# A note on the Von Staudt-Clausen’s theorem for the weighted q-Genocchi numbers

## Abstract

Recently, the Von Staudt-Clausen theorem for q-Euler numbers was introduced by Kim (Russ. J. Math. Phys. 20(1):33-38, 2013) and Araci et al. have also studied this theorem for q-Genocchi numbers (see Araci et al. in Appl. Math. Comput. 247:780-785, 2014) based on the work of Kim et al. In this paper, we give the corresponding Von Staudt-Clausen theorem for the weighted q-Genocchi numbers and also prove the Kummer-type congruences for the generated weighted q-Genocchi numbers.

## Introduction and preliminaries

As is well known, a theorem including the fractional part of Bernoulli numbers, which is called the Von Staudt-Clausen theorem, was introduced by Karl Von Staudt and Thomas Clausen (see ). In , Kim has studied the Von Staudt-Clausen theorem for the q-Euler numbers and Araci et al. have introduced the Von Staudt-Clausen theorem associated with q-Genocchi numbers.

Let p be a fixed odd prime number. Throughout this paper, $$\mathbb{Z}_{p}$$, $$\mathbb{Q}_{p}$$ and $$\mathbb{C}_{p}$$ will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure $$\mathbb{Q}_{p}$$. Let us assume that q is an indeterminate in $$\mathbb {C}_{p}$$ with $$|1-q|_{p}< p^{-\frac{1}{1-p}}$$ where $$|\cdot|_{p}$$ is a p-adic norm. The q-extension of x is defined by $$[x]_{q}=\frac{1-q^{x}}{1-q}$$. Note that $$\lim_{q\rightarrow1}[x]_{q}=x$$. For $$f\in C(\mathbb{Z}_{p})$$ = the space of all continuous functions on $$\mathbb{Z}_{p}$$, the fermionic p-adic q-integral on $$\mathbb{Z}_{p}$$ is defined by Kim to be

\begin{aligned} \int_{\mathbb{Z}_{p}}f(x)\,d\mu_{-q} (x) = \lim _{N\rightarrow\infty} \frac{1}{[p^{N}]_{-q} }\sum_{x=0}^{p^{N}-1}f(x) (-q)^{x}\quad (\mbox{see [2--6]}). \end{aligned}
(1)

From (1), we note that

\begin{aligned} q \int_{\mathbb{Z}_{p}}f(x+1)\,d\mu_{-q} (x) + \int_{\mathbb{Z}_{p}} f(x)\,d\mu_{-q} (x)=_{q} f(0). \end{aligned}
(2)

From $$n\in\mathbb{N}$$, we have

\begin{aligned}[b] &q^{n} \int_{\mathbb{Z}_{p}}f(x+n)\,d \mu_{-q} (x) + (-1)^{n-1} \int_{\mathbb {Z}_{p}} f(x)\,d \mu_{-q} (x) \\ &\quad=_{q} \sum_{l=0}^{n-1} f(l) (-1)^{n-l-1}q^{l} \quad(\mbox{see }). \end{aligned}
(3)

Let $$d\in\mathbb{N}$$ with $$d \equiv1\ (\operatorname{mod}\ 2)$$ and $$(p,d)=1$$. Then we set

\begin{aligned} x = x_{d} =\lim_{\overleftarrow{N}} \mathbb{Z}/dp^{N} \mathbb{Z},\qquad X^{*}= \bigcup_{0< a<dp,(a,p)=1} a+dp \mathbb{Z}_{p} \end{aligned}

and $$a+dp^{N} \mathbb{Z}_{p}=\{ x\in X |x\equiv a\ (\operatorname{mod}\ dp^{N})\}$$ where $$a\in\mathbb{Z}$$ lies in $$0\leq a < dp^{N}$$. It is well known that

\begin{aligned} \int_{X} f(x)\,d\mu_{-q} (x) =\int _{\mathbb{Z}_{p}} f(x)\,d\mu_{-q} (x), \quad\mbox{where } f\in C( \mathbb{Z}_{p})\ (\mbox{see [2--6]}). \end{aligned}
(4)

Recently, the weighted q-Euler numbers were introduced by the generating function to be

\begin{aligned} \sum_{n=0}^{\infty}E_{n,q}^{(\alpha)} \frac{t^{n}}{n!}= \int_{\mathbb{Z}_{p}} e^{[x]_{q^{\alpha}} t}\,d\mu_{-q}(x) = \sum_{n=0}^{\infty}\biggl( \int _{\mathbb{Z}_{p}} [x]_{q^{\alpha}}^{n} d\mu _{-q}(x) \biggr) \frac{t^{n}}{n!} \quad(\mbox{see [5, 7]}). \end{aligned}
(5)

Thus, by (5), we get

\begin{aligned} E_{n,q}^{(\alpha)} (x) = \int_{\mathbb{Z}_{p}} [x]_{q^{\alpha}}^{n} \,d\mu_{-q}(x) \quad(\mbox{see [5, 8]}), \end{aligned}

where $$\alpha\in\mathbb{C}_{p}$$. Many researchers have studied the weighted q-Euler numbers and q-Genocchi numbers in the recent decade (see ).

From (5), Araci defined the weighted q-Genocchi numbers as follows:

\begin{aligned} \sum_{n=0}^{\infty}G_{n,q}^{(\alpha)} \frac{t^{n}}{n!}= t \int_{\mathbb{Z}_{p}} e^{[x]_{q^{\alpha}} t}\,d\mu_{-q}(x) = \sum_{n=0}^{\infty}\biggl( \int _{\mathbb{Z}_{p}} [x]_{q^{\alpha}}^{n} \,d\mu _{-q}(x) \biggr) \frac{t^{n+1}}{n!}. \end{aligned}
(6)

By (6), we get

\begin{aligned} \frac{G_{n+1,q}^{(\alpha)} }{n+1} = \int_{\mathbb{Z}_{p}} [x]_{q^{\alpha}}^{n} \,d\mu_{-q}(x),\qquad G_{0,q}^{(\alpha)}=0. \end{aligned}
(7)

The weighted q-Genocchi polynomials are also defined by

\begin{aligned} \sum_{n=0}^{\infty}G_{n,q}^{(\alpha)} (x) \frac{t^{n}}{n!}= t \int _{\mathbb{Z}_{p}} e^{[x+y]_{q^{\alpha}} t}\,d\mu_{-q}(x). \end{aligned}
(8)

Thus, by (8), we have

\begin{aligned} \frac{G_{n+1,q}^{(\alpha)} (x)}{n+1} = \int_{\mathbb{Z}_{p}} [x+y]_{q^{\alpha}}^{n} \,d\mu_{-q}(y)\quad (n\geq0). \end{aligned}
(9)

Let us assume that χ is a Dirichlet character with conductor $$d\in \mathbb{N}$$ with $$d\equiv1\ (\operatorname{mod}\ 2)$$. Then we defined the generalized weighted q-Genocchi numbers attached to χ as follows:

\begin{aligned} \frac{G_{n+1,q,\chi}^{(\alpha)} }{n+1} = \int_{X} \chi(x)[x]_{q^{\alpha}}^{n} \,d\mu_{-q}(x). \end{aligned}
(10)

From (10), we have

\begin{aligned} \frac{G_{n+1,q,\chi}^{(\alpha)}}{n+1} =& \int_{X} \chi(x)[x]_{q^{\alpha}}^{n} \,d\mu_{-q}(x) \\ =& \lim_{N\rightarrow\infty} \frac{1}{[dp^{N}]_{-q}} \sum _{x=0}^{dp^{N}-1} \chi(x) (-1)^{x} [x]_{q^{\alpha}}^{n} \\ =& \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}}\sum_{k=0}^{d-1} (-1)^{k} \chi(k)q^{k} \Biggl( \lim_{N\rightarrow\infty} \frac{1}{[p^{N}]_{-q^{d}}} \sum_{x=0}^{p^{N}-1} \biggl[x+ \frac{k}{d} \biggr]_{q^{d\alpha}}(-1)^{x} q^{dx} \Biggr) \\ =& \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}}\sum_{k=0}^{d-1} (-1)^{k} \chi(k)q^{k} \frac{G_{n+1,q^{d}}^{(\alpha)} (\frac{k}{d} )}{n+1}. \end{aligned}
(11)

### Theorem 1.1

Let χ be the Dirichlet character with conductor $$d \in\mathbb{N}$$ with $$d\equiv1\ (\operatorname{mod}\ 2)$$. For $$n \in\mathbb{N}^{*}=\mathbb{N}\cup\{0\}$$, we have

\begin{aligned} G_{n,q,\chi}^{(\alpha)} = \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}}\sum _{k=0}^{d-1} (-1)^{k} \chi(k)q^{k} G_{n,q^{d}}^{(\alpha)} \biggl(\frac{k}{d} \biggr). \end{aligned}

Next we give a familiar theorem, which is known as the Von Staudt-Clausen theorem.

### Lemma 1.2

(Von Staudt-Clausen theorem)

Let n be an even and positive integer. Then

\begin{aligned} B_{n} + \sum_{p-1|n, p:\mathrm{prime}} \frac{1}{p} \in \mathbb{Z}. \end{aligned}

Notice that $$pB_{n}$$ is a p-adic integer where p is an arbitrary prime number, n is an arbitrary integer and also $$B_{n}$$ is a Bernoulli number as in . The purpose of this paper is to show that the weighted q-Genocchi numbers can be described by a Von Staudt-Clausen-type theorem. Finally, we prove a Kummer-type congruence for the generated weighted q-Genocchi numbers.

## Von Staudt-Clausen theorems

From (10), we have

\begin{aligned} \frac{G_{n+1,q}^{(\alpha)}}{n+1} =\int_{\mathbb{Z}_{p}} [x]_{q^{\alpha}}^{n} \,d\mu_{-q}(x) = \frac{_{q}}{2} \int_{\mathbb{Z}_{p}} q^{x} [x]_{q^{\alpha}}^{n} d \mu_{-1}(x). \end{aligned}
(12)

Thus, by (12), we have

\begin{aligned} \lim_{q\rightarrow1}\frac{G_{n+1,q}^{(\alpha)}}{n+1} =\frac{G_{n+1}}{n+1}=\int _{\mathbb{Z}_{p}}x^{n} \,d\mu_{-1}(x) \quad(\mbox{see [2--6, 15]}). \end{aligned}

In , Kim introduced the following inequality:

\begin{aligned} \Biggl\vert \sum_{j=0}^{p-1} (-1)^{j} [j]_{q^{\alpha}}q^{j} \Biggr\vert \leq1. \end{aligned}
(13)

Let us define the following equality: for $$k\geq1$$,

\begin{aligned} L_{n-1}^{(\alpha)} (k)=_{q^{\alpha}}^{n-1}- q_{q^{\alpha}}^{n-1} +\cdots+ \bigl[p^{k}-1 \bigr]_{q^{\alpha}}^{n-1}q^{p^{k}-1}. \end{aligned}
(14)

From (3), we note that

\begin{aligned} q^{d}\frac{G_{n+1,q^{d}}^{(\alpha)}(d)}{n+1} +\frac{G_{n+1,q^{d}}^{(\alpha)}}{n+1} = _{q} \sum_{l=0}^{d-1} [l]_{q^{d}}^{n} (-1)^{l} q^{l} , \end{aligned}
(15)

where $$d\in\mathbb{N}$$ with $$d\equiv1\ (\operatorname{mod}\ 2)$$. By (14) and (12), we get

\begin{aligned} \lim_{k\rightarrow\infty} nL_{n-1}^{(\alpha)}(k)= \frac {2}{_{q}}G_{n,q}^{(\alpha)}. \end{aligned}

By (14), we get

\begin{aligned} & L_{n-1}^{(\alpha)} (k+1) \\ &\quad= \sum_{a=0}^{p^{k+1}-1} (-1)^{a} q^{a} [a]_{q^{\alpha}}^{n-1} \\ &\quad= \sum_{a=0}^{p^{k}-1} \sum _{j=0}^{p-1} (-1)^{a+jp^{k}}q^{a+jp^{k}} \bigl[a+jp^{k} \bigr]_{q^{\alpha}}^{n-1} \\ &\quad= \sum_{a=0}^{p^{k}-1}\sum _{j=0}^{p-1} (-1)^{a+jp^{k}}q^{a+jp^{k}} \bigl([a]_{q^{\alpha}}+q^{\alpha a} \bigl[jp^{k} \bigr]_{q^{\alpha}} \bigr)^{n-1} \\ &\quad= \sum_{a=0}^{p^{k}-1}\sum _{j=0}^{p-1} \sum_{l=0}^{n-1} \binom{n-1}{l} [a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a \alpha l} \bigl[jp^{k} \bigr]_{q^{\alpha}}^{l} q^{a+jpk} \\ &\quad= \sum_{a=0}^{p^{k}-1}\sum _{j=0}^{p-1}\sum_{l=0}^{n-1} \binom{n-1}{l} [a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a(\alpha l+1)+jp^{k}} \bigl[p^{k} \bigr]_{q^{\alpha}}^{l} [j]_{q^{\alpha}p^{k}}^{l} \\ &\quad= \sum_{a=0}^{p^{k}-1}(-1)^{a} q^{a} [a]_{q^{\alpha}}^{n-1} \frac{_{q^{ p^{2k}}}}{_{q^{p^{k}}}} \\ &\qquad{}+ \sum _{a=0}^{p^{k}-1}\sum_{j=0}^{p-1} \sum_{l=1}^{n-1}\binom{n-1}{l} [a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a(\alpha l+1)+jp^{k}} \bigl[p^{k} \bigr]_{q^{\alpha}}^{l} [j]_{q^{\alpha p^{k}}}^{l} \\ &\quad= \sum_{a=0}^{p^{k}-1}\sum _{j=0}^{p-1}\sum_{l=0}^{n-1} \binom{n-1}{l} [a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a(\alpha+l)+jp^{k}} \bigl[p^{k} \bigr]_{q^{\alpha}}^{l} [j]_{q^{\alpha}p^{k}}^{l} \\ &\quad= \sum_{a=0}^{p^{k}-1}(-1)^{a} q^{a} [a]_{q^{\alpha}}^{n-1} \frac {_{q^{p^{2k}}}}{_{q^{p^{k}}}} \\ &\qquad{}+\sum_{a=0}^{p^{k}-1}\sum _{j=0}^{p-1} \sum_{l=0}^{n-1} \binom{n-1}{l} [a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a(\alpha l+1)+jp^{k}} \bigl[p^{k} \bigr]_{q^{\alpha}}^{l} [j]_{q^{\alpha p^{k}}}^{l}. \end{aligned}
(16)

Thus, by (16), we get

\begin{aligned} L_{n-1}^{(\alpha)} (k+1)\equiv\sum _{a=0}^{p^{k}-1} [a]_{q^{\alpha}}^{n-1}(-1)^{a}q^{a} \ \bigl(\operatorname{mod}\ \bigl[p^{k} \bigr]_{q^{\alpha}} \bigr). \end{aligned}
(17)

From (16), we have

\begin{aligned} &\sum_{a=0}^{p^{k+1}-1} (-1)^{a} [a]_{q^{\alpha}}^{n-1}q^{a} \\ &\quad= \sum_{a=0}^{p-1}\sum _{j=0}^{p^{k}-1} (-1)^{a+pj}[a+pj]_{q^{\alpha}}^{n-1}q^{a+pj} \\ &\quad= \sum_{a=0}^{p-1}(-1)^{a}q^{a} \sum_{j=0}^{p^{k}-1} (-1)^{j} q^{pj} \bigl([a]_{q^{\alpha}}+ q^{\alpha a}[p]_{q^{\alpha}} [j]_{q^{\alpha p}} \bigr)^{n-1} \\ &\quad= \sum_{a=0}^{p-1}\sum _{j=0}^{p^{k}-1} \sum_{l=0}^{n-1} \binom{n-1}{l} (-1)^{a+j} q^{a+pj} [a]_{q^{\alpha}}^{n-1-l} q^{\alpha a l} [p]_{q^{\alpha}}^{l} [j]_{q^{p\alpha}}^{l} \\ &\quad= \sum_{a=0}^{p-1}(-1)^{a} q^{a} [a]_{q^{\alpha}}^{n-1} \frac{_{q^{ p^{k+1}}}}{_{q^{p}}} \\ &\qquad{} + \sum_{a=0}^{p-1}\sum _{j=0}^{p^{k}-1} \sum_{l=1}^{n-1} \binom{n-1}{l} (-1)^{a+j}q^{a+pj+\alpha al} [a]_{q^{\alpha}}^{n-1-l} [p]_{q^{\alpha}}^{l} [j]_{q^{p\alpha}}^{l} \\ &\quad= \sum_{a=0}^{p-1}(-1)^{a} q^{a} [a]_{q^{\alpha}}^{n-1} \ \bigl(\operatorname{mod}\ [p]_{q^{\alpha}} \bigr). \end{aligned}
(18)

Therefore, by (17) and (18), we obtain the following theorem.

### Theorem 2.1

Let $$L_{n-1}^{(\alpha)} (k)= \sum_{a=0}^{p^{k}-1} (-1)^{a} [a]_{q^{\alpha}}^{n-1}$$. Then we have

\begin{aligned} L_{n-1}^{(\alpha)} (k+1)= \sum_{a=0}^{p^{k}-1} [a]_{q^{\alpha}}^{n-1}(-1)^{a} q^{a}. \end{aligned}

Furthermore

\begin{aligned} \sum_{a=0}^{p^{k}-1} [a]_{q^{a}}^{n-1}(-1)^{a} q^{a} \alpha \ \bigl(\operatorname{mod}\ \bigl[p^{k} \bigr]_{q^{\alpha}} \bigr) \equiv\sum_{a=0}^{p-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1} \ \bigl(\operatorname{mod}\ [p]_{q^{\alpha}} \bigr). \end{aligned}

By Theorem 2.1, we get

\begin{aligned} \sum_{a=0}^{p-1} (-1)^{a} n [a]_{q^{\alpha}}^{n-1} q^{a} =\int _{X} [x]_{q^{\alpha}}^{n-1}\,d \mu_{-q}(x) \equiv G_{n,q}^{(\alpha)} \ \bigl(\operatorname{mod}\ [p]_{q} \bigr). \end{aligned}
(19)

Therefore, by (19), we have the following theorem.

### Theorem 2.2

For $$n\geq1$$, we have

\begin{aligned} \sum_{a=0}^{p-1} (-1)^{a} n [a]_{q^{\alpha}}^{n-1}=G_{n,q}^{(\alpha)} \ \bigl( \operatorname{mod}\ [p]_{q} \bigr). \end{aligned}

From (17) and (19), we note that

\begin{aligned} G_{n+1,q}^{(\alpha)} + n \sum_{a=0}^{p-1} (-1)^{a+1} [a]_{q^{\alpha}}^{n-1}q^{a} \in \mathbb{Z}_{p} \quad(n\geq1). \end{aligned}

### Corollary 2.3

For $$n\geq1$$, we have

\begin{aligned} G_{n+1,q}^{(\alpha)} + n \sum_{a=0}^{p-1} (-1)^{a+1} [a]_{q^{\alpha}}^{n-1}q^{a} \in \mathbb{Z}_{p}. \end{aligned}

Let $$n\geq1$$. Then we observe that

\begin{aligned} \biggl\vert \frac{G_{n+1,q}^{(\alpha)}}{n+1} \biggr\vert _{p} &= \Biggl\vert \frac{G_{n+1,q}^{(\alpha)}}{n+1} -\sum_{a=0}^{p-1}(-1)^{a}[a]_{q^{\alpha}}^{n} q^{a} + \sum_{a=0}^{p-1}(-1)^{a}q^{a} [a]_{q^{\alpha}}^{n} \Biggr\vert _{p} \\ &\leq \max \Biggl\{ \Biggl\vert \frac{G_{n+1,q}^{(\alpha)}}{n+1} -\sum _{a=0}^{p-1}(-1)^{a}[a]_{q^{\alpha}}^{n} \Biggr\vert _{p}, \Biggl\vert \sum_{a=0}^{p-1}(-1)^{a}q^{a} [a]_{q^{\alpha}}^{n} \Biggr\vert _{p} \Biggr\} \leq1. \end{aligned}
(20)

Therefore, we obtain the following theorem.

### Theorem 2.4

For $$n\geq1$$, we have

\begin{aligned} \frac{G_{n+1,q}^{(\alpha)}}{n+1} \in\mathbb{Z}_{p}. \end{aligned}

Let χ be the Dirichlet character $$d\in\mathbb{N}$$ with $$d\equiv1\ (\operatorname{mod}\ 2)$$. The generalized weighted q-Genocchi numbers attached to χ are introduced as follows:

\begin{aligned} \sum_{n=0}^{\infty}G_{n,q,\chi}^{(\alpha)} \frac{t^{n}}{n!} =& _{q} t \sum _{m=0}^{\infty}(-1)^{m} \chi(m)e^{[m]_{q^{\alpha}} t} \\ =& t \int_{X} \chi(x) e^{[x]_{q^{\alpha}}t}\,d \mu_{-q}(x). \end{aligned}
(21)

Let $$\overline{f}=[f,p]$$ be the least common multiple of the conductor f of χ and p. By (21), we get

\begin{aligned} G_{n,q,\chi}^{(\alpha)} = n\int_{X} \chi(x) [x]_{q^{\alpha}}^{n-1}\,d\mu _{-q}(x) = n \lim_{n\rightarrow\infty} \sum_{x=0}^{fp^{N}-1} \chi(x) (-1)^{x} [x]_{q^{\alpha}}^{n-1}. \end{aligned}
(22)

Thus, we have

\begin{aligned} G_{n,q,\chi}^{(\alpha)} =& n \lim_{\rho\rightarrow\infty} \sum_{1\leq a\leq\overline {f}p^{\rho}, (a,p)=1} \chi(a) (-1)^{a} q^{a} [a]_{q^{\alpha}}^{n-1} \\ &{}+ n[p]_{q^{\alpha}}^{n-1} \chi(p) \lim_{\rho\rightarrow\infty} \sum_{1\leq a\leq\overline{f}p^{\rho}, (a,p)=1}^{\overline{f}p^{\rho}-1} \chi(a) (-1)^{a}q^{ap}[a]_{q^{\alpha}p}^{n-1} \\ =& n \lim_{\rho\rightarrow\infty} \sum_{1\leq a\leq\overline{f}p^{p}, (a,p)=1} \chi(a) (-1)^{a} q^{a} [a]_{q^{\alpha}}^{n-1} +a[p]_{q^{\alpha}}^{n-1}\chi (p)G_{n,q^{p},\chi}^{(\alpha)}. \end{aligned}
(23)

Therefore, by (23), we obtain the following theorem.

### Theorem 2.5

For $$n\geq1$$, we have

\begin{aligned} n \lim_{\rho\rightarrow\infty} \sum _{1\leq a\leq\overline{f}p^{\rho}, (a,p)=1} \chi(a) (-1)^{a}q^{a}[a]_{q^{\alpha}}^{n-1} = G_{n,q,\chi}^{(\alpha)}-[p]_{q^{\alpha}}^{n-1} \chi(p)G_{n,q^{p}, \chi }^{(\alpha)}. \end{aligned}
(24)

Assume that w is the Teichmüller character by modp. For $$a\in X^{*}$$, set $$\langle a\rangle_{\alpha}=\langle a:q\rangle_{\alpha}=\frac{[a]_{q^{\alpha}}}{w(a)}$$. Note that $$|\langle a\rangle_{\alpha}-1|_{p}< p^{\frac{1}{p-1}}$$, where $$\langle a\rangle^{s}=\exp (s \log \langle a\rangle)$$ for $$s\in\mathbb{Z}_{p}$$. For $$s\in\mathbb{Z}_{p}$$, we define the weighted p-adic l-function associated with $$G_{n,q,\chi}^{(\alpha)}$$ as follows:

\begin{aligned} l_{p,q}^{(\alpha)}(s, \chi)= \lim_{\rho\rightarrow\infty} \sum _{1\leq a\leq\overline{f}p^{\rho}, (a,p)=1} \chi(a) (-1)^{a} \langle a \rangle_{\alpha}^{-s}q^{a}= \int_{X^{*}} \chi(x)\langle x\rangle_{\alpha}^{-s}\,d\mu_{-q}(x). \end{aligned}

For $$k\geq1$$,

\begin{aligned} & k l_{p,q} \bigl(1-k,\chi w^{k-1} \bigr) \\ &\quad= k \lim_{\rho\rightarrow\infty} \sum_{1\leq a\leq\overline{f}p^{\rho}} \chi(a) (-1)^{a}q^{a} [a]_{q^{\alpha}}^{k-1} \\ &\quad= k \int_{X} \chi(x)[x]_{q^{\alpha}}^{k-1} \,d\mu_{-q}(x) - k\int_{p X} \chi(x)[x]_{q^{\alpha}}^{k-1} \,d\mu_{-q}(x) \\ &\quad= k\int_{X} \chi(x)[x]_{q^{\alpha}}^{k-1} \,d\mu_{-q}(x)- \frac{k_{q}\chi(p)}{_{q^{p}}} [p]_{q^{\alpha}}^{k-1} \int_{X} \chi(x) [x]_{q^{\alpha p}}^{k-1}\,d \mu_{-q^{p}}(x) \\ &\quad= G_{x,q,\chi}^{(\alpha)} - \frac{_{q}}{_{q^{p}}}\chi (p)[p]_{q^{\alpha}}^{k-1} G_{k,q^{p},\chi}^{(\alpha)}. \end{aligned}

It is easy to show that

\begin{aligned}[b] \langle a\rangle_{\alpha}^{p^{n}} &= \exp \bigl(p^{n} \log \langle a\rangle_{\alpha}\bigr) \\ &= 1+ p^{n} \log\langle a\rangle_{\alpha}+ \frac{(p^{n} \log_{p}\langle a\rangle_{\alpha})^{2}}{2!}+ \cdots \\ &\equiv1 \ \bigl(\operatorname{mod}\ p^{n} \bigr). \end{aligned}

So, by the definition of $$l_{p,q}^{(\alpha)}(1-k,x)$$, we get

\begin{aligned}[b] l_{p,q}^{(\alpha)}(-k,\chi) &= \lim_{\rho\rightarrow\infty} \sum _{1\leq a\leq\overline{f}p^{\rho}, (a,p)=1} \chi(a) (-1)^{a} q^{a} \langle a\rangle_{\alpha}^{k} \\ &\equiv \lim_{\rho\rightarrow\infty} \sum_{1\leq a\leq\overline {f}p^{\rho}, (a,p)=1} \chi(a) (-1)^{a} q^{a} \langle a\rangle_{\alpha}^{k'} \ \bigl(\operatorname{mod}\ p^{n} \bigr), \end{aligned}

where $$k\equiv k' \ (\operatorname{mod}\ p^{n} (p-1))$$. Namely, we have

\begin{aligned} l_{p,q}^{(\alpha)} \bigl(-k,\chi w^{k} \bigr)\equiv l_{p,q}^{(\alpha)} \bigl(-k',\chi w^{k'} \bigr) \ \bigl(\operatorname{mod}\ p^{n} \bigr). \end{aligned}

### Theorem 2.6

For $$k\equiv k'\ (\operatorname{mod}\ p^{n} (p-1))$$, we have

\begin{aligned} \frac{G_{k+1,q,\chi}^{(\alpha)}}{k+1}-\frac{_{q}}{_{q^{p}}}\frac {G_{k+1,q^{p},\chi}^{(\alpha)}}{k+1} \equiv \frac{G_{k'+1,q,\chi}^{(\alpha)}}{k'+1}-\frac{_{q}}{_{q^{p}}}\frac {G_{k'+1,q^{p},\chi}^{(\alpha)}}{k'+1} \ \bigl(\operatorname{mod}\ p^{n} \bigr). \end{aligned}

## References

1. 1.

Araci, S, Acikgoz, M, Sen, E: On the von Staudt-Clausen’s theorem associated with q-Genocchi numbers. Appl. Math. Comput. 247, 780-785 (2014)

2. 2.

Kim, T: On the von Staudt-Clausen theorem for q-Euler numbers. Russ. J. Math. Phys. 20(1), 33-38 (2013)

3. 3.

Kim, T, Jang, L-C, Kim, Y-H: Some properties on the p-adic invariant integral on $$\mathbb {Z}_{p}$$ associated with Genocchi and Bernoulli polynomials. J. Comput. Anal. Appl. 13(7), 1201-1207 (2011)

4. 4.

Kim, T: New approach to q-Euler polynomials of higher order. Russ. J. Math. Phys. 17(2), 218-225 (2010)

5. 5.

Kim, T: Identities on the weighted q-Euler numbers and q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 22(1), 7-12 (2012)

6. 6.

Kim, T, Kim, Y-H, Ryoo, CS: Some identities on the weighted q-Euler numbers and q-Bernstein polynomials. J. Inequal. Appl. 2011, 64 (2011)

7. 7.

Park, J-W: New approach to q-Bernoulli polynomials with weight or weak weight. Adv. Stud. Contemp. Math. 24(1), 39-44 (2014)

8. 8.

Ryoo, CS: A note on the weighted q-Euler numbers and polynomials. Adv. Stud. Contemp. Math. 21(1), 47-54 (2011)

9. 9.

Araci, S, Acikgoz, M, Jolany, H, Seo, J: A unified generating function of the q-Genocchi polynomials with their interpolation functions. Proc. Jangjeon Math. Soc. 15(2), 227-233 (2012)

10. 10.

Bayad, A, Kim, T: Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 20(2), 247-253 (2010)

11. 11.

Gaboury, S, Tremblay, R, Fugere, B-J: Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 17(1), 115-123 (2014)

12. 12.

Jang, LC, Bell, ET: A study on the distribution of twisted q-Genocchi polynomials. Adv. Stud. Contemp. Math. 18(2), 181-189 (2009)

13. 13.

Jeong, J-H, Park, J-W, Rim, S-H: New approach to the analogue of Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure on $$\mathbb{Z}_{p}$$. J. Comput. Anal. Appl. 15(7), 1310-1316 (2013)

14. 14.

Kim, DS, Kim, T: q-Bernoulli polynomials and q-umbral calculus. Sci. China Math. 57(9), 1867-1874 (2014)

15. 15.

Kim, T, Kim, DS, Dolgy, DV, Rim, SH: Some identities on the Euler numbers arising from Euler basis polynomials. Ars Comb. 109, 433-446 (2013)

16. 16.

Pak, HK, Rim, SH, Jeong, J: A note on the analogue of Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure on $$\mathbb{Z}_{p}$$. J. Inequal. Appl. 2013, 15 (2013)

## Acknowledgements

This paper was supported by Konkuk University in 2015.

## Author information

Authors

### Corresponding author

Correspondence to Lee-Chae Jang.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

## Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and Permissions 