Open Access

Positive solutions for impulsive fractional differential equations with generalizedperiodic boundary value conditions

Advances in Difference Equations20142014:255

https://doi.org/10.1186/1687-1847-2014-255

Received: 20 June 2014

Accepted: 9 September 2014

Published: 29 September 2014

Abstract

By constructing Green’s function, we give the natural formulae of solutions forthe following nonlinear impulsive fractional differential equation with generalizedperiodic boundary value conditions:

{ D t q c u ( t ) = f ( t , u ( t ) ) , t J = J { t 1 , , t m } , J = [ 0 , 1 ] , Δ u ( t k ) = I ( u ( t k ) ) , Δ u ( t k ) = J k ( u ( t k ) ) , k = 1 , , m , a u ( 0 ) b u ( 1 ) = 0 , a u ( 0 ) b u ( 1 ) = 0 ,

where 1 < q < 2 is a real number, D t q c is the standard Caputo differentiation. We present theproperties of Green’s function. Some sufficient conditions for the existence ofsingle or multiple positive solutions of the above nonlinear fractional differentialequation are established. Our analysis relies on a nonlinear alternative of theSchauder and Guo-Krasnosel’skii fixed point theorem on cones. As applications,some interesting examples are provided to illustrate the main results.

MSC: 34B10, 34B15, 34B37.

Keywords

impulsive fractional differential equationpositive solutionsboundary value problemsfixed point theorem

1 Introduction

In recent years, the fractional order differential equation has aroused great attentiondue to both the further development of fractional order calculus theory and theimportant applications for the theory of fractional order calculus in the fields ofscience and engineering such as physics, chemistry, aerodynamics, electrodynamics ofcomplex medium, polymer rheology, Bode’s analysis of feedback amplifiers,capacitor theory, electrical circuits, electron-analytical chemistry, biology, controltheory, fitting of experimental data, and so forth. Many papers and books on fractionalcalculus differential equation have appeared recently. One can see [117] and the references therein.

In order to describe the dynamics of populations subject to abrupt changes as well asother phenomena such as harvesting, diseases, and so on, some authors have used animpulsive differential system to describe these kinds of phenomena since the lastcentury. For the basic theory on impulsive differential equations, the reader can referto the monographs of Bainov and Simeonov [18], Lakshmikantham et al.[19] and Benchohra et al.[20].

In this article, we consider the following nonlinear impulsive fractional differentialequation with generalized periodic boundary value conditions (for short BVPs (1.1)):
{ D t q c u ( t ) = f ( t , u ( t ) ) , t J = J { t 1 , , t m } , J = [ 0 , 1 ] , Δ u ( t k ) = I k ( u ( t k ) ) , Δ u ( t k ) = J k ( u ( t k ) ) , k = 1 , , m , a u ( 0 ) b u ( 1 ) = 0 , a u ( 0 ) b u ( 1 ) = 0 ,
(1.1)

where a, b are real constants with a > b > 0 . D 0 + q c is the Caputo fractional derivative of order 1 < q < 2 . f : J × R + R + is jointly continuous. I k , J k C ( R + , R + ) , R + = [ 0 , + ) . The impulsive point set { t k } k = 1 m satisfies 0 = t 0 < t 1 < < t m < t m + 1 = 1 . u ( t k + ) = lim h 0 + u ( t k + h ) and u ( t k ) = lim h 0 u ( t k + h ) represent the right and left limits of u ( t ) at the impulsive point t = t k . Let us set J 0 = [ 0 , t 1 ] , J k = ( t k , t k + 1 ] , 1 k m . The goal of this paper is to study the existence ofsingle or multiple positive solutions for the impulsive BVPs (1.1) by a nonlinearalternative of the Schauder and Guo-Krasnosel’skii fixed point theorem oncones.

The rest of the paper is organized as follows. In Section 2, we present some usefuldefinitions, lemmas and the properties of Green’s function. In Section 3, wegive some sufficient conditions for the existence of a single positive solution for BVPs(1.1). In Section 4, some sufficient criteria for the existence of multiplepositive solutions for BVPs (1.1) are obtained. Finally, some examples are provided toillustrate our main results in Section 5.

2 Preliminaries

For the convenience of the reader, we present here the necessary definitions fromfractional calculus theory. These definitions and properties can be found in theliterature.

Definition 2.1 (see [21, 22])

The Riemann-Liouville fractional integral of order α > 0 of a function f : ( 0 , + ) R is given by
I 0 + α f ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s ) d s ,

provided that the right-hand side is pointwise defined on ( 0 , + ) .

Definition 2.2 (see [21, 22])

The Caputo fractional derivative of order α > 0 of a continuous function f : ( 0 , + ) R is given by
D 0 + α c f ( t ) = 1 Γ ( n α ) 0 t f ( n ) ( s ) ( t s ) α n + 1 d s ,

where n 1 < α n , provided that the right-hand side is pointwise defined on ( 0 , + ) .

Lemma 2.1 (see [21])

Assume that u C ( 0 , 1 ) L ( 0 , 1 ) with a Caputo fractional derivative oforder q > 0 that belongs to u C n [ 0 , 1 ] , then
I 0 + q D 0 + q u ( t ) = u ( t ) + c 0 + c 1 t + + c n 1 t n 1

for some c i R , i = 0 , 1 , 2 , , n 1 ( n = [ q ] ) and [ q ] denotes the integer part of the real number q.

Lemma 2.2 (see [23])

Let E be a Banach space. Assumethat T : E E is a completely continuous operator and theset V = { u E u = μ T u , 0 < μ < 1 } is bounded. Then T has a fixedpoint in E.

Lemma 2.3 (Schauder fixed point theorem, see [24])

If U is a close bounded convex subset of a Banachspace E and T : U U is completely continuous,then T has at least one fixed point in U.

Lemma 2.4 (see [25])

Let E be a Banach space, P E be a cone, and Ω 1 , Ω 2 be two bounded open balls of E centeredat the origin with 0 Ω 1 and Ω ¯ 1 Ω 2 . Suppose that A : P ( Ω ¯ 2 Ω 1 ) P is a completely continuous operator such thateither
  1. (i)

    A u u , u P Ω 1 and A u u , u P Ω 2 , or

     
  2. (ii)

    A u u , u P Ω 1 and A u u , u P Ω 2

     

hold. Then A has at least one fixed pointin P ( Ω ¯ 2 Ω 1 ) .

Now we present Green’s function for a system associated with BVPs (1.1).

Lemma 2.5 Given h C ( J , R + ) and 1 < q < 2 , the unique solution of
{ D t q c u ( t ) = h ( t ) , t J , Δ u ( t k ) = I k ( u ( t k ) ) , Δ u ( t k ) = J k ( u ( t k ) ) , k = 1 , , m , a u ( 0 ) b u ( 1 ) = 0 , a u ( 0 ) b u ( 1 ) = 0 , a > b > 0 ,
(2.1)
is formulated by
u ( t ) = 0 1 G 1 ( t , s ) h ( s ) d s + i = 1 m G 2 ( t , t i ) J i ( u ( t i ) ) + i = 1 m G 3 ( t , t i ) I i ( u ( t i ) ) , t J ,
where
G 1 ( t , s ) = { ( t s ) q 1 Γ ( q ) + b ( 1 s ) q 1 ( a b ) Γ ( q ) + b ( q 1 ) t ( 1 s ) q 2 ( a b ) Γ ( q ) + b 2 ( q 1 ) ( 1 s ) q 2 ( a b ) 2 Γ ( q ) , 0 s t 1 , b ( 1 s ) q 1 ( a b ) Γ ( q ) + b ( q 1 ) t ( 1 s ) q 2 ( a b ) Γ ( q ) + b 2 ( q 1 ) ( 1 s ) q 2 ( a b ) 2 Γ ( q ) , 0 t s 1 ,
(2.2)
G 2 ( t , t i ) = { a b ( a b ) 2 + a ( t t i ) a b , 0 t i < t 1 , i = 1 , 2 , , m , a b ( a b ) 2 + b ( t t i ) a b , 0 t t i 1 , i = 1 , 2 , , m ,
(2.3)
G 3 ( t , t i ) = { a a b , 0 t i < t 1 , i = 1 , 2 , , m , b a b , 0 t t i 1 , i = 1 , 2 , , m .
(2.4)
Proof Let u be a general solution of (2.1) on each interval ( t k , t k + 1 ] ( k = 0 , 1 , , m ). Applying Lemma 2.1, Eq. (2.1) is translated intothe following equivalent integral equation (2.5):
u ( t ) = 1 Γ ( q ) 0 t ( t s ) q 1 h ( s ) d s c k d k t , t ( t k , t k + 1 ] ,
(2.5)
where t 0 = 0 , t m + 1 = 1 . Then we have
u ( t ) = 1 Γ ( q 1 ) 0 t ( t s ) q 2 h ( s ) d s d k , t ( t k , t k + 1 ] .
In the light of the generalized periodic boundary value conditions of Eq. (2.1), we get
b 0 1 ( 1 s ) q 1 Γ ( q ) h ( s ) d s + a c 0 b c m b d m = 0 ,
(2.6)
b 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s + a d 0 b d m = 0 .
(2.7)
Next, using the right impulsive condition of Eq. (2.1), we derive
c k 1 c k = I k ( u ( t k ) ) J k ( u ( t k ) ) t k ,
(2.8)
d k 1 d k = J k ( u ( t k ) ) .
(2.9)
By (2.7) and (2.9), we have
d 0 = b a b 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s b a b i = 1 m J i ( u ( t i ) ) ,
(2.10)
d m = b a b 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s a a b i = 1 m J i ( u ( t i ) ) .
(2.11)
By (2.9) we have
d k = d 0 i = 1 k J i ( u ( t i ) ) = b a b 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s b a b i = 1 m J i ( u ( t i ) ) i = 1 k J i ( u ( t i ) ) .
(2.12)
From (2.6), (2.8) and (2.11), we have
c 0 = b a b 0 1 ( 1 s ) q 1 Γ ( q ) h ( s ) d s b 2 ( a b ) 2 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s a b ( a b ) 2 i = 1 m J i ( u ( t i ) ) b a b i = 1 m ( I i ( u ( t i ) ) J i ( u ( t i ) ) t i ) .
(2.13)
According to (2.8), we obtain
c k = c 0 i = 1 k ( I i ( u ( t i ) ) J i ( u ( t i ) ) t i ) = b a b 0 1 ( 1 s ) q 1 Γ ( q ) h ( s ) d s b 2 ( a b ) 2 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s a b ( a b ) 2 i = 1 m J i ( u ( t i ) ) b a b i = 1 m I i ( u ( t i ) ) i = 1 k I i ( u ( t i ) ) + b a b i = 1 m J i ( u ( t i ) ) t i + i = 1 k J i ( u ( t i ) ) t i .
(2.14)
Hence, for k = 1 , 2 , , m , (2.12) and (2.14) imply
c k + d k t = b a b 0 1 ( 1 s ) q 1 Γ ( q ) h ( s ) d s ( a b b 2 ) t + b 2 ( a b ) 2 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s 1 ( a b ) 2 i = 1 m J i ( u ( t i ) ) [ a b + b ( a b ) ( t t i ) ] b a b i = 1 m I i ( u ( t i ) ) i = 1 k I i ( u ( t i ) ) i = 1 k J i ( u ( t i ) ) ( t t i ) .
(2.15)
Now substituting (2.10) and (2.13) into (2.5), for t J 0 = [ 0 , t 1 ] , we obtain
u ( t ) = 0 t ( t s ) q 1 Γ ( q ) h ( s ) d s + b a b 0 1 ( 1 s ) q 1 Γ ( q ) h ( s ) d s + ( a b b 2 ) t + b 2 ( a b ) 2 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s + 1 ( a b ) 2 i = 1 m J i ( u ( t i ) ) [ a b + b ( a b ) ( t t i ) ] + b a b i = 1 m I i ( u ( t i ) ) = 0 t ( t s ) q 1 Γ ( q ) h ( s ) d s + b a b ( 0 t + t 1 ) ( 1 s ) q 1 Γ ( q ) h ( s ) d s + ( a b b 2 ) t + b 2 ( a b ) 2 ( 0 t + t 1 ) ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s + 1 ( a b ) 2 i = 1 m J i ( u ( t i ) ) [ a b + b ( a b ) ( t t i ) ] + b a b i = 1 m I i ( u ( t i ) ) = 0 t [ ( t s ) q 1 Γ ( q ) + b ( 1 s ) q 1 ( a b ) Γ ( q ) + [ ( a b b 2 ) t + b 2 ] ( 1 s ) q 2 ( a b ) 2 Γ ( q 1 ) ] h ( s ) d s + t 1 [ b ( 1 s ) q 1 ( a b ) Γ ( q ) + [ ( a b b 2 ) t + b 2 ] ( 1 s ) q 2 ( a b ) 2 Γ ( q 1 ) ] h ( s ) d s + 1 ( a b ) 2 i = 1 m J i ( u ( t i ) ) [ a b + b ( a b ) ( t t i ) ] + b a b i = 1 m I i ( u ( t i ) ) = 0 1 G 1 ( t , s ) h ( s ) d s + i = 1 m G 2 ( t , t i ) J i ( u ( t i ) ) + i = 1 m G 3 ( t , t i ) I i ( u ( t i ) ) ,

where G 1 ( t , s ) , G 2 ( t , t i ) and G 3 ( t , t i ) are defined by (2.2)-(2.4).

Substituting (2.15) into (2.5), for t J k = ( t k , t k + 1 ] , k = 1 , 2 , , m , we have
u ( t ) = 0 t ( t s ) q 1 Γ ( q ) h ( s ) d s + b a b 0 1 ( 1 s ) q 1 Γ ( q ) h ( s ) d s + ( a b b 2 ) t + b 2 ( a b ) 2 0 1 ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s + 1 ( a b ) 2 i = 1 m J i ( u ( t i ) ) [ a b + b ( a b ) ( t t i ) ] + b a b i = 1 m I i ( u ( t i ) ) + i = 1 k I i ( u ( t i ) ) + i = 1 k J i ( u ( t i ) ) ( t t i ) = 0 t ( t s ) q 1 Γ ( q ) h ( s ) d s + b a b ( 0 t + t 1 ) ( 1 s ) q 1 Γ ( q ) h ( s ) d s + ( a b b 2 ) t + b 2 ( a b ) 2 ( 0 t + t 1 ) ( 1 s ) q 2 Γ ( q 1 ) h ( s ) d s + 1 ( a b ) 2 ( i = 1 k + i = k + 1 m ) J i ( u ( t i ) ) [ a b + b ( a b ) ( t t i ) ] + b a b ( i = 1 k + i = k + 1 m ) I i ( u ( t i ) ) + i = 1 k I i ( u ( t i ) ) + i = 1 k J i ( u ( t i ) ) ( t t i ) = 0 t [ ( t s ) q 1 Γ ( q ) + b ( 1 s ) q 1 ( a b ) Γ ( q ) + [ ( a b b 2 ) t + b 2 ] ( 1 s ) q 2 ( a b ) 2 Γ ( q 1 ) ] h ( s ) d s + t 1 [ b ( 1 s ) q 1 ( a b ) Γ ( q ) + [ ( a b b 2 ) t + b 2 ] ( 1 s ) q 2 ( a b ) 2 Γ ( q 1 ) ] h ( s ) d s + i = 1 k [ a b ( a b ) 2 + b ( a b ) + ( a b ) 2 ( a b ) 2 ( t t i ) ] J i ( u ( t i ) ) + i = k + 1 m a b + b ( a b ) ( t t i ) ( a b ) 2 J i ( u ( t i ) ) + i = 1 k [ b a b + 1 ] I i ( u ( t i ) ) + i = k + 1 m b a b I i ( u ( t i ) ) = 0 t [ ( t s ) q 1 Γ ( q ) + b ( 1 s ) q 1 ( a b ) Γ ( q ) + [ ( a b b 2 ) t + b 2 ] ( 1 s ) q 2 ( a b ) 2 Γ ( q 1 ) ] h ( s ) d s + t 1 [ b ( 1 s ) q 1 ( a b ) Γ ( q ) + [ ( a b b 2 ) t + b 2 ] ( 1 s ) q 2 ( a b ) 2 Γ ( q 1 ) ] h ( s ) d s + i = 1 k a b + a ( a b ) ( t t i ) ( a b ) 2 J i ( u ( t i ) ) + i = k + 1 m a b + b ( a b ) ( t t i ) ( a b ) 2 J i ( u ( t i ) ) + i = 1 k a a b I i ( u ( t i ) ) + i = k + 1 m b a b I i ( u ( t i ) ) = 0 1 G 1 ( t , s ) h ( s ) d s + i = 1 m G 2 ( t , t i ) J i ( u ( t i ) ) + i = 1 m G 3 ( t , t i ) I i ( u ( t i ) ) ,

where G 1 ( t , s ) , G 2 ( t , t i ) and G 3 ( t , t i ) are defined by (2.2)-(2.4). The proof iscomplete. □

Lemma 2.6 Let 0 < b < a < + , then Green’sfunctions G 1 ( t , s ) , G 2 ( t , t i ) and G 3 ( t , t i ) defined by (2.2), (2.3) and (2.4) arecontinuous and satisfy the following:
  1. (i)

    G 1 ( t , s ) C ( J × J , R + ) , G 2 ( t , t i ) , G 3 ( t , t i ) C ( J × J , R + ) , and G 1 ( t , s ) , G 2 ( t , t i ) , G 3 ( t , t i ) > 0 for all t , t i , s ( 0 , 1 ) , where J = [ 0 , 1 ] .

     
  2. (ii)
    The functions G 1 ( t , s ) , G 2 ( t , t i ) and G 3 ( t , t i ) have the following properties:
    b a M ( s ) G 1 ( t , s ) M ( s ) , t J , s ( 0 , 1 ) ,
    (2.16)
     
b 2 ( a b ) 2 G 2 ( t , t i ) a 2 ( a b ) 2 , t , t i J ,
(2.17)
b a b G 3 ( t , t i ) a a b , t , t i J ,
(2.18)
where
M ( s ) = a [ ( 1 s ) a ( 2 s q ) b ] ( 1 s ) q 2 ( a b ) 2 Γ ( q ) > 0 , s [ 0 , 1 ) .
(2.19)
Proof From the expressions of G 1 ( t , s ) , G 2 ( t , t i ) and G 3 ( t , t i ) , it is obvious that G 1 ( t , s ) , G 2 ( t , t i ) , G 3 ( t , t i ) C ( J × J , R + ) and G 1 ( t , s ) , G 2 ( t , t i ) , G 3 ( t , t i ) > 0 for all t , t i , s ( 0 , 1 ) . Next, we will prove (ii). From the definition of G 1 ( t , s ) , we can know that, for given s ( 0 , 1 ) , G 1 ( t , s ) is increasing with respect to t for t J . We let
g 1 ( t , s ) = ( a b ) 2 ( t s ) q 1 + [ ( a b ) ( 1 s ) + [ ( a b ) t + b ] ( q 1 ) ] b ( 1 s ) q 2 ( a b ) 2 Γ ( q ) , t [ s , 1 ] , g 2 ( t , s ) = [ ( a b ) ( 1 s ) + [ ( a b ) t + b ] ( q 1 ) ] b ( 1 s ) q 2 ( a b ) 2 Γ ( q ) , t [ 0 , s ] .
Hence, we derive
min t [ 0 , 1 ] G 1 ( t , s ) = min { min t [ s , 1 ] g 1 ( t , s ) , min t [ 0 , s ] g 2 ( t , s ) } = min { g 1 ( s , s ) , g 2 ( 0 , s ) } = g 2 ( 0 , s ) = [ ( a b ) ( 1 s ) + b ( q 1 ) ] b ( 1 s ) q 2 ( a b ) 2 Γ ( q ) = b [ ( 1 s ) a ( 2 s q ) b ] ( 1 s ) q 2 ( a b ) 2 Γ ( q ) m ( s ) , s [ 0 , 1 ) , max t [ 0 , 1 ] G 1 ( t , s ) = max { max t [ s , 1 ] g 1 ( t , s ) , max t [ 0 , s ] g 2 ( t , s ) } = max { g 1 ( 1 , s ) , g 2 ( s , s ) } = g 1 ( 1 , s ) = [ ( a b ) ( 1 s ) + b ( q 1 ) ] a ( 1 s ) q 2 ( a b ) 2 Γ ( q ) = a [ ( 1 s ) a ( 2 s q ) b ] ( 1 s ) q 2 ( a b ) 2 Γ ( q ) M ( s ) , s [ 0 , 1 ) .
Thus, we have
b a M ( s ) = m ( s ) G 1 ( t , s ) M ( s ) .
It is obvious that
b 2 ( a b ) 2 = G 2 ( 0 , 1 ) G 2 ( t , t i ) G 2 ( 1 , 0 ) = a 2 ( a b ) 2 , b a b G 3 ( t , t i ) a a b .

The proof is completed. □

3 Existence of single positive solutions

In this section, we discuss the existence of positive solutions for BVP (1.1).

Let E = { u ( t ) : u ( t ) C ( J ) } denote a real Banach space with the norm defined by u = max t J | u ( t ) | . Let
P C ( J ) = { u E u : J R + , u C ( J ) , u ( t k )  and  u ( t k + ) exist with  u ( t k ) = u ( t k ) , 1 k m } , K = { u P C ( J ) : u ( t ) b 2 a 2 u , t J } ,
(3.1)
K r = { u K : u < r } , K r = { u K : u = r } .
(3.2)

Obviously, P C ( J ) E is a Banach space with the norm u = max t J | u ( t ) | . K P C ( J ) is a positive cone.

In the following, we need the assumptions and some notations as follows:

(B1) 0 < b < a < 1 , 0 < σ 1 , σ 2 < + , where σ 1 = 0 1 M ( s ) d s , σ 2 = b 3 a 3 0 1 M ( s ) d s .

(B2) f C ( J × R + , R + ) and f ( t , 0 ) = 0 for all t J .

(B3) I k ( u ( t k ) ) , J k ( u ( t k ) ) C ( R + , R + ) , k = 1 , 2 , , m .

Let
N ¯ = max { a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) , a a b i = 1 m I i ( u ( t i ) ) } , f δ = lim sup u δ max t J f ( t , u ) u , f δ = lim inf u δ min t J f ( t , u ) u ,
where δ denotes 0 or +∞. In addition, we introduce the followingweight functions:
Φ ( r ) = max { f ( t , u ( t ) ) : ( t , u ) [ 0 , 1 ] × [ b 2 a 2 r , r ] } , ϕ ( r ) = min { f ( t , u ( t ) ) : ( t , u ) [ 0 , 1 ] × [ b 2 a 2 r , r ] } .

From Lemma 2.4, we can obtain the following lemma.

Lemma 3.1 Suppose that f ( t , u ) is continuous,then u P C ( J ) is a solution of BVPs (1.1) if and onlyif u P C ( J ) is a solution of the integral equation
u ( t ) = 0 1 G 1 ( t , s ) f ( s , u ( s ) ) d s + i = 1 m G 2 ( t , t i ) J i ( u ( t i ) ) + i = 1 m G 3 ( t , t i ) I i ( u ( t i ) ) , t J .
Define T : P C ( J ) P C ( J ) to be the operator defined as
( T u ) ( t ) = 0 1 G 1 ( t , s ) f ( s , u ( s ) ) d s + i = 1 m G 2 ( t , t i ) J i ( u ( t i ) ) + i = 1 m G 3 ( t , t i ) I i ( u ( t i ) ) .
(3.3)

Then, by Lemma 3.1, the existence of solutions for BVPs (1.1) is translated intothe existence of the fixed point for u = T u , where T is given by (3.3). Thus, the fixed pointof the operator T coincides with the solution of problem (1.1).

Lemma 3.2 Assume that (B1)-(B3) hold,then T : P C ( J ) P C ( J ) and T : K K defined by (3.3) are completelycontinuous.

Proof Firstly, we shall show that T : P C ( J ) P C ( J ) is completely continuous through three steps.

Step 1. Let u P C ( J ) , in view of the nonnegativity and continuity of functions G 1 ( t , s ) , G 2 ( t , t i ) , G 3 ( t , t i ) , f ( t , u ( t ) ) , I k , J k and a > b > 0 , we conclude that T : P C ( J ) P C ( J ) is continuous.

Step 2. We will prove that T maps bounded sets into bounded sets. Indeed, it isenough to show that for any r > 0 there exists a positive constant L such that, foreach u Ω r = { u P C ( J ) : u r } , T u L when | f ( t , u ) | l 1 , | J k | l 2 , | I k | l 3 , where l i ( i = 1 , 2 , 3 ) are some fixed positive constants. In fact, for each t J k , u Ω r , k = 0 , 1 , 2 , , m , by Lemma 2.5, we have
| ( T u ) ( t ) | 0 1 | G 1 ( t , s ) f ( s , u ( s ) ) | d s + i = 1 m | G 2 ( t , t i ) J i ( u ( t i ) ) | + i = 1 m | G 3 ( t , t i ) I i ( u ( t i ) ) | σ 1 l 1 + a 2 m l 2 ( a b ) 2 + a m l 3 a b L ,

which imply that T u L .

Step 3. T is equicontinuous. In fact, since G 1 ( t , s ) , G 2 ( t , t i ) , G 3 ( t , t i ) are continuous on J × J , they are uniformly continuous on J × J . Thus, for fixed s J and for any ε > 0 , there exists a constant δ > 0 such that for any t 1 , t 2 J k with | t 1 t 2 | < δ , 0 k m , we have
| G 1 ( t 1 , s ) G 2 ( t 2 , s ) | < ε 3 l 1 , | G 2 ( t 1 , t i ) G 2 ( t 2 , t i ) | < ε 3 m l 2 , | G 3 ( t 1 , t i ) G 3 ( t 2 , t i ) | < ε 3 m l 3 .
Then
| T u ( t 2 ) T u ( t 1 ) | = | 0 1 ( G 1 ( t 2 , s ) G 1 ( t 1 , s ) ) f ( s , u ( s ) ) d s + i = 1 m ( G 2 ( t 2 , t i ) G 2 ( t 1 , t i ) ) J i ( u ( t i ) ) + i = 1 m ( G 3 ( t 2 , t i ) G 3 ( t 1 , t i ) ) I i ( u ( t i ) ) | l 1 0 1 | G 1 ( t 2 , s ) G 2 ( t 1 , s ) | d s + m l 2 | G 2 ( t 2 , t i ) G 2 ( t 1 , t i ) | + m l 3 | G 3 ( t 2 , t i ) G 3 ( t 1 , t i ) | < ε 3 + ε 3 + ε 3 = ε ,

which means that T ( Ω r ) is equicontinuous on all the subintervals t J k , k = 0 , 1 , , m . Thus, by means of the Arzela-Ascoli theorem, we have that T : P C ( J ) P C ( J ) is completely continuous.

Next, we will show that T : K K is completely continuous. Indeed, for each t J k , every u C ( J k , R + ) , k = 0 , 1 , 2 , , m , Lemma 2.5 implies that
( T u ) ( t ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s + b 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + b a b i = 1 m I i ( u ( t i ) ) .
On the other hand,
T u = max t J k ( T u ) ( t ) 0 1 M ( s ) f ( s , u ( s ) ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) .
Thus,
b 2 a 2 T u = b 2 a 2 max t J k ( T u ) ( t ) b 2 a 2 0 1 M ( s ) f ( s , u ( s ) ) d s + b 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + b 2 a ( a b ) i = 1 m I i ( u ( t i ) ) ( T u ) ( t ) .

So ( T u ) ( t ) b 2 a 2 T u for every u C ( J , R + ) , which implies T ( K ) K . Similar to the above arguments, we can easily concludethat T : K K is a completely continuous operator. The proof iscomplete. □

Theorem 3.1 Assume that (B1)-(B3) hold,and suppose that the following assumptions hold:

(A1) There exists a constant L 1 > 0 such that | f ( t , u ) f ( t , v ) | L 1 | u v | for each t J and all u , v R + .

(A2) There exists a constant L 2 > 0 such that | J k ( u ) J k ( v ) | L 2 | u v | for all u , v R + , k = 1 , 2 , , m .

(A3) There exists a constant L 3 > 0 such that | I k ( u ) I k ( v ) | L 3 | u v | for all u , v R + , k = 1 , 2 , , m .

If ρ = σ 1 L 1 + m a 2 L 2 ( a b ) 2 + m a L 3 a b < 1 , then problem (1.1) has a unique solutionin K ρ .

Proof Let the operator T : K ρ K ρ be defined by (3.3). For all u , v K ρ , from Lemma 2.5, we obtain
| ( T u ) ( t ) ( T v ) ( t ) | 0 1 G 1 ( t , s ) | f ( s , u ( s ) ) f ( s , v ( s ) ) | d s + i = 1 m G 2 ( t , t i ) | J i ( u ( t i ) ) J i ( v ( t i ) ) | + i = 1 m G 3 ( t , t i ) | I i ( u ( t i ) ) I i ( v ( t i ) ) | σ 1 L 1 u v + m a 2 L 2 ( a b ) 2 u v + m a L 3 a b u v = ρ u v ,

where ρ = σ 1 L 1 + m a 2 L 2 ( a b ) 2 + m a L 3 a b < 1 . Consequently, T is a contraction mapping.Moreover, from Lemma 3.2, T is completely continuous. Therefore, by theBanach contraction map principle, the operator T has a unique fixed point in K ρ which is the unique positive solution of system (1.1).This completes the proof. □

Theorem 3.2 Assume that (B1)-(B3) hold,and suppose that the following assumptions hold:

(A4) There exists a constant N 1 > 0 such that | f ( t , u ) | N 1 for each t J and all u R + .

(A5) There exists a constant N 2 > 0 such that | J k ( u ) | N 2 for all u R + , k = 1 , 2 , , m .

(A6) There exists a constant N 3 > 0 such that | I k ( u ) | N 3 for all u R + , k = 1 , 2 , , m .

Then BVPs (1.1) have at least one positive solutionin P C ( J ) .

Proof Let T : P C ( J ) P C ( J ) be cone preserving completely continuous that is definedby (3.3). According to Lemma 2.2, now it remains to show that the set
Ω = { u P C ( J ) u = λ T u  for some  0 < λ < 1 }
(3.4)

is bounded.

Let u Ω , then u = λ T u for some 0 < λ < 1 . Thus, by Lemma 2.5, for each t J k , k = 0 , 1 , , m , we have
| u ( t ) | = | λ T u | 0 1 | G 1 ( t , s ) f ( s , u ( s ) ) | d s + i = 1 m | G 2 ( t , t i ) J i ( u ( t i ) ) | + i = 1 m | G 3 ( t , t i ) I i ( u ( t i ) ) | σ 1 N 1 + a 2 m N 2 ( a b ) 2 + a m N 3 a b .

Thus, for every t J , we have u ( t ) σ 1 N 1 + a 2 m N 2 ( a b ) 2 + a m N 3 a b , which indicates that the set Ω is bounded. Accordingto Lemma 2.2, T has a fixed point u P C ( J ) . Therefore, BVPs (1.1) have at least one positivesolution. The proof is complete. □

In the following, we present an existence result when the nonlinearity and the impulsefunctions have sublinear growth.

Theorem 3.3 Assume that (B1)-(B3) hold andsuppose that the following assumptions hold:

(A7) There exist a 1 P C ( J ) , b 1 > 0 and α [ 0 , 1 ) such that | f ( t , u ) | a 1 ( t ) + b 1 | u | α for each t J and all u R + .

(A8) There exist constants a 2 , b 2 > 0 and α [ 0 , 1 ) such that | J k ( u ) | a 2 + b 2 | u | α for all u R + , k = 1 , 2 , , m .

(A9) There exist constants a 3 , b 3 > 0 and α [ 0 , 1 ) such that | I k ( u ) | a 3 + b 3 | u | α for all u R + , k = 1 , 2 , , m .

(A10) b < 1 , a + b 1 , where a = p σ 1 + a 2 m a 2 ( a b ) 2 + a m a 3 a b , b = b 1 σ 1 + a 2 m b 2 ( a b ) 2 + a m b 3 a b .

Then BVPs (1.1) have at least one positive solutionin P C ( J ) .

Proof Let T : P C ( J ) P C ( J ) and Ω be defined by (3.3) and (3.4), respectively.Denote p = max t J | a 1 ( t ) | . If u Ω , then for t J we have
| u ( t ) | = | λ T u | 0 1 | G 1 ( t , s ) ( a 1 ( s ) + b 1 | u ( s ) | α ) | d s + i = 1 m | G 2 ( t , t i ) ( a 2 + b 2 | u | α ) | + i = 1 m | G 3 ( t , t i ) ( a 3 + b 3 | u | α ) | p 0 1 M ( s ) d s + b 1 u α 0 1 M ( s ) d s + a 2 m ( a 2 + b 2 u α ) ( a b ) 2 + a m ( a 3 + b 3 u α ) a b = a + b u α ,

which imply that u a + b u α . When 0 < u 1 , then u a + b . When u > 1 , then u a 1 b . Taking C = max { a + b , a 1 b , } , we have u C for any solution of (3.4). This shows that the set Ωis bounded. According to Lemma 2.2, T has at least one fixed point in P C ( J ) . Therefore, BVPs (1.1) have at least one positive solutionin P C ( J ) . The proof is complete. □

Theorem 3.4 Assume that (B1)-(B3) hold.And suppose that one of the following conditions is satisfied:

(H1) f < 1 σ 1 (particularly, f = 0 ).

(H2) There exists a constant M > 0 such that f ( t , u ) M σ 1 for t J , u [ M , + ) .

(H3) There exists a constant N > 0 such that Φ ( N ) N 3 σ 1 for t J , u [ b 2 a 2 N , N ] .

Then BVPs (1.1) have at least one positive solution.

Proof Case 1. Considering f < 1 σ 1 , there exists r ¯ 1 > 0 such that f ( t , u ) ( f + ε 1 ) u for all u ( r ¯ 1 , + ) , t J , where ε 1 satisfies σ 1 ( f + ε 1 ) 1 .

Choose r 1 > max { r ¯ 1 , 2 N ¯ ( 1 σ 1 ( f + ε 1 ) ) 1 } , let u Ω 1 K r 1 . We can easily know that Ω 1 is a close bounded convex subset of a Banach space P C ( J ) . Then, for t J , u Ω 1 , in view of the nonnegativity and continuity of functions G 1 ( t , s ) , G 2 ( t , t i ) , G 3 ( t , t i ) , f ( t , u ( t ) ) , I k , J k and a > b > 0 , we conclude that T u P , T u 0 , t J . By Lemma 2.5, we can obtain the followinginequality:
b 2 a 2 T u = b 2 a 2 max t J ( T u ) ( t ) b 2 a 2 [ 0 1 M ( s ) f ( s , u ( s ) ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) ] b 2 a 2 [ 0 1 M ( s ) f ( s , u ( s ) ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) ] b a 0 1 M ( s ) f ( s , u ( s ) ) d s + b 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + b a b i = 1 m I i ( u ( t i ) ) ( T u ) ( t ) , t J .

Thus T u K .

Next, we prove T u r 1 . Indeed, for t J , u K r 1 , we get
T u = max t J ( T u ) ( t ) 0 1 M ( s ) f ( s , u ( s ) ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) 0 1 M ( s ) ( f + ε 1 ) u ( s ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) σ 1 ( f + ε 1 ) u + 2 N ¯ < σ 1 ( f + ε 1 ) r 1 + r 1 σ 1 ( f + ε 1 ) r 1 = r 1 .

Therefore, T ( Ω 1 ) Ω 1 . From Lemma 3.2, we have that T : Ω 1 Ω 1 is completely continuous. Thus BVPs (1.1) have at least apositive solution by Lemma 2.3.

Case 2. Condition (H2) holds. Let u Ω 2 K d , where d > 0 satisfies d 1 + M + σ 1 max t J , u [ 0 , M ] f ( t , u ) + 2 N ¯ . By the ways of Case 1, we can also get T u K . Now we prove T u d . In fact,
T u = max t J ( T u ) ( t ) 0 1 M ( s ) f ( s , u ( s ) ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) s J , u ( s ) > M M ( s ) f ( s , u ( s ) ) d s + s J , 0 u ( s ) M M ( s ) f ( s , u ( s ) ) d s + 2 N ¯ 0 1 M ( s ) M σ 1 d s + 0 1 M ( s ) d s max t J , u [ 0 , M ] f ( t , u ) + 2 N ¯ = M + σ 1 max t J , u [ 0 , M ] f ( t , u ) + 2 N ¯ < d .

Therefore, T ( Ω 2 ) Ω 2 . From Lemma 3.2 we have that T : Ω 2 Ω 2 is completely continuous. Thus BVPs (1.1) have at least apositive solution by Lemma 2.3.

Case 3. Condition (H3) holds. Let u Ω 3 K N , where N > 0 satisfies N 3 N ¯ , we get b 2 a 2 u u ( t ) u . By the ways of Case 1, we can also get T u K . Now we prove T u N . By assumption (H3), we have
f ( t , u ) Φ ( N ) N 3 σ 1 , t J , u [ b 2 a 2 N , N ] .
In view of Lemma 2.6, we have
T u = max t J ( T u ) ( t ) 0 1 M ( s ) f ( s , u ( s ) ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) 0 1 M ( s ) N 3 σ 1 d s + 2 N ¯ N 3 + 2 N 3 = N .

Therefore, T ( Ω 3 ) Ω 3 . From Lemma 3.2 we have T : Ω 3 Ω 3 is completely continuous. Thus BVPs (1.1) have at least apositive solution by Lemma 2.3. We complete the proof ofTheorem 3.4. □

4 Existence of multiple positive solutions

In this section, we discuss the multiplicity of positive solutions for BVPs (1.1) by theGuo-Krasnoselskii fixed point theorem.

Theorem 4.1 Assume that (B1)-(B3) hold,and suppose that the following two conditions are satisfied:

(H4) f 0 > 1 σ 2 and f > 1 σ 2 (particularly, f 0 = f = ).

(H5) There exists a constant c 3 N ¯ such that Φ ( c ) < c 3 σ 1 for t J , u [ b 2 a 2 c , c ] .

Then for BVPs (1.1) there exist at least two positivesolutions u 1 , u 2 , which satisfy
0 < u 1 < c < u 2 .
(4.1)
Proof Choose r, R with 0 < r < c < R . Considering f 0 > 1 σ 2 , there exists r > 0 such that f ( t , u ) ( f 0 ε 2 ) u for t J , u [ 0 , r ] , where ε 2 > 0 satisfies ( f 0 ε 2 ) σ 2 1 . Then, for u K r , t J , we have
T u = max t J ( T u ) ( t ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s + b 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + b a b i = 1 m I i ( u ( t i ) ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s b a 0 1 M ( s ) ( f 0 ε 2 ) u ( s ) d s b a 0 1 M ( s ) ( f 0 ε 2 ) b 2 a 2 u d s = ( f 0 ε 2 ) σ 2 u u .
Therefore,
T u u , u K r .
(4.2)
Considering f > 1 σ 2 , there exists R > 0 such that f ( t , u ) ( f ε 3 ) u for t J , u [ R , ) , where ε 3 > 0 satisfies ( f ε 3 ) σ 2 1 . Then, for u K R , t J , we have
T u = max t J ( T u ) ( t ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s + b 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + b a b i = 1 m I i ( u ( t i ) ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s b a 0 1 M ( s ) ( f ε 3 ) u ( s ) d s b a 0 1 M ( s ) ( f ε 3 ) b 2 a 2 u d s = ( f ε 3 ) σ 2 u u .
So
T u u , u K R .
(4.3)
On the other hand, by assumption (H5), we have
f ( t , u ) Φ ( c ) < c 3 σ 1 , for  t J , u [ b 2 a 2 c , c ] .
For u K c , where c > 0 satisfies c 3 N ¯ . In view of Lemma 2.6, we have
T u = max t J ( T u ) ( t ) 0 1 M ( s ) f ( s , u ( s ) ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) < 0 1 M ( s ) c 3 σ 1 d s + 2 N ¯ c 3 + 2 c 3 = c = u .
Therefore,
T u < u , u K c .
(4.4)

Thus, applying Lemma 2.4 to (4.2)-(4.4) yields that T has the fixed point u 1 K ( K ¯ c K r ) and the fixed point u 2 K ( K ¯ R K c ) . Thus it follows that problem (1.1) has at least twopositive solutions u 1 and u 2 . Noticing (4.4), we have u 1 c and u 2 c . Therefore (4.1) holds. The proof iscomplete. □

Theorem 4.2 Assume that (B1)-(B3) hold.Further suppose that there exist three positivenumbers ξ i ( i = 1 , 2 , 3 ) with 3 N ¯ ξ 1 < ξ 2 < ξ 3 such that one of the following conditions issatisfied:

(H6) ϕ ( ξ 1 ) ξ 1 σ 2 , Φ ( ξ 2 ) ξ 2 3 σ 1 , ϕ ( ξ 3 ) ξ 3 σ 2 .

(H7) Φ ( ξ 1 ) ξ 1 3 σ 1 , ϕ ( ξ 2 ) > ξ 2 σ 2 , Φ ( ξ 3 ) ξ 3 3 σ 1 .

Then BVPs (1.1) have at least two positivesolutions u 1 , u 2 with
ξ 1 u 1 < ξ 2 < u 2 ξ 3 .
(4.5)
Proof Because the proofs are similar, we prove only case (H6).Considering ϕ ( ξ 1 ) ξ 1 σ 2 , we have f ( t , u ) ϕ ( ξ 1 ) ξ 1 σ 2 for t J , u [ b 2 a 2 ξ 1 , ξ 1 ] . Then, for u K ξ 1 , t J , we have
| T u = max t J ( T u ) ( t ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s + b 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + b a b i = 1 m I i ( u ( t i ) ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s b a 0 1 M ( s ) ξ 1 σ 2 d s b 3 a 3 0 1 M ( s ) d s ξ 1 σ 2 = ξ 1 = u .
Therefore,
T u u , u K ξ 1 .
(4.6)
Considering Φ ( ξ 2 ) ξ 2 3 σ 1 , we have f ( t , u ) Φ ( ξ 2 ) ξ 2 3 σ 1 for t J , u [ b 2 a 2 ξ 2 , ξ 2 ] . Then, for u K ξ 2 , t J , we derive
T u = max t J ( T u ) ( t ) 0 1 M ( s ) f ( s , u ( s ) ) d s + a 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + a a b i = 1 m I i ( u ( t i ) ) 0 1 M ( s ) ξ 2 3 σ 1 d s + 2 N ¯ ξ 2 3 + 2 ξ 1 3 < ξ 2 3 + 2 ξ 2 3 = ξ 2 = u .
So,
T u < u , u K ξ 2 .
(4.7)
Considering ϕ ( ξ 3 ) ξ 3 σ 2 , we have f ( t , u ) ϕ ( ξ 3 ) ξ 3 σ 2 for t J , u [ b 2 a 2 ξ 3 , ξ 3 ] . Then, for u K ξ 3 , t J , we have
T u = max t J ( T u ) ( t ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s + b 2 ( a b ) 2 i = 1 m J i ( u ( t i ) ) + b a b i = 1 m I i ( u ( t i ) ) b a 0 1 M ( s ) f ( s , u ( s ) ) d s b a 0 1 M ( s ) ξ 3 σ 2 d s b 3 a 3 0 1 M ( s ) d s ξ 3 σ 2 = ξ 3 = u .
Therefore,
T u u , u K ξ 3 .
(4.8)

Thus, applying Lemma 2.4 to (4.6)-(4.8) yields that T has the fixed point u 1 K ( K ¯ ξ 2 K ξ 1 ) and the fixed point u 2 K ( K ¯ ξ 3 K ξ 2 ) . Thus it follows that BVPs (1.1) have at least twopositive solutions u 1 and u 2 . Noticing (4.7), we have u 1 ξ 2 and u 2 ξ 2 . Therefore (4.5) holds. The proof iscomplete. □

Similar to the above proof, we can obtain the general theorem.

Theorem 4.3 Assume that (B1)-(B3) hold.Suppose that there exist n + 1 positive numbers ξ i ( i = 1 , 2 , , n + 1 ) with 3 N ¯ ξ 1 < ξ 2 < < ξ n + 1 such that one of the following conditions issatisfied:

(H8) ϕ ( ξ 2 j 1 ) > ξ 2 j 1 σ 2 , Φ ( ξ 2 j ) < ξ 2 j 3 σ 1 , j = 1 , 2 , , [ n + 2 2 ] ;

(H9) Φ ( ξ 2 j 1 ) < ξ 2 j 1 3 σ 1 , ϕ ( ξ 2 j ) > ξ 2 j σ 2 , j = 1 , 2 , , [ n + 2 2 ] .

Then BVPs (1.1) have at least n positivesolutions u i ( i = 1 , 2 , , n ) with
ξ i < u i < ξ i + 1 .
(4.9)

5 Illustrative examples

Example 5.1 Consider the BVPs of impulsive nonlinear fractional orderdifferential equations:
{ D t q c u ( t ) = f ( t , u ( t ) ) , t J , t 1 2 , Δ u ( 1 2 ) = I ( u ( 1 2 ) ) , Δ u ( 1 2 ) = J ( u ( 1 2 ) ) , a u ( 0 ) b u ( 1 ) = 0 , a u ( 0 ) b u ( 1 ) = 0 .
(5.1)

If we let q = 3 2 , a = 2 , b = 1 , f ( t , u ) = Γ ( 3 2 ) cos t ( t + 2 5 ) 2 u ( t ) 1 + u ( t ) , ( t , u ) [ 0 , 1 ] × [ 0 , ) , I ( u ) = u 5 + u , J ( u ) = u 10 + u , u [ 0 , ) .

For u , v [ 0 , ) , t [ 0 , 1 ] ,
| f ( t , u ) f ( t , v ) | | Γ ( 3 2 ) cos t ( t + 2 5 ) 2 | | u v ( 1 + u ) ( 1 + v ) | Γ ( 3 2 ) 20 | u v | , | I ( u ) I ( v ) | 5 ( 5 + u ) ( 5 + v ) | u v | 1 5 | u v | , | J ( u ) J ( v ) | 10 ( 10 + u ) ( 10 + v ) | u v | 1 10 | u v | .
Clearly, L 1 = Γ ( 3 2 ) 20 , L 2 = 1 10 , L 3 = 1 5 . Therefore,
ρ = σ 1 L 1 + m a 2 L 2 ( a b ) 2 + m a L 3 a b = 10 3 Γ ( 3 2 ) Γ ( 3 2 ) 20 + 2 5 + 2 5 = 29 30 < 1 .

Thus, all the assumptions of Theorem 3.1 are satisfied. Hence, BVPs (5.1) have aunique solution on [ 0 , 1 ] .

In addition, in this case, let N 1 = Γ ( 3 2 ) 20 , N 2 = N 3 = 1 . It is clear that | f ( t , u ) | N 1 , | J k ( u ) | N 2 , | I k ( u ) | N 3 . Thus, BVPs (5.1) have at least one solution on [ 0 , 1 ] by Theorem 3.2.

Example 5.2 Consider the BVPs of impulsive nonlinear fractional orderdifferential equations:
{ D t q c u ( t ) ) = f ( t , u ( t ) , t J , t 1 2 , Δ u ( 1 2 ) = I ( u ( 1 2 ) ) , Δ u ( 1 2 ) = J ( u ( 1 2 ) ) , a u ( 0 ) b u ( 1 ) = 0 , a u ( 0 ) b u ( 1 ) = 0 .
(5.2)
Let a = 2 , b = 1 , q = 3 2 , f ( t , u ) = | u ( t ) ln u ( t ) 5 ( 1 + t 2 ) | , I ( u ) = J ( u ) = 1 16 ( 1 + u ) . It is easy to see that (H4) holds. By a simplecomputation, we have
f 0 = lim inf u 0 min t [ 0 , 1 ] | u ln u 5 ( 1 + t 2 ) u | = lim inf u 0 | ln u | 10 = + , f = lim inf u min t [ 0 , 1 ] | u ln u 5 ( 1 + t 2 ) u | = lim inf u | ln u | 10 = + .
Take c = 1 , it is clear that 3 N ¯ < 3 4 < c . For 1 4 u 1 , f ( t , u ) = u ln u 5 ( 1 + t 2 ) , we can obtain that f ( t , u ) arrives at maximum at u = 1 e [ 1 4 , 1 ] , t = 0 . Thus, we have
Φ ( 1 ) = max t [ 0 , 1 ] , u [ 1 4 , 1 ] f ( t , u ) = f ( 0 , 1 e ) = 1 5 e 0.0736 < 1 3 σ 1 = π 20 0.0886 .

Thus it follows that BVPs (5.2) have at least two positive solutions u 1 , u 2 with 0 < u 1 < 1 < u 2 by Theorem 4.1.

Declarations

Acknowledgements

The authors thank the referees for their valuable comments and suggestions for theimprovement of the manuscript. This work is supported by the National NaturalSciences Foundation of Peoples Republic of China under Grant No. 11161025 and YunnanProvince Natural Scientific Research Fund Project under Grant No. 2011FZ058.

Authors’ Affiliations

(1)
Department of Applied Mathematics, Kunming University of Science and Technology

References

  1. Lakshmikantham V, Leela S: Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal. 2009, 71: 2886-2889. 10.1016/j.na.2009.01.169MathSciNetView ArticleMATHGoogle Scholar
  2. Chen F, Zhou Y: Attractivity of fractional functional differential equations. Comput. Math. Appl. 2011, 62: 1359-1369. 10.1016/j.camwa.2011.03.062MathSciNetView ArticleMATHGoogle Scholar
  3. Chang Y, Nieto J: Some new existence results for fractional differential inclusions with boundaryconditions. Math. Comput. Model. 2009, 49: 605-609. 10.1016/j.mcm.2008.03.014MathSciNetView ArticleMATHGoogle Scholar
  4. Kilbas AA, Trujillo JJ: Differential equations of fractional order: methods, results and problems-I. Appl. Anal. 2001, 78: 153-192. 10.1080/00036810108840931MathSciNetView ArticleMATHGoogle Scholar
  5. Kilbas AA, Trujillo JJ: Differential equations of fractional order: methods, results and problems-II. Appl. Anal. 2002, 81: 435-493. 10.1080/0003681021000022032MathSciNetView ArticleMATHGoogle Scholar
  6. Bai Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 2010, 72: 916-924. 10.1016/j.na.2009.07.033MathSciNetView ArticleMATHGoogle Scholar
  7. Zhang X, Liu L, Wu Y: Multiple positive solutions of a singular fractional differential equation withnegatively perturbed term. Math. Comput. Model. 2012, 55(3):1263-1274.MathSciNetView ArticleMATHGoogle Scholar
  8. Zhao Y, Sun S, Han Z, et al.: The existence of multiple positive solutions for boundary value problems ofnonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16(4):2086-2097. 10.1016/j.cnsns.2010.08.017MathSciNetView ArticleMATHGoogle Scholar
  9. Bai Z, Qiu T: Existence of positive solution for singular fractional differential equation. Appl. Math. Comput. 2009, 215(7):2761-2767. 10.1016/j.amc.2009.09.017MathSciNetView ArticleMATHGoogle Scholar
  10. Zhao Y, Sun S, Han Z, et al.: Positive solutions for boundary value problems of nonlinear fractionaldifferential equations. Appl. Math. Comput. 2011, 217(16):6950-6958. 10.1016/j.amc.2011.01.103MathSciNetView ArticleMATHGoogle Scholar
  11. Goodrich C: Existence of a positive solution to a class of fractional differentialequations. Appl. Math. Lett. 2010, 23: 1050-1055. 10.1016/j.aml.2010.04.035MathSciNetView ArticleMATHGoogle Scholar
  12. Salem H: On the existence of continuous solutions for a singular system of nonlinearfractional differential equations. Appl. Math. Comput. 2008, 198: 445-452. 10.1016/j.amc.2007.08.063MathSciNetView ArticleMATHGoogle Scholar
  13. Bai Z, Lv H: Positive solutions for boundary value problem of nonlinear fractional differentialequation. J. Math. Anal. Appl. 2005, 311: 495-505. 10.1016/j.jmaa.2005.02.052MathSciNetView ArticleGoogle Scholar
  14. Zhao Y, Chen H, Zhang Q: Existence and multiplicity of positive solutions for nonhomogeneous boundary valueproblems with fractional q -derivatives. Bound. Value Probl. 2013., 2013: Article ID 103Google Scholar
  15. Li X, Chen F, Li X: Generalized anti-periodic boundary value problems of impulsive fractionaldifferential equations. Commun. Nonlinear Sci. Numer. Simul. 2013, 18: 28-41. 10.1016/j.cnsns.2012.06.014MathSciNetView ArticleGoogle Scholar
  16. Tian Y, Bai Z: Impulsive boundary value problem for differential equations with fractionalorder. Differ. Equ. Dyn. Syst. 2013, 21(3):253-260. 10.1007/s12591-012-0150-6MathSciNetView ArticleMATHGoogle Scholar
  17. Zhao KH, Gong P: Existence of positive solutions for a class of higher-order Caputo fractionaldifferential equation. Qual. Theory Dyn. Syst. 2014. 10.1007/s12346-014-0121-0Google Scholar
  18. Bainov DD, Simeonov PS: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, New York; 1993.MATHGoogle Scholar
  19. Lakshmikantham V, Bainov DD, Simeonov PS: Theory of Impulsive Differential Equations. World Scientific, Singapore; 1989.View ArticleMATHGoogle Scholar
  20. Benchohra M, Henderson J, Ntouyas SK 2. In Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York; 2006.View ArticleGoogle Scholar
  21. Kilbas A, Srivastava H, Trujillo J North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.Google Scholar
  22. Podlubny I: Fractional Differential Equations. Academic Press, New York; 1993.MATHGoogle Scholar
  23. Sun JX: Nonlinear Functional Analysis and Its Application. Science Press, Beijing; 2008. (in Chinese)Google Scholar
  24. Hale JK: Theory of Functional Differential Equations. Springer, New York; 1977.View ArticleMATHGoogle Scholar
  25. Guo D, Lakshmikantham V, Liu X Mathematics and Its Applications 373. In Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic, Dordrecht; 1996.View ArticleGoogle Scholar

Copyright

© Zhao and Gong; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0), which permitsunrestricted use, distribution, and reproduction in any medium, provided the originalwork is properly credited.