We’d like to understand how you use our websites in order to improve them. Register your interest.

# Existence results for m-point boundary value problems of nonlinear fractional differential equations with p-Laplacian operator

## Abstract

In this paper, we discuss the existence and multiplicity of positive solutions to m-point boundary value problems of nonlinear fractional differential equations with p-Laplacian operator

${ D 0 + β ( φ p ( D 0 + α u ( t ) ) ) + φ p ( λ ) f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , D 0 + γ u ( 1 ) = ∑ i = 1 m − 2 ξ i D 0 + γ u ( η i ) , D 0 + α u ( 0 ) = 0 ,$

where $D 0 + α$, $D 0 + β$ and $D 0 + γ$ are the standard Riemann-Liouville fractional derivatives with $1<α≤2$, $0<β,γ≤1$, $0≤α−β−1$, $λ∈(0,+∞)$, $0< ξ i , η i <1$, $i=1,2,…,m−2$, $∑ i = 1 m − 2 ξ i η i α − β − 1 <1$, $0≤α−γ−1$, $f∈C([0,1]×[0,+∞),[0,+∞))$, and $φ p (s)= | s | p − 2 s$, $p>1$, $φ p − 1 = φ q$, $1 p + 1 q =1$. Our results are based on the monotone iterative technique and the theory of the fixed point index in a cone. Furthermore, two examples are also given to illustrate the results.

## 1 Introduction

Fractional differential equations arise in various areas of science and engineering. Due to their applications, fractional differential equations have gained considerable attention (see, e.g.,  and the references therein).

Recently, there have been some papers dealing with the existence of solutions for nonlinear fractional differential equations with p-Laplacian operator. In , Wang et al. investigated the following boundary value problem for fractional differential equations with p-Laplacian operator:

${ D 0 + β ( φ p ( D 0 + α u ( t ) ) ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , u ( 1 ) = a u ( ξ ) , D 0 + α u ( 0 ) = 0 , D 0 + α u ( 1 ) = b D 0 + α u ( η ) ,$

where $D 0 + α$, $D 0 + β$ are the standard Riemann-Liouville fractional derivatives, $1<α,β≤2$, $0≤a,b≤1$, $0<ξ,η<1$, $f(t,u)∈C[(0,1)×(0,+∞),[0,+∞)]$.

In , Chai studied the existence of positive solutions of the following fractional differential equations with p-Laplacian operator:

${ D 0 + β ( φ p ( D 0 + α u ( t ) ) ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , u ( 1 ) + σ D 0 + γ u ( 1 ) = 0 , D 0 + α u ( 0 ) = 0 ,$

where $D 0 + α$, $D 0 + β$ and $D 0 + γ$ are the standard Riemann-Liouville fractional derivatives with $1<α≤2$, $0<β≤1$, $0<γ≤1$, $0≤α−γ−1$, the constant σ is a positive number, $f(t,u)∈C(I× R + , R + )$.

In , Chen and Liu studied the following fractional differential equations with p-Laplacian operator:

${ D 0 + β ( φ p ( D 0 + α x ( t ) ) ) = f ( t , x ( t ) ) , t ∈ [ 0 , 1 ] , x ( 0 ) = − x ( 1 ) , D 0 + α x ( 0 ) = − D 0 + α x ( 1 ) ,$

where $0<α,β≤1$, $1<α+β≤2$, $D 0 + α$, $D 0 + β$ are Caputo fractional derivatives, and $f:[0,1]×R→R$ is continuous.

In , Lu et al. studied the following fractional differential equations with p-Laplacian operator:

${ D 0 + β ( φ p ( D 0 + α u ( t ) ) ) = f ( t , u ( t ) ) , t ∈ [ 0 , 1 ] , u ( 0 ) = u ′ ( 0 ) = u ′ ( 1 ) = 0 , D 0 + α u ( 0 ) = D 0 + α u ( 1 ) = 0 ,$

where $2<α≤3$, $1<β≤2$, $D 0 + α$, $D 0 + β$ are the standard Riemann-Liouville fractional derivatives, and $f(t,u)∈C([0,1]×[0,+∞),[0,+∞))$.

On the other hand, in , Bai studied an eigenvalue interval of the following fractional boundary problem:

${ D 0 + α c u ( t ) + λ h ( t ) f ( u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ′ ( 1 ) = u ″ ( 0 ) = 0 ,$

where $2<α≤3$, $D 0 + α c$ is the standard Caputo fractional derivative, $λ>0$.

In , Zhang et al. studied the following singular eigenvalue problem for a higher order fractional differential equation:

${ − D α x ( t ) = λ f ( x ( t ) , D μ 1 x ( t ) , D μ 2 x ( t ) , … , D μ n − 1 x ( t ) ) , 0 < t < 1 , x ( 0 ) = 0 , D μ i x ( 0 ) = 0 , D μ x ( 1 ) = ∑ j = 1 p − 2 a j D μ x ( ξ j ) , 1 ≤ i ≤ n − 1 ,$

where $n≥3$, $n−1<α≤n$, $n−l−1<α− μ l for $l=1,2,…,n−2$, and $μ− μ n − 1 >0$, $α− μ n − 1 ≤2$, $α−μ>1$. $D 0 + α$ is the standard Riemann-Liouville fractional derivative.

Moreover, in recent years, we have done some work on fractional differential equations . In , we considered the following m-point boundary value problem for fractional differential equations:

${ D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , D 0 + β u ( 1 ) = ∑ i = 1 m − 2 ξ i D 0 + β u ( η i ) ,$

where $D 0 + α$ is the standard Riemann-Liouville fractional derivative, $n=[α]+1$, $f:[0,1]×[0,∞)→[0,∞)$ is continuous, $1<α≤2$, $0≤β≤1$, $0≤α−β−1$, $0< ξ i , η i <1$, $i=1,2,…,m−2$, and $∑ i = 1 m − 2 ξ i η i α − β − 1 <1$.

Combining our work, in this paper, we discuss the existence of positive solutions for the following fractional differential equations with p-Laplacian operator:

${ D 0 + β ( φ p ( D 0 + α u ( t ) ) ) + φ p ( λ ) f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , D 0 + γ u ( 1 ) = ∑ i = 1 m − 2 ξ i D 0 + γ u ( η i ) , D 0 + α u ( 0 ) = 0 ,$
(1.1)

where $D 0 + α$, $D 0 + β$ and $D 0 + γ$ are the standard Riemann-Liouville fractional derivatives with $1<α≤2$, $0<β,γ≤1$, $0≤α−β−1$, $λ∈(0,+∞)$, $0< ξ i , η i <1$, $i=1,2,…,m−2$, $∑ i = 1 m − 2 ξ i η i α − β − 1 <1$, $0≤α−γ−1$, $f∈C([0,1]×[0,+∞),[0,+∞))$, and $φ p (s)= | s | p − 2 s$, $p>1$, $φ p − 1 = φ q$, $1 p + 1 q =1$.

Our work presented in this paper has the following features. Firstly, to the best of the author’s knowledge, there are few results on the existence of solutions for nonlinear fractional p-Laplacian differential equations with m-point boundary value problems. Secondly, we transform (1.1) into an equivalent integral equation and discuss the eigenvalue interval for the existence of multiplicity of positive solutions. The paper is organized as follows. In Section 2, we present some background materials and preliminaries. Section 3 deals with some existence results. In Section 4, two examples are given to illustrate the results.

## 2 Background materials and preliminaries

Definition 2.1 ([10, 11])

The fractional integral of order α with the lower limit $t 0$ for a function f is defined as

$I α f(t)= 1 Γ ( α ) ∫ t 0 t ( t − s ) α − 1 f(s)ds,t> t 0 ,α>0,$

where Γ is the gamma function.

Definition 2.2 ([10, 11])

The Riemann-Liouville derivative of order α with the lower limit $t 0$ for a function f is

$D t 0 α f(t)= 1 Γ ( n − α ) ( d d t ) n ∫ t 0 t ( t − s ) n − α − 1 f(s)ds,t> t 0 ,α>0,n=[α]+1.$

Lemma 2.1 ()

Assume that $u∈C(0,1)∩ L 1 (0,1)$ with a fractional derivative of order $α>0$ that belongs to $C(0,1)∩ L 1 (0,1)$. Then

where N is the smallest integer greater than or equal to α.

Lemma 2.2 ()

Let $y∈C[0,1]$. Then the fractional differential equation

${ D 0 + α u ( t ) + y ( t ) = 0 , 0 < t < 1 , 1 < α ≤ 2 , u ( 0 ) = 0 , D 0 + β u ( 1 ) = ∑ i = 1 m − 2 ξ i D 0 + β u ( η i )$

has a unique solution which is given by

$u(t)= ∫ 0 1 G(t,s)y(s)ds,$

where

$G(t,s)= G 1 (t,s)+ G 2 (t,s),$

in which

$G 1 ( t , s ) = { t α − 1 ( 1 − s ) α − β − 1 − ( t − s ) α − 1 Γ ( α ) , 0 ≤ s ≤ t ≤ 1 , t α − 1 ( 1 − s ) α − β − 1 Γ ( α ) , 0 ≤ t ≤ s ≤ 1 , G 2 ( t , s ) = { 1 A Γ ( α ) [ ∑ 0 ≤ s ≤ η i ( ξ i η i α − β − 1 t α − 1 ( 1 − s ) α − β − 1 − ξ i t α − 1 ( η i − s ) α − β − 1 ) ] , t ∈ [ 0 , 1 ] , 1 A Γ ( α ) ( ∑ η i ≤ s ≤ 1 ξ i η i α − β − 1 t α − 1 ( 1 − s ) α − β − 1 ) , t ∈ [ 0 , 1 ] ,$

where

$A=1− ∑ i = 1 m − 2 ξ i η i α − β − 1 .$

Lemma 2.3 ()

If $∑ i = 1 m − 2 ξ i η i α − β − 1 <1$, then the function $G(t,s)$ in Lemma  2.2 satisfies the following conditions:

1. (i)

$G(t,s)>0$, for $s,t∈(0,1)$,

2. (ii)

$G(t,s)≤ G ∗ (s,s)$, for $s,t∈[0,1]$,

where

$G ∗ (s,s)= 1 Γ ( α ) ( 1 − s ) α − β − 1 + 1 A Γ ( α ) ∑ i = 1 m − 2 ξ i η i α − β − 1 ( 1 − s ) α − β − 1 .$

Lemma 2.4 $G(t,s)$ in has the following property:

$G(t,s)≥ t α − 1 G(1,s).$

Proof For $0≤s≤t≤1$, we conclude that

$t α − 1 ( 1 − s ) α − β − 1 − ( t − s ) α − 1 = t α − 1 [ ( 1 − s ) α − β − 1 − ( 1 − s t ) α − 1 ] ≥ t α − 1 [ ( 1 − s ) α − β − 1 − ( 1 − s ) α − 1 ] .$

Thus

$G 1 (t,s)≥ t α − 1 G 1 (1,s).$

It is obvious that

$G 2 (t,s)≥ t α − 1 G 2 (1,s).$

Therefore

$G(t,s)≥ t α − 1 G(1,s).$

□

Lemma 2.5 Let $f∈C([0,1]×[0,+∞),[0,+∞))$, then BVP (1.1) has a unique solution

$u(t)=λ ∫ 0 1 G(t,s) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) ds.$

Proof Let $w= D 0 + α u$, $v= φ p (w)$. From (1.1), we have

${ D 0 + β v ( t ) + φ p ( λ ) f ( t , u ( t ) ) = 0 , 0 < t < 1 , v ( 0 ) = 0 .$

By Lemma 2.1, we have

$v(t)= c 1 t β − 1 − I 0 + β ( φ p ( λ ) f ( t , u ( t ) ) ) ,0

It follows from $v(0)=0$ that

$v(t)=− I 0 + β ( φ p ( λ ) f ( t , u ( t ) ) ) ,0

Thus, from (1.1) we know that

${ D 0 + α u ( t ) = φ p − 1 ( − I 0 + β ( φ p ( λ ) f ( t , u ( t ) ) ) ) , 0 < t < 1 , u ( 0 ) = 0 , D 0 + γ u ( 1 ) = ∑ i = 1 m − 2 ξ i D 0 + γ u ( η i ) .$

By Lemma 2.2, (1.1) has a unique solution

$u(t)=−λ ∫ 0 1 G(t,s) φ p − 1 ( − I 0 + β f ( s , u ( s ) ) ) ds.$

It follows from $f∈C([0,1]×[0,+∞),[0,+∞))$ that

$− ∫ 0 1 G(t,s) φ p − 1 ( − I 0 + β f ( s , u ( s ) ) ) ds= ∫ 0 1 G(t,s) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) ds.$

Thus

$u(t)=λ ∫ 0 1 G(t,s) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) ds.$

□

Lemma 2.6 ()

Let E be a real Banach space, $P⊂E$ be a cone, $Ω r ={u∈P:∥u∥≤r}$. Let the operator $T:P∩ Ω r →P$ be completely continuous and satisfy $Tx≠x$, $∀x∈∂ Ω r$. Then

$( i ) If ∥ T x ∥ ≤ ∥ x ∥ , ∀ x ∈ ∂ Ω r , then i ( T , Ω r , P ) = 1 , ( ii ) If ∥ T x ∥ ≥ ∥ x ∥ , ∀ x ∈ ∂ Ω r , then i ( T , Ω r , P ) = 0 .$

## 3 Main results

We consider the Banach space $E=C([0,1],R)$ endowed with the norm defined by $∥u∥= sup 0 ≤ t ≤ 1 |u(t)|$. Let $P={u∈E|u(t)≥0}$, then P is a cone in E. Define an operator $T:P→P$ as

$(Tu)(t)=λ ∫ 0 1 G(t,s) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) ds.$
(3.1)

Then T has a solution if and only if the operator T has a fixed point.

Lemma 3.1 If $f∈C([0,1]×[0,+∞),[0,+∞))$, then the operator $T:P→P$ is completely continuous.

Proof From the continuity and non-negativeness of $G(t,s)$ and $f(t,u(t))$, we know that $T:P→P$ is continuous.

Let $Ω⊂P$ be bounded. Then, for all $t∈[0,1]$ and $u∈Ω$, there exists a positive constant M such that $|f(t,u(t))|≤M$. Thus,

$| ( T u ) ( t ) | = | λ ∫ 0 1 G ( t , s ) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) d s | ≤ λ ∫ 0 1 G ∗ ( s , s ) ( ∫ 0 s ( s − τ ) β − 1 d τ ) q − 1 d s M q − 1 ( Γ ( β ) ) q − 1 = λ M q − 1 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 G ∗ ( s , s ) s ( q − 1 ) β d s ≤ λ M q − 1 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 G ∗ ( s , s ) d s = λ M q − 1 L ( Γ ( β + 1 ) ) q − 1 ,$

where

$L= ∫ 0 1 G ∗ (s,s)ds.$

This means that $T(Ω)$ is uniformly bounded.

On the other hand, from the continuity of $G(t,s)$ on $[0,1]×[0,1]$, we see that it is uniformly continuous on $[0,1]×[0,1]$. Thus, for fixed $s∈[0,1]$ and for any $ε>0$, there exists a constant $δ>0$ such that $t 1 , t 2 ∈[0,1]$ and $| t 1 − t 2 |<δ$,

$|G( t 1 ,s)−G( t 2 ,s)|< ( Γ ( β + 1 ) ) q − 1 λ M q − 1 ε.$

Hence, for all $u∈Ω$,

$| ( T u ) ( t 2 ) − ( T u ) ( t 1 ) | ≤ λ ∫ 0 1 | G ( t 2 , s ) − G ( t 1 , s ) | φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) d s ≤ λ ∫ 0 1 | G ( t 2 , s ) − G ( t 1 , s ) | ( ∫ 0 s ( s − τ ) β − 1 d τ ) q − 1 d s M q − 1 ( Γ ( β ) ) q − 1 = λ M q − 1 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 | G ( t 2 , s ) − G ( t 1 , s ) | s ( q − 1 ) β d s ≤ λ M q − 1 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 | G ( t 2 , s ) − G ( t 1 , s ) | d s = ε ,$

which implies that $T(Ω)$ is equicontinuous. By the Arzela-Ascoli theorem, we obtain that $T:P→P$ is completely continuous. The proof is complete. □

Theorem 3.2 If $f∈C([0,1]×[0,+∞),[0,+∞))$, $f(t,u)$ is nondecreasing in u and $λ∈(0,+∞)$, then BVP (1.1) has a minimal positive solution $v ¯$ in $B r$ and a maximal positive solution $w ¯$ in $B r$. Moreover, $v m (t)→ v ¯ (t)$, $w m (t)→ w ¯ (t)$ as $m→∞$ uniformly on $[0,1]$, where

$v m (t)=λ ∫ 0 1 G(t,s) φ p − 1 ( I 0 + β f ( s , v m − 1 ( s ) ) ) ds$
(3.2)

and

$w m (t)=λ ∫ 0 1 G(t,s) φ p − 1 ( I 0 + β f ( s , w m − 1 ( s ) ) ) ds.$
(3.3)

Proof Let

$B r = { u ∈ P : ∥ u ∥ ≤ r } ,$

where

$r≥ λ M 1 q − 1 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 G ∗ (s,s)ds.$

Step 1: Problem (1.1) has at least one solution.

For $u∈ B r$, there exists a positive constant $M 1$ such that $|f(t,u(t))|≤ M 1$,

$| ( T u ) ( t ) | = | λ ∫ 0 1 G ( t , s ) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) d s | ≤ λ ( Γ ( β ) ) q − 1 ∫ 0 1 G ∗ ( s , s ) ( ∫ 0 s ( s − τ ) β − 1 f ( τ , u ( τ ) ) d τ ) q − 1 d s ≤ λ M 1 q − 1 ( Γ ( β ) ) q − 1 ∫ 0 1 G ∗ ( s , s ) ( ∫ 0 s ( s − τ ) β − 1 d τ ) q − 1 d s = λ M 1 q − 1 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 G ∗ ( s , s ) s β ( q − 1 ) d s ≤ λ M 1 q − 1 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 G ∗ ( s , s ) d s .$

Thus

$T: B r → B r .$

By Lemma 3.1, we can see that $T: B r → B r$ is completely continuous. Hence, by means of the Schauder fixed point theorem, the operator T has at least one fixed point, and BVP (1.1) has at least one solution in $B r$.

Step 2: BVP (1.1) has a positive solution in $B r$, which is a minimal positive solution.

From (3.1) and (3.2), one can see that

$v m (t)=(T v m − 1 )(t),t∈[0,1],m=1,2,3,….$
(3.4)

This, together with $f(t,u)$ being nondecreasing in u, yields that

$0= v 0 (t)≤ v 1 (t)≤⋯≤ v m (t)≤⋯,t∈[0,1].$

Since T is compact, we obtain that ${ v m }$ is a sequentially compact set. Consequently, there exists $v ¯ ∈ B r$ such that $v m → v ¯$ ($m→∞$).

Let $u(t)$ be any positive solution of BVP (1.1) in $B r$. It is obvious that $0= v 0 (t)≤u(t)=(Tu)(t)$.

Thus,

$v m (t)≤u(t)(m=0,1,2,3,…).$
(3.5)

Taking limits as $m→∞$ in (3.5), we get $v ¯ (t)≤u(t)$ for $t∈[0,1]$.

Step 3: BVP (1.1) has a positive solution in $B r$, which is a maximal positive solution.

Let $w 0 (t)=r$, $t∈[0,1]$ and $w 1 (t)=T w 0 (t)$. From $T: B r → B r$, we have $w 1 ∈ B r$. Thus

$0≤ w 1 (t)≤r= w 0 (t).$

This, together with $f(t,u)$ being nondecreasing in u, yields that

$⋯≤ w m (t)≤⋯≤ w 1 (t)≤ w 0 (t),t∈[0,1].$

Using a proof similar to that of Step 2, we can show that

$w m (t)→ w ¯ (t)(m→∞)$

and

$w ¯ (t)= ∫ 0 1 G(t,s)f ( s , w ¯ ( s ) ) ds.$

Let $u(t)$ be any positive solution of BVP (1.1) in $B r$.

Obviously,

$u(t)≤ w 0 (t).$

Thus

$u(t)≤ w m (t).$
(3.6)

Taking limits as $m→∞$ in (3.6), we obtain $u(t)≤ w ¯ (t)$ for $t∈[0,1]$.

The proof is complete. □

Define

$f 0 = lim u → 0 + sup t ∈ [ 0 , 1 ] f ( t , u ) φ p ( l 1 ∥ u ∥ ) , f 0 = lim u → 0 + inf t ∈ [ 0 , 1 ] f ( t , u ) φ p ( l 2 ∥ u ∥ ) , f ∞ = lim u → + ∞ sup t ∈ [ 0 , 1 ] f ( t , u ) φ p ( l 3 ∥ u ∥ ) , f ∞ = lim u → + ∞ inf t ∈ [ 0 , 1 ] f ( t , u ) φ p ( l 4 ∥ u ∥ ) .$

Let

$B= ∫ 0 1 G ∗ (s,s) s β ( q − 1 ) dsand B 1 = ∫ 0 1 G(1,s) s β ( q − 1 ) ds.$

Theorem 3.3 Assume that $f∈C([0,1]×[0,+∞),[0,+∞))$, and the following conditions hold:

(H1) $f 0 = f ∞ =+∞$.

(H2) There exists a constant $ρ 1 >0$ such that $f(t,u)≤ φ p ( l 5 ∥u∥)$ for $t∈[0,1]$, $u∈[0, ρ 1 ]$.

Then BVP (1.1) has at least two positive solutions $u 1$ and $u 2$ such that

$0<∥ u 1 ∥< ρ 1 <∥ u 2 ∥$

for

$λ∈ ( ( Γ ( β + 1 ) ) q − 1 l 2 B 1 , ( Γ ( β + 1 ) ) q − 1 l 5 B ) ∩ ( ( Γ ( β + 1 ) ) q − 1 l 4 B 1 , ( Γ ( β + 1 ) ) q − 1 l 5 B ) ,$
(3.7)

where

$l 2 B 1 > l 5 Band l 4 B 1 > l 5 B.$

Proof Since

$f 0 = lim u → 0 + inf t ∈ [ 0 , 1 ] f ( t , u ) φ p ( l 2 ∥ u ∥ ) =+∞,$

there is $ρ 0 ∈(0, ρ 1 )$ such that

Let

$Ω ρ 0 = { u ∈ P : ∥ u ∥ ≤ ρ 0 } .$

Then, for any $u∈∂ Ω ρ 0$, it follows from Lemma 2.4 that

$( T u ) ( t ) = λ ∫ 0 1 G ( t , s ) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) d s ≥ λ ∫ 0 1 t α − 1 G ( 1 , s ) φ p − 1 ( I 0 + β ( φ p ( l 2 ∥ u ∥ ) ) ) d s = λ l 2 ∫ 0 1 t α − 1 G ( 1 , s ) ( 1 Γ ( β ) ∫ 0 s ( s − τ ) β − 1 d τ ) q − 1 d s ∥ u ∥ = λ l 2 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 t α − 1 G ( 1 , s ) s β ( q − 1 ) d s ∥ u ∥ .$

Thus

$∥Tu∥≥ λ l 2 B 1 ( Γ ( β + 1 ) ) q − 1 ∥u∥.$

This, together with (3.7), yields that

$∥Tu∥≥∥u∥,∀u∈∂ Ω ρ 0 .$

By Lemma 2.6, we have

$i(T, Ω ρ 0 ,P)=0.$
(3.8)

In view of

$f ∞ = lim u → + ∞ inf t ∈ [ 0 , 1 ] f ( t , u ) φ p ( l 4 ∥ u ∥ ) =+∞,$

there is $ρ 0 ∗ , ρ 0 ∗ > ρ 1$, such that

Let

$Ω ρ 0 ∗ = { u ∈ P : ∥ u ∥ ≤ ρ 0 ∗ } .$

Then, for any $u∈∂ Ω ρ 0 ∗$, it follows from Lemma 2.4 that

$( T u ) ( t ) = λ ∫ 0 1 G ( t , s ) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) d s ≥ λ ∫ 0 1 t α − 1 G ( 1 , s ) φ p − 1 ( I 0 + β ( φ p ( l 4 ∥ u ∥ ) ) ) d s = λ l 4 ∫ 0 1 t α − 1 G ( 1 , s ) ( 1 Γ ( β ) ∫ 0 s ( s − τ ) β − 1 d τ ) q − 1 d s ∥ u ∥ = λ l 4 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 t α − 1 G ( 1 , s ) s β ( q − 1 ) d s ∥ u ∥ .$

Thus

$∥Tu∥≥ λ l 4 B 1 ( Γ ( β + 1 ) ) q − 1 ∥u∥.$

This, together with (3.7), yields that

$∥Tu∥≥∥u∥,∀u∈∂ Ω ρ 0 ∗ .$

By Lemma 2.6, we have

$i(T, Ω ρ 0 ∗ ,P)=0.$
(3.9)

Finally, let $Ω ρ 1 ={u∈P:∥u∥≤ ρ 1 }$. For any $u∈∂ Ω ρ 1$, it follows from Lemma 2.3 and (H2) that

$( T u ) ( t ) = λ ∫ 0 1 G ( t , s ) φ p − 1 ( I 0 + β f ( s , u ( s ) ) ) d s ≤ λ ∫ 0 1 G ∗ ( s , s ) φ p − 1 ( I 0 + β ( φ p ( l 5 ∥ u ∥ ) ) ) d s = λ l 5 ∫ 0 1 G ∗ ( s , s ) ( 1 Γ ( β ) ∫ 0 s ( s − τ ) β − 1 d τ ) q − 1 d s ∥ u ∥ = λ l 5 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 G ∗ ( s , s ) s β ( q − 1 ) d s ∥ u ∥ .$

Thus

$∥Tu∥≤ λ l 5 B ( Γ ( β + 1 ) ) q − 1 ∥u∥.$

This, together with (3.7), yields that

$∥Tu∥≤∥u∥,∀u∈∂ Ω ρ 1 .$

Using Lemma 2.6, we get

$i(T, Ω ρ 1 ,P)=1.$
(3.10)

From (3.8)-(3.10) and $ρ 0 < ρ 1 < ρ 0 ∗$, we have

$i(T, Ω ρ 0 ∗ ∖ Ω ¯ ρ 1 ,P)=−1,i(T, Ω ρ 1 ∖ Ω ¯ ρ 0 ,P)=1.$

Therefore, T has a fixed point $u 1 ∈ Ω ρ 1 ∖ Ω ¯ ρ 0$ and a fixed point $u 2 ∈ Ω ρ 0 ∗ ∖ Ω ¯ ρ 1$. Clearly, $u 1$, $u 2$ are both positive solutions of BVP (1.1) and $0<∥ u 1 ∥< ρ 1 <∥ u 2 ∥$. The proof of Theorem 3.3 is completed. □

In a similar way, we can obtain the following result.

Corollary 3.4 Assume that $f∈C([0,1]×[0,+∞),[0,+∞))$, and the following conditions hold:

(H1) $f 0 = f ∞ =0$.

(H2) There exists a constant $ρ 2 >0$ such that $f(t,u)≥ φ p ( l 6 ∥u∥)$ for $t∈[0,1]$, $u∈[0, ρ 2 ]$.

Then BVP (1.1) has at least two positive solutions $u 1$ and $u 2$ such that

$0<∥ u 1 ∥< ρ 2 <∥ u 2 ∥$

for

$λ∈ ( ( Γ ( β + 1 ) ) q − 1 l 6 B 1 , ( Γ ( β + 1 ) ) q − 1 l 3 B ) ∩ ( ( Γ ( β + 1 ) ) q − 1 l 6 B 1 , ( Γ ( β + 1 ) ) q − 1 l 1 B ) ,$

where

$l 6 B 1 > l 3 Band l 6 B 1 > l 1 B.$

## 4 Examples

Example 4.1 Consider the following boundary value problem:

${ D 0 + 1 2 ( φ 2 ( D 0 + 3 2 u ( t ) ) ) + φ 2 ( λ ) ( ( t + 1 ) π | u ( t ) | 1 + | u ( t ) | ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , D 0 + 1 2 u ( 1 ) = ∑ i = 1 2 ξ i D 0 + 1 2 u ( η i ) , D 0 + 3 2 u ( 0 ) = 0 ,$
(4.1)

where

$α = 3 2 , β = 1 2 , γ = 1 2 , m = 4 , p = q = 2 , ξ 1 = η 1 = 1 4 , ξ 2 = η 2 = 1 2 , λ ∈ ( 0 , + ∞ ) , f ( t , u ) = ( t + 1 ) π | u ( t ) | 1 + | u ( t ) | .$

Thus

$f∈C ( [ 0 , 1 ] × [ 0 , + ∞ ) , [ 0 , + ∞ ) ) and|f(t,u)|= | ( t + 1 ) π | u ( t ) | 1 + | u ( t ) | | ≤2π.$

By computation, we deduce that

$∑ i = 1 2 ξ i η i α − β − 1 = ξ i + ξ 2 = 3 4 , A = 1 − ∑ i = 1 2 ξ i η i α − β − 1 = 1 4$

and

$α−γ−1≥0.$

On the other hand,

$∫ 0 1 G ∗ ( s , s ) d s = 1 Γ ( α ) ∫ 0 1 ( 1 − s ) α − β − 1 d s + 1 A Γ ( α ) ∑ i = 1 2 ξ i η i α − β − 1 ∫ 0 1 ( 1 − s ) α − β − 1 d s = ( 1 Γ ( α ) + 1 A Γ ( α ) ∑ i = 1 2 ξ i η i α − β − 1 ) ∫ 0 1 ( 1 − s ) α − β − 1 d s = 1 Γ ( α ) + 1 A Γ ( α ) ∑ i = 1 2 ξ i = 1 π 2 + 1 1 4 π 2 3 4 = 2 π + 6 π = 8 π .$

Take

$r ≥ λ M 1 q − 1 ( Γ ( β + 1 ) ) q − 1 ∫ 0 1 G ∗ ( s , s ) d s = λ 2 π π 2 8 π = 32 λ .$

Hence, by Theorem 3.2, BVP (4.1) has a minimal positive solution $v ¯$ in $B r$ and a maximal positive solution $w ¯$ in $B r$.

Example 4.2 Consider the following boundary value problem:

${ D 0 + 1 2 ( φ 3 2 ( D 0 + 3 2 u ( t ) ) ) + φ 3 2 ( λ ) ( 1 + t ) ( 1 2 | u ( t ) | 1 3 + 1 2 ∥ u ∥ 1 3 + ∥ u ∥ 2 ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , D 0 + 1 2 u ( 1 ) = ∑ i = 1 2 ξ i D 0 + 1 2 u ( η i ) , D 0 + 3 2 u ( 0 ) = 0 ,$
(4.2)

where

$α = 3 2 , β = 1 2 , γ = 1 2 , p = 3 2 , q = 3 , m = 4 , ξ 1 = η 1 = 1 4 , ξ 2 = η 2 = 1 2 , α − γ − 1 = 0 , α − β − 1 = 0$

and

$f(t,u)=(1+t) ( 1 2 | u ( t ) | 1 3 + 1 2 ∥ u ∥ 1 3 + ∥ u ∥ 2 ) .$

It follows from Example 4.1 that

$∑ i = 1 2 ξ i η i α − β − 1 = ξ i + ξ 2 = 3 4 ,A=1− ∑ i = 1 2 ξ i η i α − β − 1 = 1 4 .$

By computation, we deduce that

$B = ∫ 0 1 G ∗ ( s , s ) s β ( q − 1 ) d s = 1 Γ ( α ) ∫ 0 1 ( 1 − s ) α − β − 1 s β ( q − 1 ) d s + 1 A Γ ( α ) ∑ i = 1 2 ξ i η i α − β − 1 ∫ 0 1 ( 1 − s ) α − β − 1 s β ( q − 1 ) d s = 1 Γ ( α ) ∫ 0 1 s 1 2 × ( 3 − 1 ) d s + 1 A Γ ( α ) ∑ i = 1 2 ξ i ∫ 0 1 s 1 2 × ( 3 − 1 ) d s = 1 Γ ( α ) ∫ 0 1 s d s + 1 A Γ ( α ) ∑ i = 1 2 ξ i ∫ 0 1 s d s = 1 2 ( 1 Γ ( α ) + 1 A Γ ( α ) ∑ i = 1 2 ξ i ) = 1 2 ( 2 π + 8 π ( 1 2 + 1 4 ) ) = 1 2 × 8 π = 4 π$

and

$B 1 = ∫ 0 1 G ( 1 , s ) s β ( q − 1 ) d s = ∫ 0 1 G 1 ( 1 , s ) s β ( q − 1 ) d s + ∫ 0 1 G 2 ( 1 , s ) s β ( q − 1 ) d s = 1 Γ ( 3 2 ) ∫ 0 1 [ 1 − ( 1 − s ) 1 2 ] s β ( q − 1 ) d s + 1 A Γ ( 3 2 ) ∫ 0 1 4 [ ξ 1 η 1 0 ( 1 − s ) 0 − ξ 1 ( η 1 − s ) 0 ] s β ( q − 1 ) d s + 1 A Γ ( 3 2 ) ∫ 1 4 1 ξ 1 η 1 0 ( 1 − s ) 0 s β ( q − 1 ) d s + 1 A Γ ( 3 2 ) ∫ 0 1 2 [ ξ 2 η 2 0 ( 1 − s ) 0 − ξ 2 ( η 2 − s ) 0 ] s β ( q − 1 ) d s + 1 A Γ ( 3 2 ) ∫ 1 2 1 ξ 2 η 2 0 ( 1 − s ) 0 s β ( q − 1 ) d s = 1 Γ ( 3 2 ) ∫ 0 1 [ s − s ( 1 − s ) 1 2 ] d s + 1 A Γ ( 3 2 ) ∫ 1 4 1 ξ 1 s d s + 1 A Γ ( 3 2 ) ∫ 1 2 1 ξ 2 s d s = 2 π ∫ 0 1 [ s − s ( 1 − s ) 1 2 ] d s + 2 π ∫ 1 4 1 s d s + 4 π ∫ 1 2 1 s d s = 2 π ( 1 2 − 4 15 ) + 2 π 1 2 s 2 | 1 4 1 + 4 π 1 2 s 2 | 1 2 1 = 697 240 π .$

Taking

$ρ 1 =8, l 5 =2,178,$

we have

Thus, condition (H2) is satisfied. It is obvious that condition (H1) holds.

On the other hand, let $l 2 =4,000$, $l 4 =3,600$, we have $l 2 B 1 > l 5 B$, $l 4 B 1 > l 5 B$ and

$λ ∈ ( ( Γ ( β + 1 ) ) q − 1 l 2 B 1 , ( Γ ( β + 1 ) ) q − 1 l 5 B ) ∩ ( ( Γ ( β + 1 ) ) q − 1 l 4 B 1 , ( Γ ( β + 1 ) ) q − 1 l 5 B ) = ( ( Γ ( β + 1 ) ) q − 1 l 4 B 1 , ( Γ ( β + 1 ) ) q − 1 l 5 B ) = ( ( π 2 ) 2 3 , 600 × 697 240 π , ( π 2 ) 2 2 , 178 × 4 π ) = ( π 3 2 41 , 820 , π 3 2 34 , 848 ) .$

Hence, by Theorem 3.3, BVP (4.2) has at least two solutions $u 1$ and $u 2$ such that $0<∥ u 1 ∥<8<∥ u 2 ∥$ for

$λ∈ ( π 3 2 41 , 820 , π 3 2 34 , 848 ) .$

## References

1. 1.

Wang JH, Xiang HG: Upper and lower solutions method for a class of singular fractional boundary value problems with p -Laplacian operator. Abstr. Appl. Anal. 2010., 2010: Article ID 971824

2. 2.

Chai GQ: Positive solutions for boundary value problem for fractional differential equation with p -Laplacian operator. Bound. Value Probl. 2012., 2012: Article ID 18

3. 3.

Chen TY, Liu WB: A anti-periodic boundary value problem for the fractional differential equation with a p -Laplacian operator. Appl. Math. Lett. 2012, 25: 1671–1675. 10.1016/j.aml.2012.01.035

4. 4.

Lu HL, Han ZL, Sun SR, Liu J: Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p -Laplacian. Adv. Differ. Equ. 2013., 2013: Article ID 30

5. 5.

Bai ZB: Eigenvalue intervals for a class of fractional boundary value problem. Comput. Math. Appl. 2012, 64: 3253–3257. 10.1016/j.camwa.2012.01.004

6. 6.

Zhang XG, Liu LS, Wu YH: The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives. Appl. Math. Comput. 2012, 218: 8526–8536. 10.1016/j.amc.2012.02.014

7. 7.

Lv ZW: Positive solutions of m-point boundary value problems for fractional differential equations. Adv. Differ. Equ. 2011., 2011: Article ID 571804

8. 8.

Lv ZW, Liang J, Xiao TJ: Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order. Comput. Math. Appl. 2011, 62: 1303–1311. 10.1016/j.camwa.2011.04.027

9. 9.

Lv ZW, Liang J, Xiao TJ: Solutions to fractional differential equations with nonlocal initial condition in Banach spaces. Adv. Differ. Equ. 2010., 2010: Article ID 340349

10. 10.

Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

11. 11.

Podlubny I: Fractional Differential Equations. Academic Press, New York; 1993.

12. 12.

Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.

13. 13.

Agarwal RP, Belmekki M, Benchohra M: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009., 2009: Article ID 981728

14. 14.

Agarwal RP, Lakshmikantham V, Nieto JJ: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 2010, 72: 2859–2862. 10.1016/j.na.2009.11.029

15. 15.

Wang RN, Xiao TJ, Liang J: A note on the fractional Cauchy problems with nonlocal initial conditions. Appl. Math. Lett. 2011, 24: 1435–1442. 10.1016/j.aml.2011.03.026

16. 16.

Wang RN, Chen DH, Xiao TJ: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 2012, 252: 202–235. 10.1016/j.jde.2011.08.048

17. 17.

Diagana T, Mophou GM, N’Guérékata GM: On the existence of mild solutions to some semilinear fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 2010., 2010: Article ID 58

18. 18.

Henderson J, Ouahab A: Fractional functional differential inclusions with finite delay. Nonlinear Anal. 2009, 70: 2091–2105. 10.1016/j.na.2008.02.111

19. 19.

Henderson J, Ouahab A: Impulsive differential inclusions with fractional order. Comput. Math. Appl. 2010, 59: 1191–1226. 10.1016/j.camwa.2009.05.011

20. 20.

Lakshmikantham V: Theory of fractional differential equations. Nonlinear Anal. 2008, 60: 3337–3343.

21. 21.

Lakshmikantham V, Vatsala AS: Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69: 2677–2682. 10.1016/j.na.2007.08.042

22. 22.

Li CF, Luo XN, Zhou Y: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 2010, 59: 1363–1375. 10.1016/j.camwa.2009.06.029

23. 23.

Li F: Mild solutions for fractional differential equations with nonlocal conditions. Adv. Differ. Equ. 2010., 2010: Article ID 287861

24. 24.

Zhang XQ: Positive solution for a class of singular semipositone fractional differential equations with integral boundary conditions. Bound. Value Probl. 2012., 2012: Article ID 123

25. 25.

Mophou GM: Existence and uniqueness of mild solutions to impulsive fractional differential equations. Nonlinear Anal. 2010, 72: 1604–1615. 10.1016/j.na.2009.08.046

26. 26.

Salem HAH: On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies. J. Comput. Appl. Math. 2009, 224: 565–572. 10.1016/j.cam.2008.05.033

27. 27.

Guo D, Lakshmikantham V: Nonlinear Problems in Abstract Cone. Academic Press, San Diego; 1998.

## Acknowledgements

This research is supported by Henan Province College Youth Backbone Teacher Funds (2011GGJS-213) and the National Natural Science Foundation of China (11271336).

## Author information

Authors

### Corresponding author

Correspondence to Zhi-Wei Lv.

### Competing interests

The author declares that he has no competing interests.

## Rights and permissions

Reprints and Permissions

Lv, Z. Existence results for m-point boundary value problems of nonlinear fractional differential equations with p-Laplacian operator. Adv Differ Equ 2014, 69 (2014). https://doi.org/10.1186/1687-1847-2014-69 