)\),
$$\int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s)>0. $$
For otherwise
$$\begin{aligned}& \int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s)=0, \\& \frac{\int_{a}^{b}\eta (t,s)\ln[\theta(t)w(t,s)]\,\mathrm{d}\xi(s)}{\theta(t)}=-\infty, \end{aligned}$$
and hence (15) is obviously satisfied. It is easy to check that \(\ln t\leq t-1\) for \(t\geq0\), and then, for any \((t,s)\in[t_{0},+\infty)\times[a,b]\),
$$\begin{aligned}& \ln\bigl[\theta(t)w(t,s)\bigr]-\ln \biggl( \int_{a}^{b}\eta (t,s)w(t,s)\,\mathrm{d}\xi(s) \biggr) \\& \quad = \ln \biggl(\frac{\theta(t)w(t,s)}{\int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi (s)} \biggr) \leq\frac{\theta(t)w(t,s)}{\int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s)}-1. \end{aligned}$$
(16)
Multiplying (16) by \(\eta(t,s)\), we obtain
$$\begin{aligned}& \eta(t,s) \biggl[\ln\bigl[\theta(t)w(t,s)\bigr]-\ln \biggl( \int _{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s) \biggr) \biggr] \\& \quad \leq \eta(t,s) \biggl(\frac{\theta(t)w(t,s)}{\int_{a}^{b}\eta (t,s)w(t,s)\,\mathrm{d}\xi(s)}-1 \biggr), \end{aligned}$$
(17)
by integrating the inequality (17) over \(\mathrm{d}\xi(s)\) and applying (14), we get
$$\begin{aligned}& \int_{a}^{b}\eta(t,s) \biggl[\ln\bigl[ \theta(t)w(t,s)\bigr]-\ln \biggl( \int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s) \biggr) \biggr]\,\mathrm{d}\xi(s) \\& \quad \leq \int_{a}^{b}\eta(t,s) \biggl(\frac{\theta(t)w(t,s)}{\int_{a}^{b}\eta (t,s)w(t,s)\,\mathrm{d}\xi(s)}-1 \biggr)\,\mathrm{d}\xi(s) \\& \quad = \theta(t)- \int_{a}^{b}\eta(t,s)\,\mathrm{d}\xi(s)=0, \end{aligned}$$
(18)
that is
$$\begin{aligned} \int_{a}^{b}\eta(t,s)\ln\bigl[\theta(t)w(t,s)\bigr] \,\mathrm{d}\xi (s) \leq& \int_{a}^{b}\eta(t,s)\ln \biggl( \int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi (s) \biggr)\,\mathrm{d}\xi(s) \\ =&\ln \biggl( \int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s) \biggr) \int_{a}^{b}\eta (t,s)\,\mathrm{d}\xi(s) \\ =&\ln \biggl( \int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s) \biggr)\theta(t). \end{aligned}$$
(19)
Dividing (19) by \(\theta(t)\), we have
$$ \frac{\int_{a}^{b}\eta(t,s)\ln[\theta(t)w(t,s)]\,\mathrm{d}\xi(s)}{\theta (t)}\leq\ln \biggl( \int_{a}^{b}\eta(t,s)w(t,s)\,\mathrm{d}\xi(s) \biggr), $$
(20)
which implies (15). This completes the proof of Lemma 2.2. □

Following El-Sayed [38], for \(c,d\in[t_{0},+\infty)\) with \(c< d\), we define the function class \(\mathcal{V}(c, d):= \{v\in C^{1}[c, d]: v(c)=0=v(d), v\not\equiv0\}\). Our first result provides an oscillation criterion for equation (1) of the El-Sayed type.

Theorem 2.1

Suppose that for any \(T>t_{0}\), there exist \(T\leq a_{1}< b_{1}\leq a_{2}< b_{2}\) such that, for \(i=1,2\),
$$ g(t,s)\geq0, \quad \textit{for } (t,s)\in[a_{i}, b_{i}] \times[a,b]\quad \textit {and} \quad (-1)^{i}e(t)\geq0, \quad \textit{for } t\in[a_{i}, b_{i}]. $$
(21)
We further assume that, for \(i=1,2\), there exist functions \(v_{i}\in\mathcal{V}(a_{i}, b_{i})\) and θ satisfying \(\theta(t)\in (m_{1}(t),\beta(t)]\) for \(t\in[t_{0},+\infty)\), and a continuous function \(\eta:[t_{0},+\infty)\times[a,b]\rightarrow (0,+\infty)\) satisfying (5) and (6), where \(m_{1}(t)\) is defined as in Lemma  2.1 such that
$$ \int_{a_{i}}^{b_{i}}\bigl[Q(t)v^{2}_{i}(t)-p(t)v^{\prime2}_{i}(t) \bigr]\,\mathrm{d}t\geq0, $$
(22)
where
$$\begin{aligned} Q(t) =& q(t)+ \biggl(\frac{ (\beta^{2}(t)-\theta(t)\beta(t) +\theta(t) )|e(t)|}{\beta^{2}(t)-\theta(t)\beta(t)} \biggr)^{\frac{\beta ^{2}(t)-\theta(t)\beta(t)}{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}} \\ &{}\cdot \exp \biggl(\frac{\theta(t)}{\beta^{2}(t)-\theta(t)\beta (t)+\theta(t)}\biggl[\ln \bigl(\beta^{2}(t)- \theta(t)\beta(t)+\theta(t) \bigr) \\ &{}+\frac{\int_{a}^{b}\eta(t,s) \ln\frac{g(t,s)}{\eta(t,s)}\,\mathrm{d}\xi(s)}{\theta(t)} \biggr] \biggr). \end{aligned}$$
(23)
Here we use the convention that \(\ln0=-\infty\) and \(e^{-\infty}= 0\), and \(0^{0}=1\). Then equation (1) is oscillatory.

Proof

Assume, for the sake of contradiction, that equation (1) has an extendible solution \(u(t)\) which is eventually positive or negative. Without loss of generality, we may assume that \(u(t)>0\) for all \(t\geq t_{0}\). When \(u(t)\) is eventually negative, the proof is carried out in the same way using the interval the interval \([a_{2}, b_{2}]\) instead of \([a_{1}, b_{1}]\). Define
$$\omega(t)=-\frac{p(t)u'(t)}{u(t)}, \quad t\in[a_{1}, b_{1}]. $$
Then, for \(t\geq t_{0}\), ω satisfies
$$ \omega'(t)=q(t)+ \int_{a}^{b}g(t,s)\bigl[u(t)\bigr]^{\gamma(t,s)-\beta(t)}\, \mathrm{d}\xi (s)-\frac{e(t)}{u(t)}+\frac{\omega^{2}(t)}{p(t)}. $$
(24)

(I) We first consider the case when \(\theta(t)\equiv\beta(t)\).

From (21) and (24) we have, for \(t\in[a_{1}, b_{1}]\),
$$ \omega'(t)\geq q(t)+ \int_{a}^{b}g(t,s)\bigl[u(t)\bigr]^{\gamma(t,s)-\beta(t)}\, \mathrm{d}\xi(s)+\frac{\omega^{2}(t)}{p(t)}. $$
(25)
Since \(\eta(t,s)\) satisfying (5) and (6) with \(\theta(t)\equiv\beta (t)\), it follows that
$$ \int_{a}^{b}\eta(t,s)\bigl[\gamma(t,s)-\beta(t) \bigr]\,\mathrm{d}\xi(s)\equiv0,\quad \mbox{for any } t\in[t_{0},+ \infty). $$
(26)
Therefore, by (26) and Lemma 2.2, we get, for \(t\in[a_{1}, b_{1}]\),
$$\begin{aligned}& \int^{b}_{a}g(t,s)\bigl[u(t)\bigr]^{\gamma(t,s)-\beta(t)}\, \mathrm{d}\xi(s) \\& \quad = \int^{b}_{a}\eta(t,s)\eta^{-1}(t,s)g(t,s) \bigl[u(t)\bigr]^{\gamma(t,s)-\beta (t)}\,\mathrm{d}\xi(s) \\& \quad \geq \exp \biggl(\frac{1}{\beta(t)} \int_{a}^{b}\eta(t,s)\ln \bigl[\beta(t)\eta ^{-1}(t,s)g(t,s)\bigl[u(t)\bigr]^{\gamma(t,s)-\beta(t)} \bigr]\,\mathrm{d} \xi(s) \biggr) \\& \quad = \exp \biggl(\frac{1}{\beta(t)} \int_{a}^{b}\eta(t,s)\ln\frac{\beta (t)g(t,s)}{\eta(t,s)}\, \mathrm{d}\xi(s) \\& \qquad {}+\frac{\ln u(t)}{\beta(t)} \int_{a}^{b} \bigl[\eta(t,s) \bigl(\gamma(t,s)- \beta(t)\bigr) \bigr]\,\mathrm{d}\xi(s) \biggr) \\& \quad = \exp \biggl(\frac{1}{\beta(t)} \int_{a}^{b}\eta(t,s)\ln\frac{\beta (t)g(t,s)}{\eta(t,s)}\, \mathrm{d}\xi(s) \biggr) \\& \quad = \exp \biggl(\ln\beta(t)+\frac{1}{\beta(t)} \int_{a}^{b}\eta(t,s)\ln\frac {g(t,s)}{\eta(t,s)}\, \mathrm{d}\xi(s) \biggr). \end{aligned}$$
(27)
Substituting (27) into (25),
$$\begin{aligned} \omega'(t) \geq& q(t)+\exp \biggl(\ln\beta(t)+\frac {1}{\beta(t)} \int_{a}^{b}\eta(t,s)\ln\frac{g(t,s)}{\eta(t,s)}\, \mathrm{d}\xi (s) \biggr)+\frac{\omega^{2}(t)}{p(t)} \\ =&Q(t)+\frac{\omega^{2}(t)}{p(t)}, \quad t\in[a_{1},b_{1}], \end{aligned}$$
(28)
where \(Q(t)\) is defined by (23) with \(\theta(t)\equiv\beta(t)\). Multiplying both sides of (28) by \(v^{2}_{1}(t)\), integrating every term from \(a_{1}\) to \(b_{1}\), and using integration by parts, we find
$$ \int_{a_{1}}^{b_{1}} \bigl[Q(t)v^{2}_{1}(t)-p(t)v^{\prime2}_{1}(t) \bigr]\,\mathrm{d}t + \int_{a_{1}}^{b_{1}} \biggl[\frac{\omega (t)v_{1}(t)}{p^{1/2}(t)}+p^{1/2}(t)v'_{1}(t) \biggr]^{2}\,\mathrm{d}t\leq0. $$
(29)
From (22), we see that
$$\frac{\omega(t)v_{1}(t)}{p^{1/2}(t)}+p^{1/2}(t)v'_{1}(t)\equiv0, \quad t\in[a_{1},b_{1}], $$
which implies from the definition of w that \(v'_{1}(t)/v_{1}(t)\equiv u'(t)/u(t)\) and hence \(v_{1}(t)\equiv u(t)\), \(t\in[a_{1},b_{1}]\) for some constant \(c\neq0\). This contradicts the assumption that \(v_{1}(a_{1})=v_{1}(b_{1})=0\) and \(u(t)\)is positive on \([a_{1},b_{1}]\).
(II) Next we consider the case when \(\theta(t)\in (m_{1}(t),\beta(t))\). From (6), we have
$$\begin{aligned}& \int_{a}^{b}g(t,s)\bigl[u(t)\bigr]^{\gamma(t,s)-\beta(t)}\, \mathrm{d}\xi(s)-\frac{e(t)}{u(t)} \\& \quad = \int_{a}^{b} \biggl[g(t,s)\bigl[u(t) \bigr]^{\gamma(t,s)-\beta(t)}-\frac {e(t)}{u(t)}\frac{\eta(t,s)}{\theta(t)} \biggr]\,\mathrm{d} \xi(s) \\& \quad = \int_{a}^{b} \biggl[g(t,s)\bigl[u(t) \bigr]^{\gamma(t,s)-\beta(t)}+\frac {|e(t)|}{u(t)}\frac{\eta(t,s)}{\theta(t)} \biggr]\,\mathrm{d} \xi(s) \\& \quad = \int_{a}^{b}\frac{\eta(t,s)}{\theta(t)} \biggl[ \frac{\theta(t)}{\eta (t,s)}g(t,s)\bigl[u(t)\bigr]^{\gamma(t,s)-\beta(t)}+\frac{|e(t)|}{u(t)} \biggr] \,\mathrm{d}\xi(s). \end{aligned}$$
(30)
If we let
$$\begin{aligned}& p=\frac{\theta(t)}{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)},\qquad q=\frac {\beta^{2}(t)-\theta(t)\beta(t)}{\beta^{2}(t)-\theta(t)\beta(t)+\theta (t)}, \end{aligned}$$
(31)
$$\begin{aligned}& A=\frac{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta (t,s)}g(t,s)\bigl[u(t)\bigr]^{\gamma(t,s)-\beta(t)}, \qquad B= \frac{1}{q}\frac {|e(t)|}{u(t)}, \end{aligned}$$
(32)
then from the Young inequality (\(pA+qB\geq A^{p}B^{q}\), where \(p+q=1\), \(p,q>0\), \(A\geq0\), \(B\geq0\)), we get
$$\begin{aligned}& \frac{\theta(t)}{\eta(t,s)}g(t,s)\bigl[u(t)\bigr]^{\gamma (t,s)-\beta(t)}+\frac{|e(t)|}{u(t)} \\& \quad \geq \biggl(\frac{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta (t,s)}g(t,s)\bigl[u(t)\bigr]^{\gamma(t,s)-\beta(t)} \biggr)^{p} \biggl(\frac{1}{q}\frac {|e(t)|}{u(t)} \biggr)^{q} \\& \quad = \biggl(\frac{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta (t,s)}g(t,s) \biggr)^{p} \biggl( \frac{|e(t)|}{q} \biggr)^{q} \bigl[u(t)\bigr]^{(\gamma (t,s)-\beta(t))p-q} \\& \quad = \biggl(\frac{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta (t,s)}g(t,s) \biggr)^{p} \biggl( \frac{|e(t)|}{q} \biggr)^{q} \bigl[u(t)\bigr]^{\frac{\gamma (t,s)\theta(t)-\beta^{2}(t)}{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}}. \end{aligned}$$
(33)
By (5) and (6), we get
$$ \int_{a}^{b}\eta(t,s) \bigl[\gamma(t,s)\theta(t)- \beta^{2}(t) \bigr] \,\mathrm{d}\xi (s)\equiv0, \quad \mbox{for any } t \in[t_{0},+\infty). $$
(34)
From (6), (30), (31), (33), (34), and Lemma 2.2, we see that, for \(t\in [a_{1}, b_{1}]\),
$$\begin{aligned}& \int_{a}^{b}g(t,s)\bigl[u(t)\bigr]^{\gamma (t,s)-\beta(t)}\, \mathrm{d}\xi(s)-\frac{e(t)}{u(t)} \\& \quad \geq \int_{a}^{b}\frac{\eta(t,s)}{\theta(t)} \biggl( \frac{\beta ^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta(t,s)}g(t,s) \biggr)^{p} \biggl(\frac {|e(t)|}{q} \biggr)^{q} \bigl[u(t)\bigr]^{\frac{\gamma(t,s)\theta(t)-\beta^{2}(t)}{\beta ^{2}(t)-\theta(t)\beta(t)+\theta(t)}}\,\mathrm{d}\xi(s) \\& \quad \geq\exp \biggl(\frac{\int_{a}^{b}\eta(t,s)\ln [ (\frac{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta(t,s)}g(t,s) )^{p} (\frac{|e(t)|}{q} )^{q} [u(t)]^{\frac{\gamma(t,s)\theta(t)-\beta ^{2}(t)}{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}} ]\,\mathrm{d}\xi (s)}{\theta(t)} \biggr) \\& \quad =\exp \biggl(\frac{\int_{a}^{b}\eta(t,s)\ln [ (\frac {\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta(t,s)}g(t,s) )^{p} (\frac{|e(t)|}{q} )^{q} ]\,\mathrm{d}\xi(s)}{\theta(t)} \biggr) \\& \qquad {}\cdot\exp \biggl(\frac{\int_{a}^{b}\eta(t,s) [\frac{\gamma (t,s)\theta(t)-\beta^{2}(t)}{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)} ]\ln u(t) \,\mathrm{d}\xi(s)}{\theta(t)} \biggr) \\& \quad =\exp \biggl(\frac{\int_{a}^{b}\eta(t,s)\ln [ (\frac {\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta(t,s)}g(t,s) )^{p} (\frac{|e(t)|}{q} )^{q} ]\,\mathrm{d}\xi(s)}{\theta(t)} \biggr) \\& \qquad {}\cdot\exp \biggl(\frac{\frac{\ln u(t)}{\beta^{2}(t)-\theta(t)\beta (t)+\theta(t)}\int_{a}^{b}\eta(t,s) [\gamma(t,s)\theta(t)-\beta^{2}(t) ] \,\mathrm{d}\xi(s)}{\theta(t)} \biggr) \\& \quad =\exp \biggl(\frac{p\int_{a}^{b}\eta(t,s)\ln [\frac{\beta ^{2}(t)-\theta(t)\beta(t)+\theta(t)}{\eta(t,s)}g(t,s) ]\,\mathrm{d}\xi (s)}{\theta(t)} +\frac{\ln (\frac{|e(t)|}{q} )^{q}\int_{a}^{b}\eta(t,s)\,\mathrm{d}\xi (s)}{\theta(t)} \biggr) \\& \quad =\exp \biggl(\frac{p\int_{a}^{b}\eta(t,s) [\ln (\beta ^{2}(t)-\theta(t)\beta(t)+\theta(t) )+\ln\frac{g(t,s)}{\eta(t,s)} ]\,\mathrm{d}\xi(s)}{\theta(t)}+\ln \biggl(\frac{|e(t)|}{q} \biggr)^{q} \biggr) \\& \quad = \biggl(\frac{|e(t)|}{q} \biggr)^{q}\exp \biggl( \frac{p\ln (\beta^{2}(t)-\theta(t)\beta(t)+\theta(t) )\int_{a}^{b}\eta(t,s)\,\mathrm{d}\xi(s)+p\int_{a}^{b}\eta(t,s) \ln\frac{g(t,s)}{\eta(t,s)}\,\mathrm{d}\xi(s)}{ \theta(t)} \biggr) \\& \quad = \biggl(\frac{ (\beta^{2}(t)-\theta(t)\beta(t) +\theta(t) )|e(t)|}{\beta^{2}(t)-\theta(t)\beta(t)} \biggr)^{\frac{\beta ^{2}(t)-\theta(t)\beta(t)}{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}} \\& \qquad {}\cdot \exp \biggl(\frac{\theta(t)}{\beta^{2}(t)-\theta(t)\beta (t)+\theta(t)} \biggl[\ln \bigl( \beta^{2}(t)-\theta(t)\beta(t)+\theta(t) \bigr)+\frac{\int_{a}^{b}\eta(t,s) \ln\frac{g(t,s)}{\eta(t,s)}\,\mathrm{d}\xi(s)}{\theta(t)} \biggr] \biggr). \end{aligned}$$
Then from (24) and the above inequality, we have
$$\begin{aligned} \omega'(t) \geq& q(t)+ \biggl(\frac{ (\beta^{2}(t)-\theta (t)\beta(t) +\theta(t) )|e(t)|}{\beta^{2}(t)-\theta(t)\beta(t)} \biggr)^{\frac{\beta ^{2}(t)-\theta(t)\beta(t)}{\beta^{2}(t)-\theta(t)\beta(t)+\theta(t)}} \\ &{}\cdot\exp \biggl(\frac{\theta(t)}{\beta^{2}(t)-\theta(t)\beta (t)+\theta(t)} \biggl[\ln \bigl(\beta^{2}(t)- \theta(t)\beta(t)+\theta(t) \bigr) \\ &{}+\frac{\int_{a}^{b}\eta(t,s) \ln\frac{g(t,s)}{\eta(t,s)}\,\mathrm{d}\xi(s)}{\theta(t)} \biggr] \biggr) +\frac{\omega^{2}(t)}{p(t)} \\ =&Q(t)+\frac{\omega^{2}(t)}{p(t)}, \end{aligned}$$
(35)
where \(Q(t)\) is defined by (23) with \(\theta(t)\in(m_{1}(t),\beta(t))\). The rest of the proof is similar to that of part (I) and hence is omitted. This completes the proof of Theorem 2.1. □
Following Philos [39] and Kong [40], we say that a function \(H = H(t,s)\) belongs to a function class H, denoted by \(H\in \mathbf{H}\), if \(H \in C (D,[0,\infty)) \), where \(D = \{{(t,s):t\geq s\geq t_{0}}\} \), and H satisfies
$$ H(t, t) = 0 , \quad \mbox{for } t\geq t_{0} \quad \mbox{and} \quad H(t, s) > 0, \quad \mbox{for } t > s\geq t_{0}, $$
(36)
and has continuous partial derivatives \({\partial H}/{\partial t}\) and \({\partial H}/{\partial s}\) on D such that
$$ \frac{\partial H}{\partial t} =h_{1}(t,s)\sqrt{H(t,s)} \quad \mbox{and} \quad \frac{\partial H}{\partial s} =-h_{2}(t,s)\sqrt{H(t,s)}, $$
(37)
where \(h_{1}, h_{2} \in L_{\mathrm{loc}} (D,\mathbf{R})\).

Next, we use the function class H to establish an oscillation criterion for equation (1) of the Kong type.

Theorem 2.2

Suppose that for any \(T>0\), there exist nontrivial subintervals \([a_{1}, b_{1}]\) and \([a_{2}, b_{2}]\) of \([T, +\infty)\) such that (21) holds for \(i=1,2\). We further assume that, for \(i=1,2\), there exist a constant \(c_{i}\in(a_{i}, b_{i})\) and functions \(H\in \mathbf{H}\) and θ satisfying \(\theta(t)\in(m_{1}(t),\beta(t)]\) for \(t\in[t_{0},+\infty)\), and a continuous function \(\eta:[t_{0},+\infty)\times[a,b]\rightarrow (0,+\infty)\) satisfying (5) and (6), where \(m_{1}(t)\) is defined as in Lemma  2.1 such that
$$\begin{aligned}& \frac{1}{H(c_{i},a_{i})} \int_{a_{i}}^{c_{i}} \biggl[Q(t)H(t,a_{i})- \frac{p(t)h_{1}^{2}(t,a_{i})}{4} \biggr]\,\mathrm{d}t \\& \quad {}+\frac{1}{H(b_{i},c_{i})} \int_{c_{i}}^{b_{i}} \biggl[Q(t)H(b_{i},t)- \frac {p(t)h_{2}^{2}(b_{i},t)}{4} \biggr]\,\mathrm{d}t\geq0, \end{aligned}$$
(38)
where \(Q(t)\) is defined by (23). Then equation (1) is oscillatory.

Proof

Proceeding as in the proof of Theorem 2.1, we get
$$ \omega'(t)\geq Q(t)+\frac{\omega^{2}(t)}{p(t)}, \quad t \in[a_{1}, b_{1}]; $$
(39)
see (28) and (35) for the cases when \(\theta(t)\equiv\beta(t)\) and \(\theta(t)\in(m_{1}(t),\beta(t))\), respectively. Let \(c_{i}\in(a_{i}, b_{i})\) be such that (38) holds. Multiplying both sides of (39) by \(H(t, a_{1})\), integrating it from \(a_{1}\) to \(c_{1}\), and using integration by parts we have
$$ H(c_{1},a_{1})\omega(c_{1})\geq \int_{a_{1}}^{c_{1}} \biggl[Q(t)H(t,a_{1})+\omega (t)\frac{\partial H}{\partial t}(t,a_{1})+\frac{H(t,a_{1})\omega ^{2}(t)}{p(t)} \biggr]\, \mathrm{d}t. $$
(40)
It follows from (36), (37), and (40) that
$$\begin{aligned} H(c_{1},a_{1})\omega(c_{1}) \geq& \int_{a_{1}}^{c_{1}} \biggl[Q(t)H(t,a_{1})- \frac{p(t)h_{1}^{2}(t,a_{1})}{4} \biggr]\,\mathrm{d}t \\ &{}+ \int_{a_{1}}^{c_{1}} \biggl[\frac{\sqrt{p(t)}h_{1}(t,a_{1})}{2}+\sqrt{ \frac {H(t,a_{1})}{p(t)}}\omega(t) \biggr]^{2}\,\mathrm{d}t. \end{aligned}$$
(41)
Similarly, multiplying both sides of (39) by \(H(b_{1},t)\) and integrating it from \(c_{1}\) to \(b_{1}\), we get
$$\begin{aligned} - H(b_{1},c_{1})\omega(c_{1}) \geq& \int_{c_{1}}^{b_{1}} \biggl[Q(t)H(b_{1},t)- \frac{p(t)h_{2}^{2}(b_{1},t)}{4} \biggr]\,\mathrm{d}t \\ &{}+ \int_{c_{1}}^{b_{1}} \biggl[\frac{\sqrt{p(t)}h_{2}(b_{1},t)}{2}+\sqrt{ \frac {H(b_{1},t)}{p(t)}}\omega(t) \biggr]^{2}\,\mathrm{d}t. \end{aligned}$$
(42)
By dividing (41) and (42) by \(H(c_{1}, a_{1})\) and \(H(b_{1}, c_{1})\), respectively, and then adding them together, from (38) we have
$$ \frac{1}{H(c_{1},a_{1})} \int_{a_{1}}^{c_{1}} \biggl[\frac{\sqrt {p(t)}h_{1}(t,a_{1})}{2}+\sqrt{ \frac{H(t,a_{1})}{p(t)}}\omega(t) \biggr]^{2}\,\mathrm{d}t=0 $$
(43)
and
$$ \frac{1}{H(b_{1},c_{1})} \int_{c_{1}}^{b_{1}} \biggl[\frac{\sqrt {p(t)}h_{2}(b_{1},t)}{2}+\sqrt{ \frac{H(b_{1},t)}{p(t)}}\omega(t) \biggr]^{2}\,\mathrm{d}t=0. $$
(44)
We can reach a contradiction from either of the above. For instance, (43) implies that
$$\frac{\sqrt{p(t)}h_{1}(t,a_{1})}{2}+\sqrt{\frac{H(t,a_{1})}{p(t)}}\omega (t)\equiv0, \quad t \in[a_{1},c_{1}]. $$
It follows from the definition of w and (37) that
$$\frac{u'(t)}{u(t)}=\frac{h_{1}(t,a_{1})}{2\sqrt{H(t,a_{1})}}=\frac{\frac {\partial H}{\partial t}(t,a_{1})}{2H(t,a_{1})}, $$
and hence \(u(t)\equiv c\sqrt{H(t,a_{1})}\) on \([a_{1},c_{1}]\) for some constant \(c\neq0\). This contradicts the assumption that \(H(a_{1},a_{1})=0\) and \(u(a_{1})>0\). This completes the proof of Theorem 2.2. □

3 Examples

In this section, we will work out two numerical examples to illustrate our main results. Here we use the convention that \(\ln0=-\infty\) and \(e^{-\infty}= 0\).

Example 3.1

We consider the following equation:
$$ u''(t)+q(t)u(t)+ \int_{a}^{b}g(t,s)\bigl|u(t)\bigr|^{\gamma(t,s)+1-\beta(t)} \operatorname{sgn}u(t)\,\mathrm{d}\xi(s)=e(t), \quad t\geq0, $$
(45)
where \(q(t)=\lambda\sin4t\), \(a=0\), \(b=1\), \(\gamma(t,s)=2se^{-t}\), \(g(t,s)=\cos t\), \(\beta(t)=e^{-t}\), \(\xi(s)=s\), \(e(t)=-f(t)\cos2t\), and \(\lambda>0\) is a constant and \(f(t)\in C[0,\infty)\) is any nonnegative function. For any \(T\in\mathbf{R}\), we choose \(k\in\mathbf{Z}\) large enough for \(2k\pi\geq T\) and let \(a_{1}= 2k\pi\), \(a_{2}=b_{1}=2k\pi+\frac{\pi}{4}\), and \(b_{2}=2k\pi+\frac {\pi}{2}\). Then \(m_{1}(t)=\ln2e^{-t}\) and (21) holds. Set
$$\theta(t)=\delta e^{-t}, \quad \delta\in(\ln2,1], \qquad \eta (t,s)= \frac{\delta}{2\delta-1}s^{\frac{2-2\delta}{2\delta-1}}e^{-t}. $$
It is easy to verify that (5) and (6) are valid, and for \(t\in[a_{i}, b_{i}]\), \(i=1,2\), Let \(v(t)=\sin4t\). Note that, for \(i=1,2\),
$$\int_{a_{i}}^{b_{i}}Q(t)v^{2}(t)\,\mathrm{d}t= \int_{0}^{\frac{\pi}{4}}F(\lambda ,\delta,t)\sin^{2}4t \,\mathrm{d}t, $$
where
$$\begin{aligned} F(\lambda,\delta,t) =&\lambda\sin4t+ \biggl[ \biggl(1+\frac{\delta e^{t}}{1-\delta} \biggr)f(t+2k\pi )\cos(2t) \biggr]^{\frac{1-\delta}{1-\delta+\delta e^{t}}} \\ &{}\cdot\exp \biggl(\frac{\delta e^{t}}{1-\delta+\delta e^{t}} \biggl[\ln \bigl(e^{-2t}-\delta e^{-2t}+\delta e^{-t} \bigr) \\ &{}+\ln\cos t-\frac {e^{t}}{\delta} \int_{0}^{1}\eta(t,s)\ln\eta(t,s)\,\mathrm{d}s \biggr] \biggr) \end{aligned}$$
and
$$\int_{a_{i}}^{b_{i}}v^{\prime2}(t)\, \mathrm{d}t= \int_{0}^{\frac{\pi}{4}}16\cos ^{2}4t\,\mathrm{d}t=2 \pi. $$
Thus, by Theorem 2.1 we see that equation (45) is oscillatory for \(\int _{0}^{\frac{\pi}{4}}F(\lambda,\delta,t)\sin^{2}4t\,\mathrm{d}t\geq2\pi\).

Example 3.2

We consider the following equation:
$$ u''(t)+q(t)u(t)+ \int_{a}^{b}g(t,s)\bigl\vert u(t)\bigr\vert ^{\gamma(t,s)+1-\beta(t)}\operatorname{sgn}u(t)\,\mathrm{d}\xi(s)=e(t), \quad t \geq0, $$
(46)
where \(q(t)=\lambda\sin t \), \(a=0 \), \(b=1 \), \(\gamma(t,s)=2s(\cos\frac {t}{2}) \), \(g(t,s)=\cos t \), \(\beta(t)=\cos\frac{t}{2} \), \(\xi(s)=s \), \(\lambda>0\) is a constant. For any \(T\in\mathbf{R}\), we choose \(k\in\mathbf{Z}\) large enough for \(2k\pi\geq T\) and let \(a_{1}= 2k\pi\), \(a_{2}=b_{1}=2k\pi+\frac{\pi}{4}\), \(b_{2}=2k\pi+\frac{\pi }{2}\), \(c_{1}=2k\pi+\frac{\pi}{8}\), and \(c_{2}=2k\pi+\frac{3\pi}{8}\). Assume that \(e(t)\in C[0,\infty)\) is any function satisfying \((-1)^{i}e(t)\geq0\) on \([a_{i}, b_{i}]\) for \(i=1,2\). Then (21) holds. Set
$$\theta(t)=\delta\cos\frac{t}{2}, \quad \delta\in(\ln2,1], \qquad \eta(t,s)=\frac{\delta}{2\delta-1}s^{\frac{2-2\delta}{2\delta-1}}\cos \frac{t}{2}. $$
It is easy to verify that (5) and (6) are valid, and for \(t\in[a_{i}, b_{i}]\), \(i=1,2\),
$$\begin{aligned} \begin{aligned} Q(t) ={}&\lambda\sin t+ \biggl[ \biggl(1+\frac{\delta}{\cos\frac{t}{2}-\delta\cos \frac{t}{2}} \biggr)\bigl|e(t)\bigr| \biggr]^{\frac{\cos\frac{t}{2}-\delta\cos\frac {t}{2}}{\cos\frac{t}{2}-\delta\cos\frac{t}{2}+\delta}} \\ &{}\cdot\exp \biggl(\frac{\delta}{\cos\frac{t}{2}-\delta\cos\frac {t}{2}+\delta} \biggl[\ln \biggl(\cos^{2} \frac{t}{2}-\delta\cos^{2} \frac {t}{2}+\delta\cos \frac{t}{2} \biggr) \\ &{}+\ln\cos t-\frac{\sec\frac{t}{2}}{\delta} \int_{0}^{1}\eta(t,s)\ln\eta (t,s)\,\mathrm{d}s \biggr] \biggr). \end{aligned} \end{aligned}$$
We choose \(H(t,s)=(t-s)^{2}\), then by Theorem 2.2 we see that equation (46) is oscillatory if
$$ \int_{2k\pi}^{2k\pi+\frac{\pi}{8}}Q(t) (t-2k\pi )^{2}\, \mathrm{d}t + \int_{2k\pi+\frac{\pi}{8}}^{2k\pi+\frac{\pi}{4}}Q(t) (2k\pi+\pi /4-t)^{2}\, \mathrm{d}t\geq\frac{\pi}{4} $$
and
$$ \int_{2k\pi+\frac{\pi}{4}}^{2k\pi+\frac{3\pi }{8}}Q(t) (t-2k\pi-\pi/4)^{2}\, \mathrm{d}t + \int_{2k\pi+\frac{3\pi}{8}}^{2k\pi+\frac{\pi}{2}}Q(t) (2k\pi+\pi /2-t)^{2}\, \mathrm{d}t\geq\frac{\pi}{4}. $$

Declarations

Acknowledgements

The authors thank the reviewers for their helpful and valuable suggestions and comments on this paper. This research was supported by the National Natural Science Foundation of China (No. 11171178) and the Science and Technology Project of High Schools of Shandong Province (No. J14LI09) (China).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematical Sciences, Qufu Normal University, Qufu, P.R. China

References

  1. Sun, YG, Kong, QK: Interval criteria for forced oscillation with nonlinearities given by Riemann-Stieltjes integrals. Comput. Math. Appl. 62, 243-252 (2011) MathSciNetView ArticleMATHGoogle Scholar
  2. Agarwal, RP, Grace, SR, Regan, DO: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic, Dordrecht (2002) View ArticleGoogle Scholar
  3. Butler, GJ: Oscillation theorems for a nonlinear analogue for Hill’s equation. Q. J. Math. 27, 159-171 (1976) View ArticleMATHGoogle Scholar
  4. Butler, GJ: Integral averages and oscillation of second order nonlinear differential equations. SIAM J. Math. Anal. 11, 190-200 (1980) MathSciNetView ArticleMATHGoogle Scholar
  5. Kartsatos, AG: On the maintenance of oscillation of nth order equations under the effect of a small forcing term. J. Differ. Equ. 10, 355-363 (1971) MathSciNetView ArticleMATHGoogle Scholar
  6. Kartsatos, AG: Maintenance of oscillations under the effect of a periodic forcing term. Proc. Am. Math. Soc. 33, 377-383 (1972) MathSciNetView ArticleMATHGoogle Scholar
  7. Keener, MS: Solutions of a certain linear nonhomogeneous second order differential equations. Appl. Anal. 1, 57-63 (1971) MathSciNetView ArticleMATHGoogle Scholar
  8. Kwong, MK, Wong, JSW: Linearization of second order nonlinear oscillation theorems. Trans. Am. Math. Soc. 279, 705-722 (1983) MathSciNetView ArticleMATHGoogle Scholar
  9. Ou, CH, Wong, JSW: Forced oscillation of nth order functional differential equations. J. Math. Anal. Appl. 262, 722-731 (2001) MathSciNetView ArticleMATHGoogle Scholar
  10. Rankin, SM: Oscillation theorems for second order nonhomogeneous linear differential equations. J. Math. Anal. Appl. 53, 550-553 (1976) MathSciNetView ArticleMATHGoogle Scholar
  11. Agarwal, RP, Anderson, DR, Zafer, A: Interval oscillation criteria for second-order forced delay dynamic equations with mixed nonlinearities. Comput. Math. Appl. 59, 977-993 (2010) MathSciNetView ArticleMATHGoogle Scholar
  12. Liu, HD, Meng, FW, Liu, PC: Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl. Math. Comput. 219, 2739-2748 (2012) MathSciNetMATHGoogle Scholar
  13. Nazr, AH: Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential. Proc. Am. Math. Soc. 126, 123-125 (1998) MathSciNetView ArticleGoogle Scholar
  14. Li, C, Chen, S: Oscillation of second-order functional differential equations with mixed nonlinearities and oscillatory potentials. Appl. Math. Comput. 210, 504-507 (2009) MathSciNetMATHGoogle Scholar
  15. Zheng, ZW, Wang, X, Han, HM: Oscillation criteria for forced second order differential equations with mixed nonlinearities. Appl. Math. Lett. 22, 1096-1101 (2009) MathSciNetView ArticleMATHGoogle Scholar
  16. Sun, YG, Saker, SH: Forced oscillation of higher-order nonlinear differential equations. Appl. Math. Comput. 173, 1219-1226 (2006) MathSciNetMATHGoogle Scholar
  17. Wong, JSW: Second order nonlinear forced oscillations. SIAM J. Math. Anal. 19, 667-675 (1988) MathSciNetView ArticleMATHGoogle Scholar
  18. Yang, QG: Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential. Appl. Math. Comput. 136, 49-64 (2003) MathSciNetMATHGoogle Scholar
  19. Agarwal, RP, Grace, SR: Forced oscillation of nth order nonlinear differential equations. Appl. Math. Lett. 13(7), 53-57 (2003) MathSciNetView ArticleMATHGoogle Scholar
  20. Došlý, O, Veselý, M: Oscillation and non-oscillation of Euler type half-linear differential equations. J. Math. Anal. Appl. 429, 602-621 (2015) MathSciNetView ArticleMATHGoogle Scholar
  21. Došlý, O, Yamaoka, N: Oscillation constants for second-order ordinary differential equations related to elliptic equations with p-Laplacian. Nonlinear Anal. 113, 115-136 (2015) MathSciNetView ArticleMATHGoogle Scholar
  22. Tunc, E, Avci, H: Oscillation criteria for a class of second order nonlinear differential equations with damping. Bull. Math. Anal. Appl. 4, 40-50 (2012) MathSciNetMATHGoogle Scholar
  23. Hasil, P, Veselý, M: Oscillation of half-linear differential equations with asymptotically almost periodic coefficients. Adv. Differ. Equ. 2013, 122 (2013) MathSciNetView ArticleMATHGoogle Scholar
  24. Vítovec, J: Critical oscillation constant for Euler-type dynamic equations on time scales. Appl. Math. Comput. 243, 838-848 (2014) MathSciNetMATHGoogle Scholar
  25. Zhikov, VV: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29, 33-36 (1987) View ArticleMATHGoogle Scholar
  26. Růžička, M: Electro-Rheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000) MATHGoogle Scholar
  27. Chen, Y, Levine, S, Rao, M: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383-1406 (2006) MathSciNetView ArticleMATHGoogle Scholar
  28. Acerbi, E, Mingione, G: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156, 121-140 (2001) MathSciNetView ArticleMATHGoogle Scholar
  29. Acerbi, E, Mingione, G: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213-259 (2002) MathSciNetView ArticleMATHGoogle Scholar
  30. Antontsev, S, Shmarev, S: Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 65(4), 728-761 (2006) MathSciNetView ArticleMATHGoogle Scholar
  31. Chabrowski, J, Fu, YQ: Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306, 604-618 (2005) MathSciNetView ArticleMATHGoogle Scholar
  32. Fan, XL, Zhao, D: The quasi-minimizer of integral functionals with \(m(x)\) growth conditions. Nonlinear Anal. 39, 807-816 (2000) MathSciNetView ArticleMATHGoogle Scholar
  33. Fan, XL, Zhang, QH: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843-1852 (2003) MathSciNetView ArticleMATHGoogle Scholar
  34. Hamidi, AE: Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl. 300, 30-42 (2004) MathSciNetView ArticleMATHGoogle Scholar
  35. Kopaliani, T: Interpolation theorems for variable exponent Lebesgue spaces. J. Funct. Anal. 257, 3541-3551 (2009) MathSciNetView ArticleMATHGoogle Scholar
  36. Mihăilescu, M, Moroşanu, G, Stancu-Dumitru, D: Equations involving a variable exponent Grushin-type operator. Nonlinearity 24, 2663-2680 (2011) MathSciNetView ArticleMATHGoogle Scholar
  37. Zhang, QH, Liu, XP, Qiu, ZM: Existence of solutions and multiple solutions for a class of weighted \(p(r)\)-Laplacian system. J. Math. Anal. Appl. 355, 620-633 (2009) MathSciNetView ArticleMATHGoogle Scholar
  38. El-Sayed, MA: An oscillation criterion for a forced second order linear differential equation. Proc. Am. Math. Soc. 118, 813-817 (1993) MathSciNetMATHGoogle Scholar
  39. Philos, CG: Oscillation theorems for linear differential equation of second order. Arch. Math. Log. 53, 483-492 (1989) MathSciNetGoogle Scholar
  40. Kong, QK: Interval criteria for oscillation of second order linear ordinary differential equations. J. Math. Anal. Appl. 229, 258-270 (1999) MathSciNetView ArticleMATHGoogle Scholar

Copyright

© Liu and Meng 2016

Advertisement