Skip to main content

Theory and Modern Applications

Some properties of certain subclasses of analytic functions involving adifferential operator

Abstract

In the present paper, we introduce and study certain subclasses of analyticfunctions in the open unit disk U which is defined by the differentialoperator D R λ m , n . We study and investigate some inclusionproperties of these classes. Furthermore, a generalizedBernardi-Libera-Livington integral operator is shown to be preserved for theseclasses.

MSC: 30C45.

1 Introduction

Let be aclass of functions f in the open unit disk U={z∈C:|z|<1} normalized by f(0)= f ′ (0)−1=0. Thus each f∈A has a Taylor series representation

f(z)=z+ ∑ j = 2 ∞ a j z j .
(1.1)

We denote by S(ξ) the well-known subclass of consisting of allanalytic functions which are, respectively, starlike of order ξ[1, 2]

S(ξ)= { f ∈ A : Re ( z f ′ ( z ) f ( z ) ) > ξ , z ∈ U } ,0≤ξ<1.

Let ℛ be a class of all functions ϕ which are analytic andunivalent in U and for which ϕ(U) is convex with ϕ(0)=1 and Reϕ(z)>0, z∈U.

For two functions f and g analytic in U, we say that thefunction f is subordinate to g in U and writef(z)≺g(z), z∈U, if there exists a Schwarz functionw(z) which is analytic in U withw(0)=0 and |w(z)|<1 such that f(z)=g(w(z)), z∈U.

Making use of the principle of subordination between analytic functions, denote byS(ξ,ϕ)[3] a subclass of the class for0≤ξ<1 and ϕ∈R which are defined by

S(ξ,ϕ)= { f ∈ A : 1 1 − ξ ( z f ′ ( z ) f ( z ) − ζ ) ≺ ϕ ( z ) , z ∈ U } .

Let f,g∈A, where f and g are defined byf(z)=z+ ∑ j = 2 ∞ a j z j and g(z)=z+ ∑ j = 2 ∞ b j z j . Then the Hadamard product (or convolution)f∗g of the functions f and g is definedby

(f∗g)(z)=z+ ∑ j = 2 ∞ a j b j z j .

Definition 1.1 (Al-Oboudi [4])

For f∈A, λ≥0 and m∈N, the operator D λ m is defined by D λ m :A→A,

D λ 0 f ( z ) = f ( z ) , D λ 1 f ( z ) = ( 1 − λ ) f ( z ) + λ z f ′ ( z ) = D λ f ( z ) , … , D λ m f ( z ) = ( 1 − λ ) D λ m − 1 f ( z ) + λ z ( D λ m f ( z ) ) ′ = D λ ( D λ m − 1 f ( z ) ) , z ∈ U .

Remark 1.1 If f∈A and f(z)=z+ ∑ j = 2 ∞ a j z j , then D λ m f(z)=z+ ∑ j = 2 ∞ [ 1 + ( j − 1 ) λ ] m a j z j , z∈U.

Remark 1.2 For λ=1 in the above definition, we obtain theSălăgean differential operator [5].

Definition 1.2 (Ruscheweyh [6])

For f∈A and n∈N, the operator R n is defined by R n :A→A,

R 0 f ( z ) = f ( z ) , R 1 f ( z ) = z f ′ ( z ) , … , ( n + 1 ) R n + 1 f ( z ) = z ( R n f ( z ) ) ′ + n R n f ( z ) , z ∈ U .

Remark 1.3 If f∈A, f(z)=z+ ∑ j = 2 ∞ a j z j , then R n f(z)=z+ ∑ j = 2 ∞ ( n + j − 1 ) ! n ! ( j − 1 ) ! a j z j , z∈U.

Definition 1.3 ([7])

Let λ≥0 and n,m∈N. Denote by D R λ m , n :A→A the operator given by the Hadamard product of thegeneralized Sălăgean operator D λ m and the Ruscheweyh operator R n ,

D R λ m , n f(z)= ( D λ m ∗ R n ) f(z),

for any z∈U and each nonnegative integer m,n.

Remark 1.4 If f∈A and f(z)=z+ ∑ j = 2 ∞ a j z j , then D R λ m , n f(z)=z+ ∑ j = 2 ∞ [ 1 + ( j − 1 ) λ ] m ( n + j − 1 ) ! n ! ( j − 1 ) ! a j 2 z j , z∈U.

Remark 1.5 The operator D R λ m , n was studied also in [8–10].

For λ=1, m=n, we obtain the Hadamard productS R n [11] of the Sălăgean operator S n and the Ruscheweyh derivative R n , which was studied in [12, 13].

For m=n, we obtain the Hadamard productD R λ n [14] of the generalized Sălăgean operator D λ n and the Ruscheweyh derivative R n , which was studied in [15–20].

Using a simple computation, one obtains the next result.

Proposition 1.1 ([7])

Form,n∈Nandλ≥0, we have

D R λ m + 1 , n f(z)=(1−λ)D R λ m , n f(z)+λz ( D R λ m , n f ( z ) ) ′
(1.2)

and

z ( D R λ m , n f ( z ) ) ′ =(n+1)D R λ m , n + 1 f(z)−nD R λ m , n f(z).
(1.3)

By using the operator D R λ m , n f(z), we define the following subclasses of analyticfunctions for 0≤ζ<1 and ϕ∈R:

S λ m , n ( ξ ) = { f ∈ A : D R λ m , n f ∈ S ( ξ ) } , S λ m , n ( ξ , ϕ ) = { f ∈ A : D R λ m , n f ∈ S ( ξ , ϕ ) } .

In particular, we set

S λ m , n ( ξ , 1 + A z 1 + B z ) = S λ m , n (ξ,A,B),−1<B<A≤1.

Next, we will investigate various inclusion relationships for the subclasses ofanalytic functions introduced above. Furthermore, we study the results of Faisalet al.[21], Darus and Faisal [3].

2 Inclusion relationship associated with the operator D R λ m , n

First, we start with the following lemmas which we need for our main results.

Lemma 2.1 ([22, 23])

Letφ(μ,v)be a complex function such thatφ:D→C, D⊆C×C, and letμ= μ 1 +i μ 2 , v= v 1 +i v 2 . Suppose thatφ(μ,v)satisfies the following conditions:

  1. 1.

    φ(μ,v) is continuous in D,

  2. 2.

    (1,0)∈D and Reφ(1,0)>0,

  3. 3.

    Reφ(i μ 2 , v 1 )≤0 for all (i μ 2 , v 1 )∈D such that v 1 ≤− 1 2 (1+ μ 2 2 ).

Leth(z)=1+ c 1 z+ c 2 z 2 +⋯be analytic in U, such that(h(z),z h ′ (z))∈Dfor allz∈U. IfRe{φh(z),z h ′ (z)}>0, z∈U, thenRe{h(z)}>0.

Lemma 2.2 ([24])

Let ϕ be convex univalent in U withϕ(0)=1andRe{kϕ(z)+ν}>0, k,ν∈C. If p is analytic in U withp(0)=1, then

p(z)+ z p ′ ( z ) k p ( z ) + ν ≺ϕ(z),z∈U,

impliesp(z)≺ϕ(z), z∈U.

Theorem 2.1 Letf∈A, 0≤ξ<1, m,n∈N, λ>0, then

S λ m , n + 1 (ξ)⊆ S λ m , n (ξ)⊆ S λ m , n − 1 (ξ).

Proof Let f∈ S λ m , n + 1 (ξ) and suppose that

z ( D R λ m , n f ( z ) ) ′ D R λ m , n f ( z ) =ξ+(1−ξ)h(z).
(2.1)

Since from (1.3)

(n+1) D R λ m , n + 1 f ( z ) D R λ m , n f ( z ) =n+ξ+(1−ξ)h(z),

we obtain

( 1 − ξ ) h ′ ( z ) = ( n + 1 ) [ ( D R λ m , n + 1 f ( z ) ) ′ D R λ m , n f ( z ) − D R λ m , n + 1 f ( z ) D R λ m , n f ( z ) ⋅ ( D R λ m , n f ( z ) ) ′ D R λ m , n f ( z ) ] , ( 1 − ξ ) z h ′ ( z ) = ( n + 1 ) D R λ m , n + 1 f ( z ) D R λ m , n f ( z ) [ z ( D R λ m , n + 1 f ( z ) ) ′ D R λ m , n + 1 f ( z ) − ξ − ( 1 − ξ ) h ( z ) ] , ( 1 − ξ ) h ′ ( z ) z n + ξ + ( 1 − ξ ) h ( z ) = z ( D R λ m , n + 1 f ( z ) ) ′ D R λ m , n + 1 f ( z ) − ξ − ( 1 − ξ ) h ( z ) , z ( D R λ m , n + 1 f ( z ) ) ′ D R λ m , n + 1 f ( z ) − ξ = ( 1 − ξ ) h ( z ) + ( 1 − ξ ) h ′ ( z ) z n + ξ + ( 1 − ξ ) h ( z ) .

Taking h(z)=μ= μ 1 +i μ 2 and z h ′ (z)=v= v 1 +i v 2 , we define φ(μ,v) by

φ(μ,v)=(1−ξ)μ+ ( 1 − ξ ) v n + ξ + ( 1 − ξ ) μ

and

Re { φ ( i μ 2 , v 1 ) } = ( 1 − ξ ) ( n + ξ ) v 1 ( n + ξ ) 2 + ( 1 − ξ ) 2 μ 2 2 , Re { φ ( i μ 2 , v 1 ) } ≤ − ( 1 − ξ ) ( n + ξ ) ( 1 + μ 2 2 ) 2 [ ( n + ξ ) 2 + ( 1 − ξ ) 2 μ 2 2 ] < 0 .

Clearly, φ(μ,v) satisfies the conditions of Lemma 2.1. HenceRe{h(z)}>0, z∈U, implies f∈ S λ m , n (ξ). □

Remark 2.1 Using relation (1.2) and the same techniques as to prove theearlier results, we can obtain a new similar result.

Theorem 2.2 Let f∈A and ϕ∈R with

Re { ϕ ( z ) } < ξ − 1 + 1 λ 1 − ξ .

Then

S λ m + 1 , n (ξ,ϕ)⊂ S λ m , n (ξ,ϕ)⊂ S λ m − 1 , n (ξ,ϕ).

Proof Let f(z)∈ S λ m + 1 , n (ξ,ϕ) and set

p(z)= 1 1 − ξ ( z ( D R λ m , n f ( z ) ) ′ D R λ m , n f ( z ) − ξ ) ,
(2.2)

where p is analytic in U with p(0)=1.

By using (1.2) we have

z ( D R λ m , n f ( z ) ) ′ D R λ m , n f ( z ) = 1 λ D R λ m + 1 , n f ( z ) D R λ m , n f ( z ) − 1 − λ λ .

Now, by using (2.2) we get

p ′ ( z ) = 1 1 − ξ ( 1 λ D R λ m + 1 , n f ( z ) D R λ m , n f ( z ) − 1 − λ λ − ξ ) , 1 λ D R λ m + 1 , n f ( z ) D R λ m , n f ( z ) = ξ + 1 − λ λ + ( 1 − ξ ) p ( z ) .
(2.3)

By using (2.2) and (2.3), we obtain

z p ′ ( z ) = 1 1 − ξ ⋅ 1 λ [ z ( D R λ m + 1 , n f ( z ) ) ′ D R λ m , n f ( z ) − D R λ m + 1 , n f ( z ) D R λ m , n f ( z ) ⋅ z ( D R λ m , n f ( z ) ) ′ D R λ m , n f ( z ) ] , ( 1 − ξ ) z p ′ ( z ) = 1 λ ⋅ D R λ m + 1 , n f ( z ) D R λ m , n f ( z ) [ z ( D R λ m + 1 , n f ( z ) ) ′ D R λ m + 1 , n f ( z ) − z ( D R λ m , n f ( z ) ) ′ D R λ m , n f ( z ) ] , ( 1 − ξ ) z p ′ ( z ) = [ ζ − 1 + 1 λ + ( 1 − ξ ) p ( z ) ] [ z ( D R λ m + 1 , n f ( z ) ) ′ D R λ m + 1 , n f ( z ) − ( 1 − ξ ) p ( z ) − ξ ] , ( 1 − ξ ) z p ′ ( z ) ( 1 − ξ ) p ( z ) + ζ − 1 + 1 λ = z ( D R λ m + 1 , n f ( z ) ) ′ D R λ m + 1 , n f ( z ) − ξ − ( 1 − ξ ) p ( z ) .

Hence,

1 1 − ξ [ z ( D R λ m + 1 , n f ( z ) ) ′ D R λ m + 1 , n f ( z ) − ξ ] =p(z)+ z p ′ ( z ) ( 1 − ζ ) p ( z ) + ζ − 1 + 1 λ .
(2.4)

Since Re{Ï•(z)}< ξ − 1 + 1 λ 1 − ξ implies Re{(1−ξ)p(z)+ξ−1+ 1 λ }>0, applying Lemma 2.2 to (2.4) we have thatf(z)∈ S λ m , n (ξ,Ï•), as required. □

Remark 2.2 By using relation (1.3) and the same techniques as to prove theearlier results, we can obtain a new similar result.

Corollary 2.3 Let 1 + A 1 + B < ξ − 1 + 1 λ 1 − ξ for−1<B<A≤1, then

S λ m + 1 , n (ξ,A,B)⊂ S λ m , n (ξ,A,B)⊂ S λ m − 1 , n (ξ,A,B).

Proof Taking Ï•(z)= 1 + A z 1 + B z , −1<B<A≤1 in Theorem 2.2, we get thecorollary. □

3 Integral-preserving properties

In this section, we present several integral-preserving properties for the subclassesof analytic functions defined above. We recall the generalizedBernardi-Libera-Livington integral operator [25] defined by

F c [ f ( z ) ] = c + 1 z c ∫ 0 z t c − 1 f(t)dt=z+ ∑ j = 2 ∞ c + 1 j + c a j z c ,f∈A,c>−1,
(3.1)

which satisfies the following equality:

cD R λ m , n F c [ f ( z ) ] +z [ D R λ m , n F c ( f ( z ) ) ] ′ =(c+1)D R λ m , n f(z).
(3.2)

Theorem 3.1 Letc>−1, 0≤ξ<1. Iff∈ S λ m , n (ξ), then F c f∈ S λ m , n (ξ).

Proof Let f∈ S λ m , n (ξ). By using (3.2), we get

z [ D R λ m , n F c [ f ( z ) ] ] ′ D R λ m , n F c [ f ( z ) ] =(c+1) D R λ m , n f ( z ) D R λ m , n F c [ f ( z ) ] −c.

Let

z [ D R λ m , n F c [ f ( z ) ] ] ′ D R λ m , n F c [ f ( z ) ] =ξ+(1−ξ)h(z),h(z)=1+ c 1 z+ c 2 z 2 +⋯.

We obtain

z [ D R λ m , n f ( z ) ] ′ D R λ m , n f ( z ) −ξ=(1−ξ)h(z)+ ( 1 − ξ ) z h ′ ( z ) ξ + ( 1 − ξ ) h ( z ) + c .

This implies

φ(μ,v)=(1−ξ)μ+ ( 1 − ξ ) v c + ξ + ( 1 − ξ ) μ

(same as Theorem 2.1) and

Re { φ ( i μ 2 , v 1 ) } = ( 1 − ξ ) ( c + ξ ) v 1 ( c + ξ ) 2 + ( 1 − ξ ) 2 μ 2 2 , Re { φ ( i μ 2 , v 1 ) } ≤ − ( 1 − ξ ) ( c + ξ ) ( 1 + μ 2 ) 2 2 [ ( c + ξ ) 2 + ( 1 − ξ ) 2 μ 2 2 ] < 0 .

After using Lemma 2.1 and Theorem 2.1, we have

F c f∈ S λ m , n (ξ).

 □

Theorem 3.2 Let c>−1 and ϕ∈R with

Re { ϕ ( z ) } < c + ξ 1 − ξ .

Iff∈ S λ m , n (ξ,ϕ), then F c f∈ S λ m , n (ξ,ϕ).

Proof Let f(z)∈ S λ m , n (ξ,ϕ) and set

p(z)= 1 1 − ξ ( z [ D R λ m , n F c [ f ( z ) ] ] ′ D R λ m , n F c [ f ( z ) ] − ξ ) ,
(3.3)

where p is analytic in U with p(0)=1.

Using (3.2) and (3.3), we have

(c+1) z [ D R λ m , n f ( z ) ] D R λ m , n F c [ f ( z ) ] =c+ξ+(1−ξ)p(z).
(3.4)

Then, using (3.2), (3.3) and (3.4), we obtain

1 1 − ξ ( z [ D R λ m , n f ( z ) ] ′ D R λ m , n f ( z ) − ξ ) =p(z)+ z p ′ ( z ) ( 1 − ξ ) p ( z ) + c + ξ .
(3.5)

Applying Lemma 2.2 to (3.5), we conclude that

F c f∈ S λ m , n (ξ,ϕ).

 □

Author’s contributions

The author drafted the manuscript, read and approved the final manuscript.

References

  1. Kumar V, Shukla SL: Certain integrals for classes of p -valent meromorphic functions. Bull. Aust. Math. Soc. 1982, 25: 85–97. 10.1017/S0004972700005062

    Article  MathSciNet  MATH  Google Scholar 

  2. Miller SS, Mocanu PT: Differential Subordination. Dekker, New York; 2000.

    Google Scholar 

  3. Darus M, Faisal I: Inclusion properties of certain subclasses of analytic functions. Rev. Notas Mat. 2011, 7(1)(305):66–75.

    MATH  Google Scholar 

  4. Al-Oboudi FM: On univalent functions defined by a generalized Sălăgeanoperator. Int. J. Math. Math. Sci. 2004, 27: 1429–1436.

    Article  MathSciNet  MATH  Google Scholar 

  5. Sălăgean GS: Subclasses of univalent functions. Lecture Notes in Math. 1013. In Complex Analysis - Fifth Romanian-Finnish Seminar. Springer, Berlin; 1983:362–372.

    Google Scholar 

  6. Ruscheweyh S: New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49: 109–115. 10.1090/S0002-9939-1975-0367176-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Andrei, L: Differential sandwich theorems using a generalizedSălăgean operator and Ruscheweyh operator. Didact. Math.(submitted)

  8. Andrei, L: On some differential sandwich theorems using a generalizedSălăgean operator and Ruscheweyh operator. J. Comput. Anal. Appl.18 (2015, to appear)

  9. Andrei, L: Certain differential sandwich theorem using a generalizedSălăgean operator and Ruscheweyh operator. Adv. Appl. Math. Sci.(submitted)

  10. Andrei, L: Differential subordinations, superordinations and sandwich theoremsusing a generalized Sălăgean operator and Ruscheweyh operator. Rev.Unión Mat. Argent. (submitted)

  11. Alb Lupas A: Certain differential subordinations using Sălăgean and Ruscheweyhoperators. Acta Univ. Apulensis 2012, 29: 125–129.

    MATH  Google Scholar 

  12. Alb Lupas A: A note on differential subordinations using Sălăgean and Ruscheweyhoperators. ROMAI J. 2010, 6(1):1–4.

    MathSciNet  MATH  Google Scholar 

  13. Alb Lupas A: Certain differential superordinations using Sălăgean and Ruscheweyhoperators. An. Univ. Oradea, Fasc. Mat. 2010, XVII(2):209–216.

    MathSciNet  MATH  Google Scholar 

  14. Alb Lupas A: Certain differential subordinations using a generalized Sălăgeanoperator and Ruscheweyh operator I. J. Math. Appl. 2010, 33: 67–72.

    MathSciNet  MATH  Google Scholar 

  15. Alb Lupas A: Certain differential subordinations using a generalized Sălăgeanoperator and Ruscheweyh operator II. Fract. Calc. Appl. Anal. 2010, 13(4):355–360.

    MathSciNet  MATH  Google Scholar 

  16. Alb Lupas A: Certain differential superordinations using a generalized Sălăgeanand Ruscheweyh operators. Acta Univ. Apulensis 2011, 25: 31–40.

    MathSciNet  MATH  Google Scholar 

  17. Andrei, L: Differential subordination results using a generalizedSălăgean operator and Ruscheweyh operator. Acta Univ. Apulensis37(2) (2014)

    Google Scholar 

  18. Andrei, L: Some differential subordination results using a generalizedSălăgean operator and Ruscheweyh operator. Jökull 64(4)(2014)

    Google Scholar 

  19. Andrei, L: Differential superordination results using a generalizedSălăgean operator and Ruscheweyh operator. An. Univ. Oradea, Fasc.Mat. XXI(2) (2014, to appear)

  20. Andrei, L: Some differential superordination results using a generalizedSălăgean operator and Ruscheweyh operator. Stud. Univ.Babeş-Bolyai, Math. (to appear)

  21. Faisal I, Shareef Z, Darus M: On certain subclasses of analytic functions. Stud. Univ. Babeş-Bolyai, Math. 2013, 58(1):9–14.

    MathSciNet  MATH  Google Scholar 

  22. Miller SS: Differential inequalities and Carathéordory function. Bull. Am. Math. Soc. 1975, 8: 79–81.

    Article  Google Scholar 

  23. Miller SS, Mocanu PT: Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65: 289–305. 10.1016/0022-247X(78)90181-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Eenigenberg P, Miller SS, Mocanu PT, Reade MO: On a Briot-Bouquet differential subordination. 3. General Inequalities 1983, 339–348.

    Chapter  Google Scholar 

  25. Bernardi SD: Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135: 429–446.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the referee for his/her valuable suggestions to improve thepresent article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loriana Andrei.

Additional information

Competing interests

The author declares that she has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrei, L. Some properties of certain subclasses of analytic functions involving adifferential operator. Adv Differ Equ 2014, 142 (2014). https://doi.org/10.1186/1687-1847-2014-142

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-142

Keywords