Skip to main content

Theory and Modern Applications

Multiple periodic solutions for a class of nonlinear difference systems with classical or bounded ( ϕ 1 , ϕ 2 )-Laplacian

Abstract

In this paper, we consider the multiplicity of periodic solutions for a class of difference systems involving the ( ϕ 1 , ϕ 2 )-Laplacian in the cases when the gradient of the nonlinearity has a sublinear growth. By using the variational method, some existence results are obtained. Our results generalize some recent results in (Mawhin in Discrete Contin. Dyn. Syst. 6:1065-1076, 2013).

1 Introduction and main results

Let denote the real numbers and the integers. Given a<b in . Let Z[a,b]={a,a+1,,b}. Let T>1 and N be fixed positive integers.

In this paper, we investigate the multiplicity of periodic solutions for the following nonlinear difference systems:

{ Δ ϕ 1 ( Δ u 1 ( t 1 ) ) = u 1 F ( t , u 1 ( t ) , u 2 ( t ) ) + h 1 ( t ) , Δ ϕ 2 ( Δ u 2 ( t 1 ) ) = u 2 F ( t , u 1 ( t ) , u 2 ( t ) ) + h 2 ( t ) ,
(1.1)

where F:Z× R N × R N R and ϕ m , m=1,2, satisfy the following condition:

(A0) ϕ m is a homeomorphism from R N onto B a R N (a(0,+]), such that ϕ m (0)=0, ϕ m = Φ m , with Φ m C 1 ( R N ,[0,+]) strictly convex and Φ m (0)=0, m=1,2.

Remark 1.1 Assumption (A0) is given in [1], which is used to characterize the classical homeomorphism and the bounded homeomorphism. ϕ m is called classical when a=+ and bounded when a<+. If furthermore Φ m : R N R is coercive (i.e. Φ m (x)+ as |x|), there exists δ m >0 such that

Φ m (x) δ m ( | x | 1 ) ,x R N ,
(1.2)

where δ m = min | x | = 1 Φ m (x), m=1,2 (see [1]).

It is well known that the variational method has been an important tool to study the existence and multiplicity of solutions for various difference systems. Lots of contributions have been obtained (for example, see [113]). However, to the best of our knowledge, few people investigated system (1.1). Recently, in [1] and [14], by using the variational approach, Mawhin investigated the following second order nonlinear difference systems with ϕ-Laplacian:

Δϕ [ Δ u ( n 1 ) ] = u F [ n , u ( n ) ] +h(n)(nZ),
(1.3)

where ϕ=Φ, Φ strictly convex, is a homeomorphism of R N onto the ball B a R N or of B a onto R N . By using the variational approach, under different conditions, the author found that system (1.3) has at least one or N+1 geometrically distinct T-periodic solutions. It is interesting that Mawhin considered three kinds of ϕ: (1) ϕ: R N R N is a classical homeomorphism, for example, ϕ(x)= | x | p 1 x for some p>1 and all x R N ; (2) ϕ: R N B a (a<+) is a bounded homeomorphism, for example, ϕ(x)= x 1 + | x | 2 B 1 for all x R N ; (3) ϕ: B a R N R N is a singular homeomorphism, for example, ϕ(x)= x 1 | x | 2 for all x B 1 .

For a classical and bounded homeomorphism, in [14], Mawhin obtained the following multiplicity results.

Theorem A (see [14], Theorem 4.1)

Assume that the following assumptions hold:

(HB) ϕ is a homeomorphism from R N onto R N , such that ϕ(0)=0, ϕ=Φ, with Φ C 1 ( R N ,[0,+]) strictly convex and Φ(0)=0.

(HF) FC(Z× R N ,R), F(n,) C 1 ( R N ,R), and there exist an integer T>0 and real numbers ω 1 >0, ω 2 >0,, ω N >0 such that

F(t+T, u 1 + ω 1 , u 2 + ω 2 ,, u N + ω N )=F(t, u 1 , u 2 ,, u N )

for all tR and u=( u 1 , u 2 ,, u N ) R N .

If there exist γ>0 and p>1 such that

| Φ ( u ) | γ | u | p ( u R N ) .

Then, for any h H T such that 1 T t = 1 T h(t)=0 (the definition of H T can be seen in [14]), system (1.3) has at least N+1 geometrically distinct T-periodic solutions.

Theorem B (see [14], Theorem 4.2)

Assume that assumption (HF) and the following condition hold:

(HB)′ ϕ is a homeomorphism from R N onto B a R N (a(0,+)), such that ϕ(0)=0, ϕ=Φ, with Φ C 1 ( R N ,[0,+]) strictly convex and Φ(0)=0.

If Φ: R N R is coercive, h H T such that 1 T t = 1 T h(t)=0 and | H | <δ, system (1.3) has at least N+1 geometrically distinct T-periodic solutions, where δ>0 is given by (5) in [14]and H= ( H ( n ) ) n Z H T is such that ΔH(n)=h(n), nZ.

Obviously, (HF) implies that F is periodic on all variables u 1 ,, u N . Hence, a natural question is that what will occur if F is periodic on some of variables u 1 ,, u N . For differential systems, in [15] and [16], the arguments on this question have been given. In [15], Tang and Wu considered the second order Hamiltonian system

{ u ¨ ( t ) + F ( t , u ( t ) ) = e ( t ) , a.e.  t [ 0 , T ] , u ( 0 ) u ( T ) = u ˙ ( 0 ) u ˙ ( T ) = 0 ,
(1.4)

and in [16], Zhang and Tang generalized and improved the results in [15]. They considered the following ordinary p-Laplacian system:

{ ( | u ( t ) | p 2 u ( t ) ) + F ( t , u ( t ) ) = e ( t ) , a.e.  t [ 0 , T ] , u ( 0 ) u ( T ) = u ˙ ( 0 ) u ˙ ( T ) = 0 .
(1.5)

Inspired by [1, 14, 15] and [16], in this paper, we investigate system (1.1), which is different from (1.3), and consider the case that F(t, x 1 , x 2 ) is periodic on some of the variables x 1 ( 1 ) ,, x N ( 1 ) and some of the variables x 1 ( 1 ) ,, x N ( 2 ) , where x 1 = ( x 1 ( 1 ) , , x N ( 1 ) ) τ and x 2 = ( x 1 ( 1 ) , , x N ( 2 ) ) τ . We generalize Theorem A and Theorem B.

Next, in order to present our main results, we consider two decompositions R N = R 1 S 1 and R N = R 2 S 2 with

R 1 = span e i 1 , , e i r 1 , S 1 = span e i r 1 + 1 , , e i N , R 2 = span e j 1 , , e j r 2 , S 2 = span e j r 2 + 1 , , e j N ,

where e i k and e j s are the canonical basis of R N for 1kN, 1sN, 1 r 1 N, and 1 r 2 N.

In this paper, we make the following assumptions:

(A1) Let p>1, q>1, β 1 [0,p), and β 2 [0,q). Assume that there exist positive constants γ 1 , γ 2 , γ 3 , γ 4 such that

Φ 1 (x) γ 1 | x | p γ 2 | x | β 1 , Φ 2 (y) γ 3 | y | q γ 4 | y | β 2 ,x,y R N .

(A2) There exist positive constants d 1 , d 2 , d 3 , d 4 with d 1 > 1 p and d 3 > 1 q , β 3 [0,p), and β 4 [0,q) such that

( ϕ 1 ( x ) , x ) d 1 | x | p d 2 | x | β 3 , ( ϕ 2 ( x ) , x ) d 3 | x | q d 4 | x | β 4 ,x R N .

(A3) There exist constants c m 0 >0, k m 1 >0, k m 2 >0, α 1 [0,p1), α 2 [0,q1), and two nonnegative functions w m C([0,+),[0,+)), where m=1,2, with the properties:

  1. (i)

    w m (s) w m (t) st, s,t[0,+),

  2. (ii)

    w m (s+t) c m 0 ( w m (s)+ w m (t)) s,t[0,+),

  3. (iii)

    0 w 1 (t) k 11 t α 1 + k 12 , 0 w 2 (t) k 21 t α 2 + k 22 , t[0,+),

  4. (iv)

    w m (t)+, as t+.

(F1) F:Z× R N × R N R N , (t, x 1 , x 2 )F(t, x 1 , x 2 ) is T-periodic in t for all ( x 1 , x 2 ) R N × R N and continuously differentiable in ( x 1 , x 2 ) for every tZ[1,T], where x 1 = ( x 1 ( 1 ) , , x N ( 1 ) ) τ , x 2 = ( x 1 ( 2 ) , , x N ( 2 ) ) τ .

(F2) F(t, x 1 , x 2 ) is T i k ( 1 ) -periodic in x i k ( 1 ) , where x i k ( 1 ) is a component of vector x 1 and T i k ( 1 ) >0, 1k r 1 , and T j s ( 2 ) -periodic in x j s ( 2 ) , where x j s ( 2 ) is a component of vector x 2 and T j s ( 2 ) >0, 1s r 2 .

(F3) There exist f m , g m :Z[1,T]R, m=1,2, such that

| x 1 F ( t , x 1 , x 2 ) | f 1 ( t ) w 1 ( | x 1 | ) + g 1 ( t ) , | x 2 F ( t , x 1 , x 2 ) | f 2 ( t ) w 2 ( | x 2 | ) + g 2 ( t )

for all ( x 1 , x 2 ) R N × R N and tZ[1,T].()

t = 1 T h 1 (t)= t = 1 T h 2 (t)=0.

Remark 1.2 A condition similar to (A3) and (F3) was given first in [17] for the second order Hamiltonian systems

{ u ¨ ( t ) = F ( t , u ( t ) ) , u ( 0 ) u ( T ) = u ˙ ( 0 ) u ˙ ( T ) .
(1.6)

The condition presented some advantages over the following subquadratic condition: there exist α[0,1) and f,g L 1 ([0,T]; R N ) such that

| F ( t , x ) | f(t) | x | α +g(t).

We refer readers to [17] for more details.

Moreover, assume that p >1 and q >1 satisfying 1/p+1/ p =1 and 1/q+1/ q =1. Let

C ( p ) =min { ( T 1 ) ( p + 1 ) / p T , ( ( T + 1 ) p + 1 2 T p ( p + 1 ) ) 1 / p } ,
(1.7)
C ( q ) =min { ( T 1 ) ( q + 1 ) / q T , ( ( T + 1 ) q + 1 2 T q ( q + 1 ) ) 1 / q } ,
(1.8)
C ( p , p ) =min { ( T 1 ) 2 p 1 T p 1 , T p 1 Θ ( p , p ) ( p + 1 ) p / p } ,
(1.9)
C ( q , q ) = min { ( T 1 ) 2 q 1 T q 1 , T q 1 Θ ( q , q ) ( q + 1 ) q / q } , Θ ( p , p ) = t = 1 T [ ( t T ) p + 1 + ( 1 t T + 1 T ) p + 1 2 T p + 1 ] p / p , Θ ( q , q ) = t = 1 T [ ( t T ) q + 1 + ( 1 t T + 1 T ) q + 1 2 T q + 1 ] q / q .
(1.10)

Next, we present our main results.

(I) For classical homeomorphism

Theorem 1.1 Assume that (A0) with a=+, (A1), (A3), (F1)-(F3), and () hold. Assume that F satisfies the following condition:

(F4) For ( x 1 , x 2 ) S 1 × S 2 ,

lim | x 1 | + | x 2 | + t = 1 T F ( t , x 1 , x 2 ) w 1 p ( | x 1 | ) + w 2 q ( | x 2 | ) > max { [ c 10 C ( p ) ] p [ p γ 1 ] p 1 p ( t = 1 T f 1 ( t ) ) p , [ c 20 C ( q ) ] q [ q γ 3 ] q 1 q ( t = 1 T f 2 ( t ) ) q } .

Then system (1.1) has at least r 1 + r 2 +1 geometrically distinct solutions in , where the definition of is given in Section  2 below.

Theorem 1.2 Assume that (A0) with a=+, (A1), (A2), (A3), (F1)-(F3), and () hold. Assume that F satisfies the following condition:

(A1)′ Let θ 1 [0,p) and θ 2 [0,q). Assume that there exist positive constants ζ 1 , ζ 2 , ζ 3 , ζ 4 such that

Φ 1 (x) ζ 1 | x | p + ζ 2 | x | θ 1 , Φ 2 (y) ζ 3 | y | q + ζ 4 | y | θ 2 ,x,y R N ;

(F4)′ For ( x 1 , x 2 ) S 1 × S 2 ,

lim | x 1 | + | x 2 | + t = 1 T F ( t , x 1 , x 2 ) w 1 p ( | x 1 | ) + w 2 q ( | x 2 | ) < max { [ C ( p ) c 10 ] p p [ 1 + p ζ 1 d 1 p 1 + 1 + q ζ 3 d 3 q 1 + 1 ] ( t = 1 T f 1 ( t ) ) p , [ C ( q ) c 20 ] q q [ 1 + p ζ 1 d 1 p 1 + 1 + q ζ 3 d 3 q 1 + 1 ] ( t = 1 T f 2 ( t ) ) q } .

Then system (1.1) has at least r 1 + r 2 +1 geometrically distinct solutions in .

(II) For bounded homeomorphism

Theorem 1.3 Assume that (A0) with a<+, Φ m : R N R are coercive, m=1,2, (F1), (F2), and () hold. Assume that F satisfies the following conditions:

(F5) There exists a nonnegative b m :Z[1,T] R + , m=1,2, such that

| x 1 F ( t , x 1 , x 2 ) | b 1 ( t ) , | x 2 F ( t , x 1 , x 2 ) | b 2 ( t )

for all ( x 1 , x 2 ) R N × R N and tZ[1,T];

(F6) For ( x 1 , x 2 ) S 1 × S 2 ,

lim | x 1 | + | x 2 | + t = 1 T F(t, x 1 , x 2 )=+;

(F7)

t = 1 T b 1 ( t ) + t = 1 T | h 1 ( t ) | < δ 1 C ( p ) , t = 1 T b 2 ( t ) + t = 1 T | h 2 ( t ) | < δ 2 C ( q ) ,

where δ m , m=1,2 are given in (1.2). Then system (1.1) has at least r 1 + r 2 +1 geometrically distinct solutions in .

Theorem 1.4 Assume that (A0) with a<+, Φ m : R N R are coercive, m=1,2, (F1), (F2), (F5), and () hold. If F satisfies the following conditions:

(F6)′ For ( x 1 , x 2 ) S 1 × S 2 ,

lim | x 1 | + | x 2 | + t = 1 T F(t, x 1 , x 2 )=;

(F7)′

C ( p ) t = 1 T b 1 ( t ) + C ( p ) t = 1 T | h 1 ( t ) | + ( C ( p , p ) + 1 ) 1 / p < δ 1 , C ( q ) t = 1 T b 2 ( t ) + C ( q ) t = 1 T | h 2 ( t ) | + ( C ( q , q ) + 1 ) 1 / q < δ 2 ,

where δ m , m=1,2 are given in (1.2), then system (1.1) has at least r 1 + r 2 +1 geometrically distinct solutions in .

2 Preliminaries

First, we present some basic notations. We use || to denote the usual Euclidean norm in  R N . Define

V = { u = ( u 1 , u 2 ) τ = { u ( t ) } | u ( t ) = ( u 1 ( t ) , u 2 ( t ) ) τ R 2 N , u m = { u m ( t ) } , u m ( t ) R N , m = 1 , 2 , t Z } .

is defined as a subspace of V by

H= { u = { u ( t ) } V | u ( t + T ) = u ( t ) , t Z } .

Define

H m = { u m = { u m ( t ) } | u m ( t + T ) = u m ( t ) , u m ( t ) R N , t Z } ,m=1,2.

Then H= H 1 × H 2 . For u m H m , set

u m r = ( t = 1 T | u m ( t ) | r ) 1 / r and u m = max t Z [ 1 , T ] | u m ( t ) | ,m=1,2,r>1.

Obviously, we have

u m u m 2 ,m=1,2.
(2.1)

For 1<p,q<+, on H 1 , we define

u 1 p = ( t = 1 T | Δ u 1 ( t ) | p + t = 1 T | u 1 ( t ) | p ) 1 / p

and, on H 2 , we define

u 2 q = ( t = 1 T | Δ u 2 ( t ) | q + t = 1 T | u 2 ( t ) | q ) 1 / q .

For u= ( u 1 , u 2 ) τ H, we define

u= u 1 p + u 2 q .

Let

W= { u = ( u 1 , u 2 ) τ H | u m ( 1 ) = = u m ( T ) = 1 T t = 1 T u m ( t ) , m = 1 , 2 }

and

H ˜ = { u = ( u 1 , u 2 ) τ H | t = 1 T u m ( t ) = 0 , m = 1 , 2 } .

Then can be decomposed into the direct sum H=W H ˜ . So, for any uH, u can be expressed in the form u= u ˜ + u ¯ , where u ˜ = ( u ˜ 1 , u ˜ 2 ) τ V and u ¯ = ( u ¯ 1 , u ¯ 2 ) τ W. Obviously, u m = u ˜ m + u ¯ m , m=1,2.

For u= ( u 1 , u 2 ) τ H ˜ , let

Δ u m r = ( t = 1 T | Δ u m ( t ) | r ) 1 / r ,

where m=1,2, r>1. It is easy to verify that

Δu= Δ u 1 p + Δ u 2 q

is also a norm on H ˜ . Since H ˜ is finite-dimensional, the norm Δu is equivalent to the norm u in if u H ˜ .

Lemma 2.1 (see [12])

Let u=( u 1 , u 2 ) H ˜ . Then

max t Z [ 1 , T ] | u m ( t ) | C ( p ) ( s = 1 T | Δ u m ( s ) | p ) 1 / p ,m=1,2,
(2.2)
max t Z [ 1 , T ] | u m ( t ) | C ( q ) ( s = 1 T | Δ u m ( s ) | q ) 1 / q ,m=1,2,
(2.3)

and

t = 1 T | u m ( t ) | p C ( p , p ) s = 1 T | Δ u m ( s ) | p ,m=1,2,
(2.4)
t = 1 T | u m ( t ) | q C ( q , q ) s = 1 T | Δ u m ( s ) | q ,m=1,2,
(2.5)

where C( p ), C( q ), C(p, p ), and C(q, q ) are defined by (1.7)-(1.10).

Lemma 2.2 (see [16])

Let a>0, b,c0, ε>0.

  1. (i)

    If α(0,1], then ( a + b + c ) α a α + b α + c α ;

  2. (ii)

    if α(1,+), then there exists B(ε)>1 such that

    ( a + b + c ) α (1+ε) a α +B(ε) b α +B(ε) c α .

Lemma 2.3 For any u=( u 1 , u 2 ),v=( v 1 , v 2 )H, the following two equalities hold:

t = 1 T ( Δ ϕ 1 ( Δ u 1 ( t 1 ) ) , v 1 ( t ) ) = t = 1 T ( Δ ϕ 1 ( Δ u 1 ( t ) ) , Δ v 1 ( t ) ) ,
(2.6)
t = 1 T ( Δ ϕ 2 ( Δ u 2 ( t 1 ) ) , v 2 ( t ) ) = t = 1 T ( Δ ϕ 2 ( Δ u 2 ( t ) ) , Δ v 2 ( t ) ) .
(2.7)

Proof In fact, since u 1 (t)= u 1 (t+T) and v 1 (t)= v 1 (t+T) for all tZ, we have

t = 1 T ( Δ ϕ 1 ( Δ u 1 ( t 1 ) ) , v 1 ( t ) ) = t = 1 T ( ϕ 1 ( Δ u 1 ( t ) ) , v 1 ( t ) ) + t = 1 T ( ϕ 1 ( Δ u 1 ( t 1 ) ) , v 1 ( t ) ) = t = 1 T ( ϕ 1 ( Δ u 1 ( t ) ) , v 1 ( t ) ) + t = 1 T 1 ( ϕ 1 ( Δ u 1 ( t ) ) , v 1 ( t + 1 ) ) + ( ϕ 1 ( Δ u 1 ( 0 ) ) , v 1 ( 1 ) ) = t = 1 T ( ϕ 1 ( Δ u 1 ( t ) ) , Δ v 1 ( t ) ) + ( ϕ 1 ( Δ u 1 ( 0 ) ) , v 1 ( 1 ) ) ( ϕ 1 ( Δ u 1 ( T ) ) , v 1 ( T + 1 ) ) = t = 1 T ( ϕ 1 ( Δ u 1 ( t ) ) , Δ v 1 ( t ) ) .

Hence, (2.6) holds. Similarly, it is easy to obtain (2.7). The proof is complete. □

Lemma 2.4 Let L:Z[1,T]× R N × R N × R N × R N R, (t, x 1 , x 2 , y 1 , y 2 )L(t, x 1 , x 2 , y 1 , y 2 ) and assume that L is continuously differential in ( x 1 , x 2 , y 1 , y 2 ) for all tZ[1,T]. Then the function φ:HR defined by

φ(u)=φ( u 1 , u 2 )= t = 1 T L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) )

is continuously differentiable on and

φ ( u ) , v = φ ( u 1 , u 2 ) , ( v 1 , v 2 ) = t = 1 T [ ( D x 1 L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) ) , v 1 ( t ) ) + ( D y 1 L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) ) , Δ v 1 ( t ) ) + ( D x 2 L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) ) , v 2 ( t ) ) + ( D y 2 L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) ) , Δ v 2 ( t ) ) ] ,

where u,vH.

Proof Define G:[1,1]×Z[1,T]R, (λ,t)G(λ,t) by

G(λ,t)=L ( t , u 1 ( t ) + λ v 1 ( t ) , u 2 ( t ) + λ v 2 ( t ) , Δ u 1 ( t ) + λ Δ v 1 ( t ) , Δ u 2 ( t ) + λ Δ v 2 ( t ) ) .

Since L is continuously differential in ( x 1 , x 2 , y 1 , y 2 ) for all tZ[1,T], G(λ,t) is differential in λ and

G ( λ , t ) = ( D x 1 L ( t , u 1 ( t ) + λ v 1 ( t ) , u 2 ( t ) + λ v 2 ( t ) , Δ u 1 ( t ) + λ Δ v 1 ( t ) , Δ u 2 ( t ) + λ Δ v 2 ( t ) ) , v 1 ( t ) ) + ( D x 2 L ( t , u 1 ( t ) + λ v 1 ( t ) , u 2 ( t ) + λ v 2 ( t ) , Δ u 1 ( t ) + λ Δ v 1 ( t ) , Δ u 2 ( t ) + λ Δ v 2 ( t ) ) , v 2 ( t ) ) + ( D y 1 L ( t , u 1 ( t ) + λ v 1 ( t ) , u 2 ( t ) + λ v 2 ( t ) , Δ u 1 ( t ) + λ Δ v 1 ( t ) , Δ u 2 ( t ) + λ Δ v 2 ( t ) ) , Δ v 1 ( t ) ) + ( D y 2 L ( t , u 1 ( t ) + λ v 1 ( t ) , u 2 ( t ) + λ v 2 ( t ) , Δ u 1 ( t ) + λ Δ v 1 ( t ) , Δ u 2 ( t ) + λ Δ v 2 ( t ) ) , Δ v 2 ( t ) ) .

Hence,

φ ( u ) , v = lim λ 0 φ ( u + λ v ) φ ( u ) λ = lim λ 0 t = 1 T G ( λ , t ) t = 1 T G ( 0 , t ) λ = t = 1 T lim λ 0 G ( λ , t ) G ( 0 , t ) λ = t = 1 T G ( 0 , t ) = t = 1 T [ ( D x 1 L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) ) , v 1 ( t ) ) + ( D y 1 L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) ) , Δ v 1 ( t ) ) + ( D x 2 L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) ) , v 2 ( t ) ) + ( D y 2 L ( t , u 1 ( t ) , u 2 ( t ) , Δ u 1 ( t ) , Δ u 2 ( t ) ) , Δ v 2 ( t ) ) ] .

The proof is complete. □

Let

L(t, x 1 , x 2 , y 1 , y 2 )= Φ 1 ( y 1 )+ Φ 2 ( y 2 )+F(t, x 1 , x 2 )+ ( h 1 ( t ) , x 1 ) + ( h 2 ( t ) , x 2 ) .

Then

φ ( u ) = φ ( u 1 , u 2 ) = t = 1 T [ Φ 1 ( Δ u 1 ( t ) ) + Φ 2 ( Δ u 2 ( t ) ) + F ( t , u 1 ( t ) , u 2 ( t ) ) + ( h 1 ( t ) , u 1 ( t ) ) + ( h 2 ( t ) , u 2 ( t ) ) ] .
(2.8)

It follows from (A0), (F1), and Lemma 2.4 that

φ ( u ) , v = φ ( u 1 , u 2 ) , ( v 1 , v 2 ) = t = 1 T [ ( ϕ 1 ( Δ u 1 ( t ) ) , Δ v 1 ( t ) ) + ( ϕ 2 ( Δ u 2 ( t ) ) , Δ v 2 ( t ) ) + ( u 1 F ( t , u 1 ( t ) , u 2 ( t ) ) , v 1 ( t ) ) + ( u 2 F ( t , u 1 ( t ) , u 2 ( t ) ) , v 2 ( t ) ) + ( h 1 ( t ) , v 1 ( t ) ) + ( h 2 ( t ) , v 2 ( t ) ) ] , u , v H .
(2.9)

By Lemma 2.3, it is easy to see that the critical points of φ in are periodic solutions of system (1.1).

Next, we recall a definition. Let G be a discrete subgroup of a Banach space X and let π:XX/G be the canonical surjection. A subset A of X is G-invariant if π 1 (π(A))=A. A function f defined on X is G-invariant if f(u+g)=f(u) for every uX and every gG (see [18]).

Definition 2.1 (see [18], Definition 4.2)

A G-invariant differentiable functional φ:XR satisfies the (PS) G condition, if for every sequence { u k } in X such that φ( u k ) is bounded and φ ( u k )0, the sequence {π( u k )} contains a convergent subsequence.

We will use the following two lemmas to obtain the critical points of φ.

Lemma 2.5 (see [18], Theorem 4.12)

Let φ C 1 (x,R) be a G-invariant functional satisfying the (PS) G condition. If φ is bounded from below and if the dimension N of the space generated by G is finite, then φ has at least N+1 critical orbits.

Lemma 2.6 (see [19])

Let X be a Banach space and have a decomposition: X=Y+Z where Y and Z are two subspaces of X with dimY<+. Let V be a finite-dimensional, compact C 2 -manifold without boundary. Let f:X×VR be a C 1 -function and satisfy the (PS) condition. Suppose that f satisfies

inf u Z × V f(u)a, sup u S × V f(u)b<a,

where S=D, D={uY|uR}, R, a, and b are constants. Then the function f has at least cuplength(V)+1 critical points.

Let

u ˆ m (t)= P m u ¯ m + Q m u ¯ m + u ˜ m ,m=1,2,

where

P 1 u ¯ 1 = k = r 1 + 1 N ( u ¯ 1 , e i k ) e i k , Q 1 u ¯ 1 = k = 1 r 1 [ ( u ¯ 1 , e i k ) m i k T i k ] e i k , P 2 u ¯ 2 = s = r 2 + 1 N ( u ¯ 2 , e j s ) e j s , Q 2 u ¯ 2 = s = 1 r 2 [ ( u ¯ 2 , e j s ) m j s T j s ] e j s ,

and m i k , m j s are the unique integers such that

0 ( u ¯ 1 , e i k ) m i k T i k < T i k , 1 k r 1 , 0 ( u ¯ 2 , e j s ) m j s T j s < T j s , 1 s r 2 .

Let

G = { g = ( g 1 g 2 ) R N × R N | ( g 1 g 2 ) = ( k = 1 r 1 m i k T i k e i k s = 1 r 2 m j s T j s e j s ) , ( g 1 g 2 ) m i k  and  m j s  are integers , 1 k r 1 , 1 s r 2 } .
(2.10)

Let Z= H ˜ , Y= S 1 × S 2 , X=Y+Z, and V is the quotient space ( R 1 × R 2 )/G which is isomorphic to the torus T r 1 + r 2 . Now define Ψ:X× T r 1 + r 2 R by

Ψ ( ( y + z ( t ) , v ) ) =φ ( y + v + z ( t ) ) ,(y,z,v)Y×Z× T r 1 + r 2 ,
(2.11)

that is,

Ψ ( ( y + z ( t ) , v ) ) =φ ( y 1 + v 1 + z 1 ( t ) , y 2 + v 2 + z 2 ( t ) ) ,
(2.12)

where

y = ( y 1 , y 2 ) τ Y , v = ( v 1 , v 2 ) τ V , z = z ( t ) = ( z 1 ( t ) , z 2 ( t ) ) τ Z , y + v + z ( t ) = ( y 1 + v 1 + z 1 ( t ) , y 2 + v 2 + z 2 ( t ) ) τ .

It is easy to verify that Ψ is continuously differentiable and that

Ψ ( ( y [ 1 ] + z [ 1 ] ( t ) , v [ 1 ] ) ) , ( y [ 2 ] + z [ 2 ] ( t ) , v [ 2 ] ) = φ ( y [ 1 ] + v [ 1 ] + z [ 1 ] ( t ) ) , y [ 2 ] + v [ 2 ] + z [ 2 ] ( t ) = φ ( y 1 [ 1 ] + v 1 [ 1 ] + z 1 [ 1 ] ( t ) , y 2 [ 1 ] + v 2 [ 1 ] + z 2 [ 1 ] ( t ) ) , ( y 1 [ 2 ] + v 1 [ 2 ] + z 1 [ 2 ] ( t ) , y 2 [ 2 ] + v 2 [ 2 ] + z 2 [ 2 ] ( t ) ) , ( y [ m ] , z [ m ] , v [ m ] ) Y × Z × T r 1 + r 2 , m = 1 , 2 .
(2.13)

Then (F2) implies that

F(t+T, x 1 + g 1 , x 2 + g 2 )=F(t, x 1 , x 2 ),tZ and gG.

Hence, we have

F ( t , u 1 ( t ) , u 2 ( t ) ) = F ( t , u ˆ 1 ( t ) + k = 1 r 1 m i k T i k e i k , u ˆ 2 ( t ) + s = 1 r 2 m j s T j s e j s ) = F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) ,
(2.14)
F ( t , u 1 ( t ) , u 2 ( t ) ) = F ( t , u ˆ 1 ( t ) + k = 1 r 1 m i k T i k e i k , u ˆ 2 ( t ) + s = 1 r 2 m j s T j s e j s ) = F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) )
(2.15)

and, by (), we have

t = 1 T ( h 1 ( t ) , u 1 ( t ) ) = t = 1 T ( h 1 ( t ) , u ˆ 1 ( t ) + k = 1 r 1 m i k T i k e i k ) = t = 1 T ( h 1 ( t ) , u ˆ 1 ( t ) ) ,
(2.16)
t = 1 T ( h 2 ( t ) , u 2 ( t ) ) = t = 1 T ( h 2 ( t ) , u ˆ 2 ( t ) + k = 1 r 1 m i k T i k e i k ) = t = 1 T ( h 2 ( t ) , u ˆ 2 ( t ) ) .
(2.17)

Hence φ(u)=φ( u ˆ ) and φ (u)= φ ( u ˆ ).

3 Proofs

For the sake of convenience, we denote by C i j and D i j , i=1,2, j=0,1,,9 below the various positive constants, by C i j (ε) and D i j (ε), i=1,2, j=0,1,,9 below the various positive constants depending on ε and

M 11 = t = 1 T f 1 ( t ) , M 12 = t = 1 T g 1 ( t ) , M 13 = ( k = 1 r 1 T i k 2 ) 1 / 2 , M 14 = t = 1 T | h 1 ( t ) | , M 15 = t = 1 T b 1 ( t ) , M 21 = t = 1 T f 2 ( t ) , M 22 = t = 1 T g 2 ( t ) , M 23 = ( s = 1 r 2 T j s 2 ) 1 / 2 , M 24 = t = 1 T | h 2 ( t ) | , M 25 = t = 1 T b 2 ( t ) .

Proof of Theorem 1.1 It follows from (F4) that there exist a 1 > C ( p ) p γ 1 and a 2 > C ( q ) q γ 3 such that

lim | x 1 | + | x 2 | F ( t , x 1 , x 2 ) w 1 p ( | x 1 | ) + w 2 q ( | x 2 | ) >max { c 10 p M 11 p a 1 p / p C ( p ) p , c 20 q M 21 q a 2 q / q C ( q ) q } ,
(3.1)

for ( x 1 , x 2 ) S 1 × S 2 . It follows from (A3), (F3), Lemma 2.1, and Lemma 2.2 that

t = 1 T | F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) | t = 1 T | F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) F ( t , P 1 u ¯ 1 , u ˆ 2 ( t ) ) | + t = 1 T | F ( t , P 1 u ¯ 1 , u ˆ 2 ( t ) ) F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) | t = 1 T | 0 1 ( x 1 F ( t , P 1 u ¯ 1 + s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) , u ˆ 2 ( t ) ) , Q 1 u ¯ 1 + u ˜ 1 ( t ) ) d s | + t = 1 T | 0 1 ( x 2 F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 + s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) ) , Q 2 u ¯ 2 + u ˜ 2 ( t ) ) d s | ( | Q 1 u ¯ 1 | + u ˜ 1 ) t = 1 T 0 1 | x 1 F ( t , P 1 u ¯ 1 + s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) , u ˆ 2 ( t ) ) | d s + ( | Q 2 u ¯ 2 | + u ˜ 2 ) t = 1 T 0 1 | x 2 F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 + s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) ) | d s ( M 13 + u ˜ 1 ) t = 1 T 0 1 [ f 1 ( t ) w 1 ( | P 1 u ¯ 1 + s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) | ) + g 1 ( t ) ] d s + ( M 23 + u ˜ 2 ) t = 1 T 0 1 [ f 2 ( t ) w 2 ( | P 2 u ¯ 2 + s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) | ) + g 2 ( t ) ] d s ( M 13 + u ˜ 1 ) t = 1 T 0 1 [ c 10 f 1 ( t ) w 1 ( | P 1 u ¯ 1 | ) + c 10 f 1 ( t ) w 1 ( s | Q 1 u ¯ 1 + u ˜ 1 ( t ) | ) ] d s + ( M 23 + u ˜ 2 ) t = 1 T 0 1 [ c 20 f 2 ( t ) w 2 ( | P 2 u ¯ 2 | ) + c 20 f 2 ( t ) w 2 ( s | Q 2 u ¯ 2 + u ˜ 2 ( t ) | ) ] d s + ( M 13 + u ˜ 1 ) t = 1 T 0 1 g 1 ( t ) d s + ( M 23 + u ˜ 2 ) t = 1 T 0 1 g 2 ( t ) d s ( M 13 + u ˜ 1 ) w 1 ( | P 1 u ¯ 1 | ) t = 1 T c 10 f 1 ( t ) + ( M 23 + u ˜ 2 ) w 2 ( | P 2 u ¯ 2 | ) t = 1 T c 20 f 2 ( t ) + ( M 13 + u ˜ 1 ) t = 1 T 0 1 [ c 10 f 1 ( t ) k 11 | s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) | α 1 + f 1 ( t ) c 10 k 12 + g 1 ( t ) ] d s + ( M 23 + u ˜ 2 ) t = 1 T 0 1 [ c 20 f 2 ( t ) k 21 | s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) | α 2 + f 2 ( t ) c 20 k 22 + g 2 ( t ) ] d s ( M 13 + u ˜ 1 ) w 1 ( | P 1 u ¯ 1 | ) t = 1 T c 10 f 1 ( t ) + 1 + ε 1 α 1 + 1 ( M 13 + u ˜ 1 ) t = 1 T f 1 ( t ) c 10 k 11 | Q 1 u ¯ 1 | α 1 + B ( ε 1 ) α 1 + 1 ( M 13 + u ˜ 1 ) t = 1 T f 1 ( t ) c 10 k 11 | u ˜ 1 ( t ) | α 1 + ( M 13 + u ˜ 1 ) t = 1 T [ f 1 ( t ) c 10 k 12 + g 1 ( t ) ] + ( M 23 + u ˜ 2 ) w 2 ( | P 2 u ¯ 2 | ) t = 1 T c 20 f 2 ( t ) + 1 + ε 2 α 2 + 1 ( M 23 + u ˜ 2 ) t = 1 T f 2 ( t ) c 20 k 21 | Q 2 u ¯ 2 | α 2 + B ( ε 2 ) α 2 + 1 ( M 23 + u ˜ 2 ) t = 1 T f 2 ( t ) c 20 k 21 | u ˜ 2 ( t ) | α 2 + ( M 23 + u ˜ 2 ) t = 1 T [ f 2 ( t ) c 20 k 22 + g 2 ( t ) ] M 11 c 10 w 1 ( | P 1 u ¯ 1 | ) u ˜ 1 + M 11 M 13 c 10 w 1 ( | P 1 u ¯ 1 | ) + ( 1 + ε 1 ) M 13 α 1 + 1 c 10 k 11 M 11 α 1 + 1 + ( 1 + ε 1 ) M 13 α 1 c 10 k 11 M 11 α 1 + 1 u ˜ 1 + B ( ε 1 ) M 13 c 10 k 11 M 11 α 1 + 1 u ˜ 1 α 1 + B ( ε 1 ) c 10 k 11 M 11 α 1 + 1 u ˜ 1 α 1 + 1 + M 13 t = 1 T [ f 1 ( t ) c 10 k 12 + g 1 ( t ) ] + u ˜ 1 t = 1 T [ f 1 ( t ) c 10 k 12 + g 1 ( t ) ] + M 21 c 20 w 2 ( | P 2 u ¯ 2 | ) u ˜ 2 + M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 | ) + ( 1 + ε 2 ) M 23 α 2 + 1 c 20 k 21 M 21 α 2 + 1 + ( 1 + ε 2 ) M 23 α 2 c 20 k 21 M 21 α 2 + 1 u ˜ 2 + B ( ε 2 ) M 23 c 20 k 21 M 21 α 2 + 1 u ˜ 2 α 2 + B ( ε 2 ) c 20 k 21 M 21 α 2 + 1 u ˜ 2 α 2 + 1 + M 23 t = 1 T [ c 20 f 2 ( t ) k 22 + g 2 ( t ) ] + u ˜ 2 t = 1 T [ c 20 f 2 ( t ) k 22 + g 2 ( t ) ] 1 p a 1 ( 1 C ( p ) ) p / p u ˜ 1 p + M 11 p c 10 p a 1 p / p C ( p ) p w 1 p ( | P 1 u ¯ 1 | ) + C 11 ( ε 1 ) u ˜ 1 α 1 + 1 + C 12 ( ε 1 ) u ˜ 1 α 1 + C 13 ( ε 1 ) u ˜ 1 + C 14 + 1 q a 2 ( 1 C ( q ) ) q / q u ˜ 2 q + M 21 q c 20 q a 2 q / q C ( q ) q w 2 q ( | P 2 u ¯ 2 | ) + C 21 ( ε 2 ) u ˜ 2 α 2 + 1 + C 22 ( ε 2 ) u ˜ 2 α 2 + C 23 ( ε 2 ) u ˜ 2 + C 24 + M 11 M 13 c 10 w 1 ( | P 1 u ¯ 1 | ) + M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 | ) C ( p ) p a 1 t = 1 T | Δ u 1 ( t ) | p + M 11 p c 10 p a 1 p / p C ( p ) p w 1 p ( | P 1 u ¯ 1 | ) + C 11 ( ε 1 ) [ C ( p ) ] α 1 + 1 ( t = 1 T | Δ u 1 ( t ) | p ) α 1 + 1 p + C 14 + C 13 ( ε 1 ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 p + C 12 ( ε 1 ) [ C ( p ) ] α 1 ( t = 1 T | Δ u 1 ( t ) | p ) α 1 p + C ( q ) q a 2 t = 1 T | Δ u 2 ( t ) | q + M 21 q c 20 q a 2 q / q C ( q ) q w 2 q ( | P 2 u ¯ 2 | ) + C 21 ( ε 2 ) [ C ( q ) ] α 2 + 1 ( t = 1 T | Δ u 2 ( t ) | q ) α 2 + 1 q + C 24 + C 23 ( ε 2 ) C ( q ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 q + C 22 ( ε 2 ) [ C ( q ) ] α 2 ( t = 1 T | Δ u 2 ( t ) | q ) α 2 q + M 11 M 13 c 10 w 1 ( | P 1 u ¯ 1 | ) + M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 | ) .
(3.2)

By (A1), (3.2), and Lemma 2.1, we have

φ ( u ) = φ ( u ˆ 1 , u ˆ 2 ) = t = 1 T [ Φ 1 ( Δ u 1 ( t ) ) + Φ 2 ( Δ u 2 ( t ) ) + F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) + ( h 1 ( t ) , u ˆ 1 ( t ) ) + ( h 2 ( t ) , u ˆ 2 ( t ) ) ] = t = 1 T [ Φ 1 ( Δ u 1 ( t ) ) + Φ 2 ( Δ u 2 ( t ) ) + F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) + F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) + ( h 1 ( t ) , u ˆ 1 ( t ) ) + ( h 2 ( t ) , u ˆ 2 ( t ) ) ] t = 1 T ( γ 1 | Δ u 1 ( t ) | p + γ 3 | Δ u 2 ( t ) | q γ 2 | Δ u 1 ( t ) | β 1 γ 4 | Δ u 2 ( t ) | β 2 ) C ( p ) p a 1 t = 1 T | Δ u 1 ( t ) | p M 11 p c 10 p a 1 p / p C ( p ) p w 1 p ( | P 1 u ¯ 1 | ) C 11 ( ε 1 ) [ C ( p ) ] α 1 + 1 ( t = 1 T | Δ u 1 ( t ) | p ) α 1 + 1 p C 14 u ˜ 1 t = 1 T | h 1 ( t ) | C 13 ( ε 1 ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 p C 12 ( ε 1 ) [ C ( p ) ] α 1 ( t = 1 T | Δ u 1 ( t ) | p ) α 1 p C ( q ) q a 2 t = 1 T | Δ u 2 ( t ) | q M 21 q c 20 q a 2 q / q C ( q ) q w 2 q ( | P 2 u ¯ 2 | ) C 21 ( ε 2 ) [ C ( q ) ] α 2 + 1 ( t = 1 T | Δ u 2 ( t ) | q ) α 2 + 1 q C 24 u ˜ 2 t = 1 T | h 2 ( t ) | C 23 ( ε 2 ) C ( q ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 q C 22 ( ε 2 ) [ C ( q ) ] α 2 ( t = 1 T | Δ u 2 ( t ) | q ) α 2 q M 11 M 13 c 10 w 1 ( | P 1 u ¯ 1 | ) M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 | ) ( γ 1 C ( p ) p a 1 ) t = 1 T | Δ u 1 ( t ) | p M 11 M 13 c 10 w 1 ( | P 1 u ¯ 1 | ) C 11 ( ε 1 ) [ C ( p ) ] α 1 + 1 ( t = 1 T | Δ u 1 ( t ) | p ) α 1 + 1 p C 12 ( ε 1 ) [ C ( p ) ] α 1 ( t = 1 T | Δ u 1 ( t ) | p ) α 1 p C 13 ( ε 1 ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 p γ 2 T 1 β 1 p ( t = 1 T | Δ u 1 ( t ) | p ) β 1 p C 14 + ( γ 3 C ( q ) q a 2 ) t = 1 T | Δ u 2 ( t ) | q M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 | ) C 21 ( ε 2 ) [ C ( q ) ] α 2 + 1 ( t = 1 T | Δ u 2 ( t ) | q ) α 2 + 1 q C 22 ( ε 2 ) [ C ( q ) ] α 2 ( t = 1 T | Δ u 2 ( t ) | q ) α 2 q C 23 ( ε 2 ) C ( q ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 q γ 4 T 1 β 2 q ( t = 1 T | Δ u 2 ( t ) | q ) β 2 q C 24 + [ w 1 p ( | P 1 u ¯ 1 | ) + w 2 q ( | P 2 u ¯ 2 | ) ] [ F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) w 1 p ( | P 1 u ¯ 1 | ) + w 2 q ( | P 2 u ¯ 2 | ) max { M 11 p c 10 p a 1 p / p C ( p ) p , M 21 q c 20 q a 2 q / q C ( q ) q } ] C ( p ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 p t = 1 T | h 1 ( t ) | C ( q ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 q t = 1 T | h 2 ( t ) | .
(3.3)

It follows from (3.1), (3.3), a 1 > C ( p ) p γ 1 , and a 2 > C ( q ) q γ 3 that φ is bounded from below. Let G be a discrete subgroup of defined by (2.10) and let π:HH/G be the canonical surjection. By (2.14)-(2.17), it is easy to verify that φ is G-invariant. In what follows, we show that the functional φ satisfies the (PS) G condition, that is, for every sequence { u m } in such that {φ( u n )} is bounded and φ ( u n )0, the sequence {π( u n )} has a convergent subsequence. In fact, the boundedness of φ( u n ), (3.1), (3.3), and the facts that a 1 > C ( p ) p γ 1 and a 2 > C ( q ) q γ 3 imply that (P u ¯ n ) and t = 1 T | Δ u n ( t ) | 2 are bounded. Furthermore, by Lemma 2.1, we know that ( u ˜ n ) is also bounded. Hence { u ˆ n } is bounded in . Since dimH<, we know that { u ˆ n } has a convergent subsequence. Since π( u n )=π( u ˆ n ), {π( u n )} also has a convergent subsequence. Thus, by Lemma 2.5, we know that φ has r 1 + r 2 +1 critical orbits. Hence, system (1.1) has at least r 1 + r 2 +1 geometrically distinct solutions in . The proof is complete. □

Proof of Theorem 1.2 First, we prove that Ψ defined by (2.11) satisfies the (PS) condition. Assume that { ( y [ n ] + z [ n ] , v [ n ] ) } n = 1 X× T r 1 + r 2 is (PS) sequence for Ψ, that is, {Ψ(( y [ n ] + z [ n ] , v [ n ] ))} is bounded and Ψ (( y [ n ] + z [ n ] , v [ n ] ))0, where y [ n ] = ( y 1 [ n ] , y 2 [ n ] ) τ Y, z [ n ] = z [ n ] (t)= ( z 1 [ n ] ( t ) , z 2 [ n ] ( t ) ) τ Z, v [ n ] = ( v 1 [ n ] , v 2 [ n ] ) τ T r 1 + r 2 for n=1,2, . Let

u [ n ] = y [ n ] + v [ n ] + z [ n ] = ( y 1 [ n ] + v 1 [ n ] + z 1 [ n ] , y 2 [ n ] + v 2 [ n ] + z 2 [ n ] ) τ ,n=1,2.

Then it is easy to see that

y m [ n ] = P m u ¯ m [ n ] , v m [ n ] = Q m u ¯ m [ n ] , z m [ n ] (t)= u ˜ m [ n ] (t),m=1,2,n=1,2.

By (2.12) and (2.13), we find that {φ( u 1 [ n ] , u 2 [ n ] )} is bounded and φ ( u 1 [ n ] , u 2 [ n ] )0. Then there exists a positive constant D 0 such that

| φ ( u 1 [ n ] , u 2 [ n ] ) | D 0 , φ ( u 1 [ n ] , u 2 [ n ] ) D 0 ,nR.
(3.4)

By (F4)′, there exist a 3 >C( p ) and a 4 >C( q ) such that

lim | x 1 | + | x 2 | F ( t , x 1 , x 2 ) w 1 p ( | x 1 | ) + w 2 q ( | x 2 | ) < max { [ a 3 M 11 c 10 ] p p [ 1 + p ζ 1 d 1 p 1 + 1 + q ζ 3 d 3 q 1 + 1 ] , [ a 4 M 21 c 20 ] q q [ 1 + p ζ 1 d 1 p 1 + 1 + q ζ 3 d 3 q 1 + 1 ] } .
(3.5)

It follows from (F3), Lemma 2.1, and Young’s inequality that, for all ( u 1 , u 2 )H,

| t = 1 T ( x 1 F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) , u ˜ 1 ( t ) ) + t = 1 T ( x 2 F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) , u ˜ 2 ( t ) ) | | t = 1 T ( x 1 F ( t , P 1 u ¯ 1 + Q 1 u ¯ 1 + u ˜ 1 ( t ) , u ˆ 2 ( t ) ) , u ˜ 1 ( t ) ) | + | t = 1 T ( x 2 F ( t , u ˆ 1 ( t ) , P 2 u ¯ 2 + Q 2 u ¯ 2 + u ˜ 2 ( t ) ) , u ˜ 2 ( t ) ) | t = 1 T f 1 ( t ) w 1 ( | P 1 u ¯ 1 + Q 1 u ¯ 1 + u ˜ 1 ( t ) | ) | u ˜ 1 ( t ) | + t = 1 T g 1 ( t ) | u ˜ 1 ( t ) | + t = 1 T f 2 ( t ) w 2 ( | P 2 u ¯ 2 + Q 2 u ¯ 2 + u ˜ 2 ( t ) | ) | u ˜ 2 ( t ) | + t = 1 T g 2 ( t ) | u ˜ 2 ( t ) | u ˜ 1 c 10 ( w 1 ( | P 1 u ¯ 1 | ) + w 1 ( | Q 1 u ¯ 1 + u ˜ 1 | ) ) t = 1 T f 1 ( t ) + u ˜ 1 t = 1 T g 1 ( t ) + u ˜ 2 c 20 ( w 2 ( | P 2 u ¯ 2 | ) + w 2 ( | Q 2 u ¯ 2 + u ˜ 2 | ) ) t = 1 T f 2 ( t ) + u ˜ 2 t = 1 T g 2 ( t ) 1 p a 3 p u ˜ 1 p + [ a 3 M 11 c 10 ] p p w 1 p ( | P 1 u ¯ 1 | ) + u ˜ 1 c 10 ( k 11 | Q 1 u ¯ 1 + u ˜ 1 ( t ) | α 1 + k 12 ) t = 1 T f 1 ( t ) + 1 q a 4 q u ˜ 2 q + [ a 4 M 21 c 20 ] q q w 2 q ( | P 2 u ¯ 2 | ) + u ˜ 2 c 20 ( k 21 | Q 2 u ¯ 2 + u ˜ 2 ( t ) | α 2 + k 22 ) t = 1 T f 2 ( t ) + u ˜ 1 t = 1 T g 1 ( t ) + u ˜ 2 t = 1 T g 2 ( t ) 1 p a 3 p u ˜ 1 p + [ a 3 M 11 c 10 ] p p w 1 p ( | P 1 u ¯ 1 | ) + M 11 c 10 k 11 ( 1 + ε 1 ) | Q 1 u ¯ 1 | α 1 u ˜ 1 + u ˜ 1 α 1 + 1 M 11 c 10 k 11 B 1 ( ε 1 ) + u ˜ 1 M 11 c 10 k 12 + 1 q a 4 q u ˜ 2 q + [ a 4 M 21 c 20 ] q q w 2 q ( | P 2 u ¯ 2 | ) + M 21 c 20 k 21 ( 1 + ε 2 ) | Q 2 u ¯ 2 | α 2 u ˜ 2 + u ˜ 2 α 2 + 1 M 21 c 20 k 21 B 2 ( ε 2 ) + u ˜ 2 M 21 c 20 k 22 [ C ( p ) ] p p a 3 p t = 1 T | Δ u 1 ( t ) | p + [ a 3 M 11 c 10 ] p p w 1 p ( | P 1 u ¯ 1 | ) + C 15 ( ε 1 ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 / p + C 16 ( ε 1 ) ( t = 1 T | Δ u 1 ( t ) | p ) ( α 1 + 1 ) / p + [ C ( q ) ] q q a 4 q t = 1 T | Δ u 2 ( t ) | q + [ a 4 M 21 c 20 ] q q w 2 q ( | P 2 u ¯ 2 | ) + C 25 ( ε 2 ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 / q + C 26 ( ε 2 ) ( t = 1 T | Δ u 2 ( t ) | q ) ( α 2 + 1 ) / q .
(3.6)

Hence, by (A2) and (3.6), we have

D 0 ( u ˜ 1 [ n ] p + u ˜ 2 [ n ] q ) | φ ( u 1 [ n ] , u 2 [ n ] ) , ( u ˜ 1 [ n ] , u ˜ 2 [ n ] ) | = | t = 1 T [ ( ϕ 1 ( Δ u 1 [ n ] ( t ) ) , Δ u 1 [ n ] ( t ) ) + ( ϕ 2 ( Δ u 2 [ n ] ( t ) ) , Δ u 2 [ n ] ( t ) ) + ( x 1 F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) , u ˜ 1 [ n ] ( t ) ) + ( x 2 F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) , u ˜ 2 [ n ] ( t ) ) + ( h 1 ( t ) , u ˜ 1 [ n ] ( t ) ) + ( h 2 ( t ) , u ˜ 2 [ n ] ( t ) ) ] | d 1 t = 1 T | Δ u 1 [ n ] ( t ) | p d 2 t = 1 T | Δ u 1 [ n ] ( t ) | β 3 + d 3 t = 1 T | Δ u 2 [ n ] ( t ) | p d 4 t = 1 T | Δ u 2 [ n ] ( t ) | β 4 [ C ( p ) ] p p a 3 p t = 1 T | Δ u 1 [ n ] ( t ) | p [ a 3 M 11 c 10 ] p p w 1 p ( | P 1 u ¯ 1 [ n ] | ) C 15 ( ε 1 ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p C 16 ( ε 1 ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) ( α 1 + 1 ) / p [ C ( q ) ] q q a 4 q t = 1 T | Δ u 2 [ n ] ( t ) | q [ a 4 M 21 c 20 ] q q w 2 q ( | P 2 u ¯ 2 [ n ] | ) C 25 ( ε 2 ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q C 26 ( ε 2 ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) ( α 2 + 1 ) / q M 14 C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p M 24 C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q ( d 1 [ C ( p ) ] p p a 3 p ) t = 1 T | Δ u 1 [ n ] ( t ) | p d 2 T 1 β 3 p ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) β 3 / p + ( d 3 [ C ( q ) ] q q a 4 q ) t = 1 T | Δ u 2 [ n ] ( t ) | p d 4 T 1 β 4 q ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) β 4 / q [ a 3 M 11 c 10 ] p p w 1 p ( | P 1 u ¯ 1 [ n ] | ) C 15 ( ε 1 ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p C 16 ( ε 1 ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) ( α 1 + 1 ) / p [ a 4 M 21 c 20 ] q q w 2 q ( | P 2 u ¯ 2 [ n ] | ) C 25 ( ε 2 ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q C 26 ( ε 2 ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) ( α 2 + 1 ) / q M 14 C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p M 24 C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q
(3.7)

for all nR. Moreover, by Lemma 2.1, we have

D 0 ( u ˜ 1 [ n ] p + u ˜ 2 [ n ] q ) D 0 ( C ( p , p ) + 1 ) 1 / p ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p + D 0 ( C ( q , q ) + 1 ) 1 / q ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q .
(3.8)

Then (3.7) and (3.8) imply that

[ a 3 M 11 c 10 ] p p w 1 p ( | P 1 u ¯ 1 [ n ] | ) + [ a 4 M 21 c 20 ] q q w 2 q ( | P 2 u ¯ 2 [ n ] | ) ( d 1 1 p ) t = 1 T | Δ u 1 [ n ] ( t ) | p + ( d 3 1 q ) t = 1 T | Δ u 2 [ n ] ( t ) | q + D 1 ,
(3.9)

where

D 1 = min s [ 0 , + ) { ( 1 p [ C ( p ) ] p p a 3 p ) s p d 2 T 1 β 3 p s β 3 C 16 ( ε 1 ) s α 1 + 1 ( C 15 ( ε 1 ) + M 14 C ( p ) ) s } + min s [ 0 , + ) { ( 1 q [ C ( q ) ] q q a 4 q ) s p d 4 T 1 β 4 q s β 4 C 26 ( ε 2 ) s α 2 + 1 ( C 25 ( ε 2 ) + M 24 C ( q ) ) s } .

Note that a 3 >C( p ), a 4 >C( q ), α 1 , β 3 [0,p), and α 2 , β 3 [0,q). Hence (3.9) implies that there exist positive constants D 2 and D 3 such that

t = 1 T | Δ u 1 [ n ] ( t ) | p p [ a 3 M 11 c 10 ] p ( d 1 p 1 ) p w 1 p ( | P 1 u ¯ 1 [ n ] | ) + p [ a 4 M 21 c 20 ] q ( d 1 p 1 ) q w 2 q ( | P 2 u ¯ 2 [ n ] | ) + D 2 ,
(3.10)
t = 1 T | Δ u 2 [ n ] ( t ) | q q [ a 3 M 11 c 10 ] p ( d 3 q 1 ) p w 1 p ( P 1 u ¯ 1 [ n ] ) + q [ a 4 M 21 c 20 ] q ( d 3 q 1 ) q w 2 q ( | P 2 u ¯ 2 [ n ] | ) + D 3 .
(3.11)

Then it is easy to see that < D 1 <0. By (3.2), we know that

t = 1 T | F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) | C ( p ) p a 3 t = 1 T | Δ u 1 [ n ] ( t ) | p + M 11 p c 10 p a 3 p / p C ( p ) p w 1 p ( | P 1 u ¯ 1 [ n ] | ) + C 14 + C 11 ( ε 1 ) [ C ( p ) ] α 1 + 1 ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) α 1 + 1 p + M 11 M 13 c 10 w 1 ( | P 1 u ¯ 1 [ n ] | ) + C 12 ( ε 1 ) [ C ( p ) ] α 1 ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) α 1 p + C 13 ( ε 1 ) C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 p + C ( q ) q a 4 t = 1 T | Δ u 2 [ n ] ( t ) | q + M 21 q c 20 q a 4 q / q C ( q ) q w 2 q ( | P 2 u ¯ 2 [ n ] | ) + C 24 + M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 [ n ] | ) + C 21 ( ε 2 ) [ C ( q ) ] α 2 + 1 ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) α 2 + 1 q + C 23 ( ε 2 ) C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 q + C 22 ( ε 2 ) [ C ( q ) ] α 2 ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) α 2 q .
(3.12)

By (A1)′, (3.10), (3.11), (3.12), and Lemma 2.1, we have

φ ( u [ n ] ) = φ ( u 1 [ n ] , u 2 [ n ] ) = t = 1 T [ Φ 1 ( Δ u 1 [ n ] ( t ) ) + Φ 2 ( Δ u 2 [ n ] ( t ) ) + F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) + ( h 1 ( t ) , u 1 [ n ] ( t ) ) + ( h 2 ( t ) , u 2 [ n ] ( t ) ) ] = t = 1 T [ Φ 1 ( Δ u 1 [ n ] ( t ) ) + Φ 2 ( Δ u 2 [ n ] ( t ) ) + F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) + F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) + ( h 1 ( t ) , u 1 [ n ] ( t ) ) + ( h 2 ( t ) , u 2 [ n ] ( t ) ) ] t = 1 T ( ζ 1 | Δ u 1 [ n ] ( t ) | p + ζ 3 | Δ u 2 [ n ] ( t ) | q + ζ 2 | Δ u 1 [ n ] ( t ) | θ 1 + ζ 4 | Δ u 2 [ n ] ( t ) | θ 2 ) + C ( p ) p a 3 t = 1 T | Δ u 1 [ n ] ( t ) | p + M 11 p c 10 p a 3 p / p C ( p ) p w 1 p ( | P 1 u ¯ 1 [ n ] | ) + M 11 M 13 c 10 w 1 ( | P 1 u ¯ 1 [ n ] | ) + C 11 ( ε 1 ) [ C ( p ) ] α 1 + 1 ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) α 1 + 1 p + C 12 ( ε 1 ) [ C ( p ) ] α 1 ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) α 1 p + C 13 ( ε 1 ) C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 p + C 14 + u ˜ 1 [ n ] t = 1 T | h 1 ( t ) | + C ( q ) q a 4 t = 1 T | Δ u 2 [ n ] ( t ) | q + M 21 q c 20 q a 4 q / q C ( q ) q w 2 q ( | P 2 u ¯ 2 [ n ] | ) + M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 [ n ] | ) + C 21 ( ε 2 ) [ C ( q ) ] α 2 + 1 ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) α 2 + 1 q + C 22 ( ε 2 ) [ C ( q ) ] α 2 ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) α 2 q + C 23 ( ε 2 ) C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 q + C 24 + u ˜ 2 [ n ] t = 1 T | h 2 ( t ) | + t = 1 T F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) ( C ( p ) p a 3 + ζ 1 ) ( p [ a 3 M 11 c 10 ] p ( d 1 p 1 ) p w 1 p ( | P 1 u ¯ 1 [ n ] | ) + p [ a 4 M 21 c 20 ] q ( d 1 p 1 ) q w 2 q ( | P 2 u ¯ 2 [ n ] | ) ) + M 11 p c 10 p a 3 p / p C ( p ) p w 1 p ( | P 1 u ¯ 1 [ n ] | ) + M 11 M 13 c 10 w 1 ( | P 1 u ¯ 1 [ n ] | ) + M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 [ n ] | ) + C 11 ( ε 1 ) [ C ( p ) ] α 1 + 1 ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) α 1 + 1 p + C 13 ( ε 1 ) C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 p + ζ 2 T 1 θ 1 p ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) θ 1 p + D 2 ( C ( p ) p a 3 + ζ 1 ) + C 14 + ( C ( q ) q a 4 + ζ 3 ) ( q [ a 3 M 11 c 10 ] p ( d 3 q 1 ) p w 1 p ( | P 1 u ¯ 1 [ n ] | ) + q [ a 4 M 21 c 20 ] q ( d 3 q 1 ) q w 2 q ( | P 2 u ¯ 2 [ n ] | ) ) + M 21 q c 20 q a 4 q / q C ( q ) q w 2 q ( | P 2 u ¯ 2 [ n ] | ) + C 22 ( ε 2 ) [ C ( q ) ] α 2 ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) α 2 q + C 21 ( ε 2 ) [ C ( q ) ] α 2 + 1 ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) α 2 + 1 q + M 21 M 23 c 20 w 2 ( | P 2 u ¯ 2 [ n ] | ) + C 23 ( ε 2 ) C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 q + ζ 4 T 1 θ 2 p ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) θ 2 q + C 24 + C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 p t = 1 T | h 1 ( t ) | + C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 q t = 1 T | h 2 ( t ) | + t = 1 T F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) + D 3 ( C ( q ) q a 4 + ζ 3 ) [ a 3 M 11 c 10 ] p p × [ C ( p ) ( d 1 p 1 ) a 3 + p ζ 1 d 1 p 1 + C ( p ) a 3 + C ( q ) ( d 3 q 1 ) a 4 + q ζ 3 d 3 q 1 ] w 1 p ( | P 1 u ¯ 1 [ n ] | ) + [ a 4 M 21 c 20 ] q q × [ C ( p ) ( d 1 p 1 ) a 3 + p ζ 1 d 1 p 1 + C ( q ) a 4 + C ( q ) ( d 3 q 1 ) a 4 + q ζ 3 d 3 q 1 ] w 2 q ( | P 2 u ¯ 2 [ n ] | ) + C 17 ( ε ) w 1 p ( α 1 + 1 ) p ( | P 1 u ¯ 1 [ n ] | ) + C 27 ( ε ) w 2 q ( α 2 + 1 ) q ( | P 2 u ¯ 2 [ n ] | ) + C 18 ( ε ) w 1 p α 1 p ( | P 1 u ¯ 1 [ n ] | ) + C 28 ( ε ) w 2 q α 2 q ( | P 2 u ¯ 2 [ n ] | ) + C 19 w 1 p θ 1 p ( | P 1 u ¯ 1 [ n ] | ) + C 29 w 2 q θ 2 q ( | P 2 u ¯ 2 [ n ] | ) + D 10 w 1 p p ( | P 1 u ¯ 1 [ n ] | ) + D 20 w 2 q q ( | P 2 u ¯ 2 [ n ] | ) + t = 1 T F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) [ a 3 M 11 c 10 ] p p [ 1 d 1 p 1 + p ζ 1 d 1 p 1 + 1 + 1 d 3 q 1 + q ζ 3 d 3 q 1 ] w 1 p ( | P 1 u ¯ 1 [ n ] | ) + [ a 4 M 21 c 20 ] q q [ 1 d 1 p 1 + p ζ 1 d 1 p 1 + 1 + 1 d 3 q 1 + q ζ 3 d 3 q 1 ] w 2 q ( | P 2 u ¯ 2 [ n ] | ) + C 17 ( ε ) w 1 p ( α 1 + 1 ) p ( | P 1 u ¯ 1 [ n ] | ) + C 27 ( ε ) w 2 q ( α 2 + 1 ) q ( | P 2 u ¯ 2 [ n ] | ) + C 18 ( ε ) w 1 p α 1 p ( | P 1 u ¯ 1 [ n ] | ) + C 28 ( ε ) w 2 q α 2 q ( | P 2 u ¯ 2 [ n ] | ) + C 19 w 1 p θ 1 p ( | P 1 u ¯ 1 [ n ] | ) + C 29 w 2 q θ 2 q ( | P 2 u ¯ 2 [ n ] | ) + D 10 w 1 p p ( | P 1 u ¯ 1 [ n ] | ) + D 20 w 2 q q ( | P 2 u ¯ 2 [ n ] | ) + t = 1 T F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) ( w 1 p ( | P 1 u ¯ 1 [ n ] | ) + w 2 q ( | P 2 u ¯ 2 [ n ] | ) ) [ max { [ a 3 M 11 c 10 ] p p [ 1 + p ζ 1 d 1 p 1 + 1 + q ζ 3 d 3 q 1 + 1 ] , [ a 4 M 21 c 20 ] q q [ 1 + p ζ 1 d 1 p 1 + 1 + q ζ 3 d 3 q 1 + 1 ] } + t = 1 T F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) w 1 p ( | P 1 u ¯ 1 [ n ] | ) + w 2 q ( | P 2 u ¯ 2 [ n ] | ) ] + C 17 ( ε ) w 1 p ( α 1 + 1 ) p ( | P 1 u ¯ 1 [ n ] | ) + C 18 ( ε ) w 1 p α 1 p ( | P 1 u ¯ 1 [ n ] | ) + C 19 w 1 p θ 1 p ( | P 1 u ¯ 1 [ n ] | ) + C 27 ( ε ) w 2 q ( α 2 + 1 ) q ( | P 2 u ¯ 2 [ n ] | ) + C 28 ( ε ) w 2 q α 2 q ( | P 2 u ¯ 2 [ n ] | ) + C 29 w 2 q θ 2 q ( | P 2 u ¯ 2 [ n ] | ) + D 10 w 1 p p ( | P 1 u ¯ 1 [ n ] | ) + D 20 w 2 q q ( | P 2 u ¯ 2 [ n ] | ) .
(3.13)

Then (3.5) and (A3) imply that { P 1 u ¯ 1 [ n ] }, { P 2 u ¯ 2 [ n ] }, { w 1 ( P 1 u ¯ 2 [ n ] )}, and { w 2 ( P 2 u ¯ 2 [ n ] )} are bounded. Furthermore, (3.10), (3.11), and (3.8) imply that { u ˜ 1 [ n ] } and { u ˜ 2 [ n ] } are bounded. Then { u [ n ] } is bounded in . Since dimH<, { u [ n ] } has a convergent subsequence. Hence, Ψ satisfies the (PS) condition.

In order to use Lemma 2.3, next we prove the following conclusions:

  1. (i)

    inf{Ψ((z,v))|(z,v)Z× T r 1 + r 2 }>;

  2. (ii)

    Ψ((y,v)) uniformly for (y,v)Y× T r 1 + r 2 as |y|.

For (z,v)Z× T r 1 + r 2 , set u=u(t)=z(t)+v= ( z 1 ( t ) + v 1 , z 2 ( t ) + v 2 ) τ . Then z m (t)= u ˜ m (t), v m = Q m u ¯ m , and u m (t)= z m (t)+ v m , m=1,2. By (F3) and Lemma 2.1, we have

| t = 1 T [ F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , 0 , 0 ) ] | t = 1 T | F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , 0 , u 2 ( t ) ) | + t = 1 T | F ( t , 0 , u 2 ( t ) ) F ( t , 0 , 0 ) | t = 1 T | 0 1 ( x 1 F ( t , s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) , u 2 ( t ) ) , Q 1 u ¯ 1 + u ˜ 1 ( t ) ) d s | + t = 1 T | 0 1 ( x 2 F ( t , 0 , s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) ) , Q 2 u ¯ 2 + u ˜ 2 ( t ) ) d s | ( | Q 1 u ¯ 1 | + u ˜ 1 ) t = 1 T 0 1 | x 1 F ( t , s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) , u 2 ( t ) ) | d s + ( | Q 2 u ¯ 2 | + u ˜ 2 ) t = 1 T 0 1 | x 2 F ( t , 0 , s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) ) | d s ( M 13 + u ˜ 1 ) t = 1 T 0 1 [ f 1 ( t ) w 1 ( | s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) | ) + g 1 ( t ) ] d s + ( M 23 + u ˜ 2 ) t = 1 T 0 1 [ f 2 ( t ) w 2 ( | s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) | ) + g 2 ( t ) ] d s ( M 13 + u ˜ 1 ) t = 1 T 0 1 [ k 11 f 1 ( t ) | s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) | α 1 + k 12 f 1 ( t ) + g 1 ( t ) ] d s + ( M 23 + u ˜ 2 ) t = 1 T 0 1 [ k 21 f 2 ( t ) | s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) | α 2 + k 22 f 2 ( t ) + g 2 ( t ) ] d s ( M 13 + u ˜ 1 ) t = 1 T [ k 11 f 1 ( t ) | Q 1 u ¯ 1 + u ˜ 1 ( t ) | α 1 + k 12 f 1 ( t ) + g 1 ( t ) ] + ( M 23 + u ˜ 2 ) t = 1 T [ k 21 f 2 ( t ) | Q 2 u ¯ 2 + u ˜ 2 ( t ) | α 2 + k 22 f 2 ( t ) + g 2 ( t ) ] D 11 u ˜ 1 α 1 + 1 + D 21 u ˜ 2 α 2 + 1 + D 12 u ˜ 1 α 1 + D 22 u ˜ 2 α 2 + D 13 u ˜ 1 + D 23 u ˜ 2 + D 4 D 11 C ( p ) ( s = 1 T | Δ u 1 ( s ) | p ) α 1 + 1 p + D 21 C ( q ) ( s = 1 T | Δ u 2 ( s ) | q ) α 2 + 1 q + D 12 C ( p ) ( s = 1 T | Δ u 1 ( s ) | p ) α 1 p + D 22 C ( q ) ( s = 1 T | Δ u 2 ( s ) | q ) α 2 q + D 13 C ( p ) ( s = 1 T | Δ u 1 ( s ) | p ) 1 p + D 23 C ( q ) ( s = 1 T | Δ u 2 ( s ) | q ) 1 q + D 4 .
(3.14)

Then

Ψ ( ( z , v ) ) = φ ( u 1 , u 2 ) = t = 1 T [ Φ 1 ( Δ u 1 ( t ) ) + Φ 2 ( Δ u 2 ( t ) ) + F ( t , u 1 ( t ) , u 2 ( t ) ) + ( h 1 ( t ) , u 1 ( t ) ) + ( h 2 ( t ) , u 2 ( t ) ) ] = t = 1 T [ Φ 1 ( Δ u 1 ( t ) ) + Φ 2 ( Δ u 2 ( t ) ) + F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , 0 , 0 ) + F ( t , 0 , 0 ) + ( h 1 ( t ) , u 1 ( t ) ) + ( h 2 ( t ) , u 2 ( t ) ) ] t = 1 T ( γ 1 | Δ u 1 ( t ) | p + γ 3 | Δ u 2 ( t ) | q γ 2 | Δ u 1 ( t ) | β 1 γ 4 | Δ u 2 ( t ) | β 2 ) D 11 C ( p ) ( s = 1 T | Δ u 1 ( s ) | p ) α 1 + 1 p D 21 C ( q ) ( s = 1 T | Δ u 2 ( s ) | q ) α 2 + 1 q D 12 C ( p ) ( s = 1 T | Δ u 1 ( s ) | p ) α 1 p D 22 C ( q ) ( s = 1 T | Δ u 2 ( s ) | q ) α 2 q D 13 C ( p ) ( s = 1 T | Δ u 1 ( s ) | p ) 1 p D 23 C ( q ) ( s = 1 T | Δ u 2 ( s ) | q ) 1 q D 4 M 14 C ( p ) ( s = 1 T | Δ u 1 ( s ) | p ) 1 p M 24 C ( q ) ( s = 1 T | Δ u 2 ( s ) | q ) 1 q + t = 1 T F ( t , 0 , 0 ) .
(3.15)

It is easy to see that conclusion (i) holds from (3.15).

For any (y,v)Y× T r 1 + r 2 , it follows from (1.2) and (2.11) that

Ψ ( ( y , v ) ) = φ ( y 1 + v 1 , y 2 + v 2 ) = t = 1 T F ( t , y 1 + v 1 , y 2 + v 2 ) = t = 1 T F ( t , y 1 + v 1 , y 2 + v 2 ) t = 1 T F ( t , y 1 , y 2 + v 2 ) + t = 1 T F ( t , y 1 , y 2 + v 2 ) t = 1 T F ( t , y 1 , y 2 ) + t = 1 T F ( t , y 1 , y 2 ) = t = 1 T F ( t , y 1 , y 2 ) + t = 1 T 0 1 ( F ( t , y 1 + s v 1 , y 2 + v 2 ) , v 1 ) d s + t = 1 T 0 1 ( F ( t , y 1 , y 2 + s v 2 ) , v 2 ) d s t = 1 T F ( t , y 1 , y 2 ) + | v 1 | t = 1 T 0 1 f 1 ( t ) w 1 ( | y 1 + s v 1 | ) d s + | v 1 | t = 1 T g 1 ( t ) + | v 2 | n = 1 T 0 1 f 2 ( t ) w 2 ( | y 2 + s v 2 | ) d s + | v 2 | t = 1 T g 2 ( t ) t = 1 T F ( t , y 1 , y 2 ) + | v 1 | t = 1 T f 1 ( t ) w 1 ( | y 1 | ) + | v 1 | t = 1 T 0 1 w 1 ( | s v 1 | ) d s + | v 1 | t = 1 T g 1 ( t ) + | v 2 | t = 1 T f 2 ( t ) w 2 ( | y 2 | ) + | v 2 | t = 1 T 0 1 w 2 ( | s v 2 | ) d s + | v 2 | t = 1 T g 2 ( t ) t = 1 T F ( t , y 1 , y 2 ) + D 5 w 1 ( | y 1 | ) + D 6 w 2 ( | y 2 | ) + D 7 = [ w 1 p α 1 ( | y 1 | ) + w 2 q α 2 ( | y 2 | ) ] ( [ w 1 p α 1 ( | y 1 | ) + w 2 q α 2 ( | y 2 | ) ] 1 t = 1 T F ( t , y 1 , y 2 ) ) + D 5 w 1 ( | y 1 | ) + D 6 w 2 ( | y 2 | ) + D 7

for positive constants D 5 , D 6 , and D 7 . Hence, the above inequality, (3.5) and (A3) imply that conclusion (ii) holds. It follows from Lemma 2.6 that Ψ has at least r 1 + r 2 +1 critical points. Hence φ has at least r 1 + r 2 +1 geometrically distinct critical points. Therefore, system (1.1) has at least r 1 + r 2 +1 geometrically distinct solutions in . The proof is complete. □

Proof of Theorem 1.3 Note that Φ m are coercive, m=1,2. Then by Remark 1.1, we know that (1.2) holds. Hence, it follows from (1.2), (F5), (F6), and () that

| t = 1 T [ F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) ] | t = 1 T | F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , P 1 u ¯ 1 , u 2 ( t ) ) | + t = 1 T | F ( t , P 1 u ¯ 1 , u 2 ( t ) F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) | t = 1 T | 0 1 ( x 1 F ( t , P 1 u ¯ 1 + s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) , u 2 ( t ) ) , Q 1 u ¯ 1 + u ˜ 1 ( t ) ) d s | + t = 1 T | 0 1 ( x 2 F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 + s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) ) , Q 2 u ¯ 2 + u ˜ 2 ( t ) ) d s | t = 1 T b 1 ( t ) | Q 1 u ¯ 1 + u ˜ 1 ( t ) | + t = 1 T b 2 ( t ) | Q 2 u ¯ 2 + u ˜ 2 ( t ) | ( | Q 1 u ¯ 1 | + u ˜ 1 ) t = 1 T b 1 ( t ) + ( | Q 2 u ¯ 2 | + u ˜ 2 ) t = 1 T b 2 ( t ) M 13 M 15 + C ( p ) M 15 ( t = 1 T | Δ u 1 ( t ) | p ) 1 / p + M 23 M 25 + C ( q ) M 25 ( t = 1 T | Δ u 2 ( t ) | q ) 1 / q .
(3.16)

Then

φ ( u ) = φ ( u 1 , u 2 ) = t = 1 T [ Φ 1 ( Δ u 1 ( t ) ) + Φ 2 ( Δ u 2 ( t ) ) + F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) + F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) + ( h 1 ( t ) , u 1 ( t ) ) + ( h 2 ( t ) , u 2 ( t ) ) ] δ 1 t = 1 T | Δ u 1 ( t ) | + δ 2 t = 1 T | Δ u 2 ( t ) | C ( p ) M 15 ( t = 1 T | Δ u 1 ( t ) | p ) 1 / p C ( q ) M 25 ( t = 1 T | Δ u 2 ( t ) | q ) 1 / q + t = 1 T F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) C ( p ) M 14 ( t = 1 T | Δ u 1 ( t ) | p ) 1 / p C ( q ) M 24 ( t = 1 T | Δ u 2 ( t ) | q ) 1 / q M 13 M 15 M 23 M 25 ( δ 1 + δ 2 ) T δ 1 t = 1 T | Δ u 1 ( t ) | + δ 2 t = 1 T | Δ u 2 ( t ) | M 13 M 15 C ( p ) M 15 t = 1 T | Δ u 1 ( t ) | M 23 M 25 C ( q ) M 25 t = 1 T | Δ u 2 ( t ) | + t = 1 T F ( t , P 1 u ¯ 1 , P 2 u ¯ 2 ) ( δ 1 + δ 2 ) T C ( p ) M 14 t = 1 T | Δ u 1 ( t ) | C ( q ) M 24 t = 1 T | Δ u 2 ( t ) | .
(3.17)

The features (F6) and (F7) imply that φ is bounded from below. Similar to the proof of Theorem 1.1, we can prove that φ is G-invariant and satisfies the (PS) G condition. Then by Lemma 2.5, we obtain the conclusion. □

Proof of Theorem 1.4 First, we prove that Ψ defined by (2.11) satisfies the (PS) condition. Assume that { ( y [ n ] + z [ n ] , v [ n ] ) } n = 1 X× T r 1 + r 2 is a (PS) sequence for Ψ, that is, {Ψ(( y [ n ] + z [ n ] , v [ n ] ))} is bounded and Ψ (( y [ n ] + z [ n ] , v [ n ] ))0, where y [ n ] = ( y 1 [ n ] , y 2 [ n ] ) τ Y, z [ n ] = z [ n ] (t)= ( z 1 [ n ] ( t ) , z 2 [ n ] ( t ) ) τ Z, v [ n ] = ( v 1 [ n ] , v 2 [ n ] ) τ T r 1 + r 2 for n=1,2, . Let

u [ n ] = y [ n ] + v [ n ] + z [ n ] = ( y 1 [ n ] + v 1 [ n ] + z 1 [ n ] , y 2 [ n ] + v 2 [ n ] + z 2 [ n ] ) τ ,n=1,2,.

Then it is easy to see that

y m [ n ] = P m u ¯ m [ n ] , v m [ n ] = Q m u ¯ m [ n ] , z m [ n ] (t)= u ˜ m [ n ] (t),m=1,2,n=1,2,.

By (2.12) and (2.13), we find that {φ( u 1 [ n ] , u 2 [ n ] )} is bounded and φ ( u 1 [ n ] , u 2 [ n ] )0. Then there exists a positive constant G 0 such that

| φ ( u 1 [ n ] , u 2 [ n ] ) | G 0 , φ ( u 1 [ n ] , u 2 [ n ] ) G 0 ,nN.
(3.18)

It follows from (F3), Lemma 2.1, and Young’s inequality that, for all ( u 1 , u 2 )H,

| t = 1 T ( x 1 F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) , u ˜ 1 ( t ) ) + t = 1 T ( x 2 F ( t , u ˆ 1 ( t ) , u ˆ 2 ( t ) ) , u ˜ 2 ( t ) ) | | t = 1 T ( x 1 F ( t , P 1 u ¯ 1 + Q 1 u ¯ 1 + u ˜ 1 ( t ) , u ˆ 2 ( t ) ) , u ˜ 1 ( t ) ) | + | t = 1 T ( x 2 F ( t , u ˆ 1 ( t ) , P 2 u ¯ 2 + Q 2 u ¯ 2 + u ˜ 2 ( t ) ) , u ˜ 2 ( t ) ) | t = 1 T b 1 ( t ) | u ˜ 1 ( t ) | + t = 1 T b 2 ( t ) | u ˜ 2 ( t ) | u ˜ 1 t = 1 T b 1 ( t ) + u ˜ 2 t = 1 T b 2 ( t ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 / p t = 1 T b 1 ( t ) + C ( q ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 / q t = 1 T b 2 ( t ) .
(3.19)

Hence we have

u ˜ 1 [ n ] p + u ˜ 2 [ n ] q | φ ( u 1 [ n ] , u 2 [ n ] ) , ( u ˜ 1 [ n ] , u ˜ 2 [ n ] ) | = | t = 1 T [ ( ϕ 1 ( Δ u 1 [ n ] ( t ) ) , Δ u 1 [ n ] ( t ) ) + ( ϕ 2 ( Δ u 2 [ n ] ( t ) ) , Δ u 2 [ n ] ( t ) ) + ( x 1 F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) , u ˜ 1 [ n ] ( t ) ) + ( x 2 F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) , u ˜ 2 [ n ] ( t ) ) + ( h 1 ( t ) , u ˜ 1 [ n ] ( t ) ) + ( h 2 ( t ) , u ˜ 2 [ n ] ( t ) ) ] | t = 1 T δ 1 ( | Δ u 1 [ n ] ( t ) | 1 ) + t = 1 T δ 2 ( | Δ u 2 [ n ] ( t ) | 1 ) C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p t = 1 T b 1 ( t ) C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q t = 1 T b 2 ( t ) M 14 C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p M 15 C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q δ 1 ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p + δ 2 ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q ( δ 1 + δ 2 ) T C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p t = 1 T b 1 ( t ) C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q t = 1 T b 2 ( t ) M 14 C ( p ) ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p M 15 C ( q ) ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q
(3.20)

for large nN by the fact φ ( u 1 [ n ] , u 2 [ n ] )0 as n. Moreover, by Lemma 2.1, we have

u ˜ 1 [ n ] p + u ˜ 2 [ n ] q ( C ( p , p ) + 1 ) 1 / p ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p + ( C ( q , q ) + 1 ) 1 / q ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q .
(3.21)

Then (F7)′, (3.20), and (3.21) imply that there exists a positive constant G 1 such that

t = 1 T | Δ u 1 [ n ] ( t ) | p G 1 , t = 1 T | Δ u 2 [ n ] ( t ) | q G 1 ,nN.
(3.22)

By (3.16) and the above inequality, we know that there exists a positive constant G 2 such that

t = 1 T | F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) | M 13 M 15 + C ( p ) M 15 ( t = 1 T | Δ u 1 [ n ] ( t ) | p ) 1 / p + M 23 M 25 + C ( q ) M 25 ( t = 1 T | Δ u 2 [ n ] ( t ) | q ) 1 / q G 2 .
(3.23)

By (A0) and (3.22), there exists a positive constant G 3 such that

Φ 1 ( Δ u 1 [ n ] ( t ) ) G 3 , Φ 2 ( Δ u 2 [ n ] ( t ) ) G 3 .
(3.24)

Then it follows from (3.18), (3.22), (3.23), (3.24), and Lemma 2.1 that

G 0 φ ( u [ n ] ) = φ ( u 1 [ n ] , u 2 [ n ] ) = t = 1 T [ Φ 1 ( Δ u 1 [ n ] ( t ) ) + Φ 2 ( Δ u 2 [ n ] ( t ) ) + F ( t , u 1 [ n ] ( t ) , u 2 [ n ] ( t ) ) F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) + F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) + ( h 1 ( t ) , u 1 [ n ] ( t ) ) + ( h 2 ( t ) , u 2 [ n ] ( t ) ) ] 2 G 3 T + G 2 + t = 1 T F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) + M 14 u ˜ 1 + M 24 u ˜ 1 2 G 3 T + G 2 + t = 1 T F ( t , P 1 u ¯ 1 [ n ] , P 2 u ¯ 2 [ n ] ) + M 14 C ( p ) G 1 1 / p + M 24 C ( q ) G 1 1 / q .
(3.25)

Then (F6)′ implies that { P 1 u ¯ 1 [ n ] } and { P 2 u ¯ 2 [ n ] } are bounded. Then (3.22) implies that { u [ n ] } is bounded in . Since dimH<, { u [ n ] } has a convergent subsequence. Hence, Ψ satisfies the (PS) condition.

Next we prove the following conclusions:

  1. (i)

    inf{Ψ((z,v))|(z,v)Z× T r 1 + r 2 }>;

  2. (ii)

    Ψ((y,v)) uniformly for (y,v)Y× T r 1 + r 2 as |y|.

For (z,v)Z× T r 1 + r 2 , set u=u(t)=z(t)+v= ( z 1 ( t ) + v 1 , z 2 ( t ) + v 2 ) τ . Then z m (t)= u ˜ m (t), v m = Q m u ¯ m , and u m (t)= z m (t)+ v m , m=1,2. By (F3) and Lemma 2.1, we have

| t = 1 T [ F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , 0 , 0 ) ] | t = 1 T | F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , 0 , u 2 ( t ) ) | + t = 1 T | F ( t , 0 , u 2 ( t ) ) F ( t , 0 , 0 ) | t = 1 T | 0 1 ( x 1 F ( t , s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) , u 2 ( t ) ) , Q 1 u ¯ 1 + u ˜ 1 ( t ) ) d s | + t = 1 T | 0 1 ( x 2 F ( t , 0 , s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) ) , Q 2 u ¯ 2 + u ˜ 2 ( t ) ) d s | ( | Q 1 u ¯ 1 | + u ˜ 1 ) t = 1 T 0 1 | x 1 F ( t , s ( Q 1 u ¯ 1 + u ˜ 1 ( t ) ) , u ˆ 2 ( t ) ) | d s + ( | Q 2 u ¯ 2 | + u ˜ 2 ) t = 1 T 0 1 | x 2 F ( t , 0 , s ( Q 2 u ¯ 2 + u ˜ 2 ( t ) ) ) | d s ( M 13 + u ˜ 1 ) t = 1 T b 1 ( t ) + ( M 23 + u ˜ 2 ) t = 1 T b 2 ( t ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 / p t = 1 T b 1 ( t ) + C ( q ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 / q t = 1 T b 2 ( t ) + M 13 t = 1 T b 1 ( t ) + M 23 t = 1 T b 2 ( t ) .
(3.26)

Then

Ψ ( ( z , v ) ) = φ ( u 1 , u 2 ) = t = 1 T [ Φ 1 ( Δ u 1 ( t ) ) + Φ 2 ( Δ u 2 ( t ) ) + F ( t , u 1 ( t ) , u 2 ( t ) ) + ( h 1 ( t ) , u 1 ( t ) ) + ( h 2 ( t ) , u 2 ( t ) ) ] = t = 1 T [ Φ 1 ( Δ u 1 ( t ) ) + Φ 2 ( Δ u 2 ( t ) ) + F ( t , u 1 ( t ) , u 2 ( t ) ) F ( t , 0 , 0 ) + F ( t , 0 , 0 ) + ( h 1 ( t ) , u 1 ( t ) ) + ( h 2 ( t ) , u 2 ( t ) ) ] t = 1 T [ δ 1 ( | Δ u 1 ( t ) | 1 ) + δ 2 ( | Δ u 2 ( t ) | 1 ) ] + t = 1 T F ( t , 0 , 0 ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 / p t = 1 T b 1 ( t ) C ( q ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 / q t = 1 T b 2 ( t ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | p ) 1 / p t = 1 T | h 1 ( t ) | C ( q ) ( t = 1 T | Δ u 2 ( t ) | q ) 1 / q t = 1 T | h 2 ( t ) | M 13 t = 1 T b 1 ( t ) M 23 t = 1 T b 2 ( t ) t = 1 T [ δ 1 ( | Δ u 1 ( t ) | 1 ) + δ 2 ( | Δ u 2 ( t ) | 1 ) ] + t = 1 T F ( t , 0 , 0 ) M 13 t = 1 T b 1 ( t ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | ) t = 1 T b 1 ( t ) C ( q ) ( t = 1 T | Δ u 2 ( t ) | ) t = 1 T b 2 ( t ) C ( p ) ( t = 1 T | Δ u 1 ( t ) | ) t = 1 T | h 1 ( t ) | C ( q ) ( t = 1 T | Δ u 2 ( t ) | ) t = 1 T | h 2 ( t ) | M 23 t = 1 T b 2 ( t ) .
(3.27)

It is easy to see that conclusion (i) holds from (F7)′.

For any (y,v)Y× T r 1 + r 2 , it follows from (1.2) and (2.11) that

Ψ ( ( y , v ) ) = φ ( y 1 + v 1 , y 2 + v 2 ) = t = 1 T F ( t , y 1 + v 1 , y 2 + v 2 ) = t = 1 T F ( t , y 1 + v 1 , y 2 + v 2 ) t = 1 T F ( t , y 1 , y 2 + v 2 ) + t = 1 T F ( t , y 1 , y 2 + v 2 ) t = 1 T F ( t , y 1 , y 2 ) + t = 1 T F ( t , y 1 , y 2 ) = t = 1 T F ( t , y 1 , y 2 ) + t = 1 T 0 1 ( F ( t , y 1 + s v 1 , y 2 + v 2 ) , v 1 ) d s + t = 1 T 0 1 ( F ( t , y 1 , y 2 + s v 2 ) , v 2 ) d s t = 1 T F ( t , y 1 , y 2 ) + | v 1 | t = 1 T g 1 ( t ) + | v 2 | t = 1 T g 2 ( t ) t = 1 T F ( t , y 1 , y 2 ) + ( k = 1 r 1 T i k 2 ) 1 / 2 t = 1 T g 1 ( t ) + ( s = 1 r 2 T j s 2 ) 1 / 2 t = 1 T g 2 ( t ) .

Hence, the above inequality and (F6)′ imply that conclusion (ii) holds. It follows from Lemma 2.6 that Ψ has at least r 1 + r 2 +1 critical points. Hence φ has at least r 1 + r 2 +1 geometrically distinct critical points. Therefore, system (1.1) has at least r 1 + r 2 +1 geometrically distinct solutions in . The proof is complete. □

References

  1. Mawhin J: Periodic solutions of second order nonlinear difference systems with ϕ -Laplacian: a variational approach. Nonlinear Anal. 2012, 75: 4672-4687. 10.1016/j.na.2011.11.018

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonanno G, Candito P: Nonlinear difference equations investigated via critical points methods. Nonlinear Anal. 2009, 70: 3180-3186. 10.1016/j.na.2008.04.021

    Article  MathSciNet  MATH  Google Scholar 

  3. Candito P, Giovannelli N: Multiple solutions for a discrete boundary value problem. Comput. Math. Appl. 2008, 56: 959-964. 10.1016/j.camwa.2008.01.025

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo ZM, Yu JS: The existence of periodic and subharmonic solutions to subquadratic second-order difference equations. J. Lond. Math. Soc. 2003, 68: 419-430. 10.1112/S0024610703004563

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo ZM, Yu JS: Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China Ser. A 2003, 46: 506-515. 10.1007/BF02884022

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou Z, Yu JS, Guo ZM: Periodic solutions of higher-dimensional discrete systems. Proc. R. Soc. Edinb., Sect. A 2004, 134: 1013-1022. 10.1017/S0308210500003607

    Article  MathSciNet  MATH  Google Scholar 

  7. Xue YF, Tang CL: Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system. Nonlinear Anal. 2007, 67: 2072-2080. 10.1016/j.na.2006.08.038

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin XY, Tang XH: Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems. J. Math. Anal. Appl. 2011, 373: 59-72. 10.1016/j.jmaa.2010.06.008

    Article  MathSciNet  MATH  Google Scholar 

  9. He T, Chen W: Periodic solutions of second order convex systems involving the p -Laplacian. Appl. Math. Comput. 2008, 206: 124-132. 10.1016/j.amc.2008.08.037

    Article  MathSciNet  MATH  Google Scholar 

  10. Tang XH, Zhang X: Periodic solutions for second-order discrete Hamiltonian systems. J. Differ. Equ. Appl. 2011, 17: 1413-1430. 10.1080/10236190903555237

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang X, Tang X: Existence of solutions for a nonlinear discrete system involving the p -Laplacian. Appl. Math. 2012, 57: 11-30. 10.1007/s10492-012-0002-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang X: Notes on periodic solutions for a nonlinear discrete system involving the p -Laplacian. Bull. Malays. Math. Soc. 2014, 37(2):499-509.

    MathSciNet  MATH  Google Scholar 

  13. Zhang Q, Tang XH, Zhang QM: Existence of periodic solutions for a class of discrete Hamiltonian systems. Discrete Dyn. Nat. Soc. 2011., 2011: Article ID 463480

    Google Scholar 

  14. Mawhin J: Periodic solutions of second order Lagrangian difference systems with bounded or singular ϕ -Laplacian and periodic potential. Discrete Contin. Dyn. Syst. 2013, 6: 1065-1076.

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang CL, Wu XP: A note on periodic solutions of nonautonomous second-order systems. Proc. Am. Math. Soc. 2003, 132(5):1295-1303.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang X, Tang X: Periodic solutions for an ordinary p -Laplacian system. Taiwan. J. Math. 2011, 15(3):1369-1396.

    MathSciNet  MATH  Google Scholar 

  17. Wang Z: Periodic solutions of a class of second order non-autonomous Hamiltonian systems. Nonlinear Anal. 2010, 72: 4480-4487. 10.1016/j.na.2010.02.023

    Article  MathSciNet  MATH  Google Scholar 

  18. Mawhin J, Willem M: Critical Point Theory and Hamiltonian Systems. Springer, New York; 1989.

    Book  MATH  Google Scholar 

  19. Liu JQ: A generalized saddle point theorem. J. Differ. Equ. 1989, 82: 372-385. 10.1016/0022-0396(89)90139-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (No: 11301235), Tianyuan Fund for Mathematics of the National Natural Science Foundation of China (No: 11226135) and the Fund for Fostering Talents in Kunming University of Science and Technology (No: KKSY201207032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyong Zhang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, X. Multiple periodic solutions for a class of nonlinear difference systems with classical or bounded ( ϕ 1 , ϕ 2 )-Laplacian. Adv Differ Equ 2014, 218 (2014). https://doi.org/10.1186/1687-1847-2014-218

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-218

Keywords