Skip to main content

Theory and Modern Applications

Existence and exponential stability of an equilibrium point for fuzzy BAM neural networks with time-varying delays in leakage terms on time scales

Abstract

In this paper, by using a fixed point theorem and differential inequality techniques, we consider the existence and global exponential stability of an equilibrium point for a class of fuzzy bidirectional associative memory neural networks with time-varying delays in leakage terms on time scales. We also present a numerical example to show the feasibility of obtained results. The results of this paper are completely new and complementary to the previously known results.

MSC:34B37, 34N05.

1 Introduction

The bidirectional associative memory (BAM) neural networks were first introduced by Kosto in 1988 [1]. These are special recurrent neural networks that can store bipolar vector pairs and are composed of neurons arranged in two layers. The neurons in one layer are fully interconnected to the neurons in the other layer, while there are no interconnections among neurons in the same layer.

In recent years, due to their wide range of applications, for example, pattern recognition, associative memory, and combinatorial optimization, BAM neural networks have received much attention. There are lots of results on the existence and stability of an equilibrium point, periodic solutions or almost periodic solutions of BAM neural networks [210].

Based on traditional cellular neural networks, Yang and Yang proposed a fuzzy cellular neural network, which integrates fuzzy logic into the structure of traditional cellular neural networks and maintains local connectedness among cells [11]. The fuzzy neural network has fuzzy logic between its template input and/or output besides the sum of product operation. Studies have revealed that the fuzzy neural network is very useful for image processing problems, which is a cornerstone in image processing and pattern recognition. Besides, in reality, time delays often occur due to finite switching speeds of the amplifiers and communication time and can destroy a stable network or cause sustained oscillations, bifurcation or chaos. Hence, it is important to consider both the fuzzy logic and delay effect on dynamical behaviors of neural networks. There have been many results on the fuzzy neural networks with time delays [1217]. Moreover, time delay in the leakage term also has a great impact on the dynamics of neural networks. As pointed out by the author in [18], time delay in the stabilizing negative feedback term has a tendency to destabilize a system. Therefore, it is meaningful to consider fuzzy neural networks with time delays in the leakage terms [1924].

In fact, both continuous and discrete systems are very important in implementation and applications. To avoid the trouble of studying the dynamical properties for continuous and discrete systems respectively, it is meaningful to study those on time scales, which was initiated by Stefan Hilger in his PhD thesis, in order to unify continuous and discrete analyses. Lots of scholars have studied neural networks on time scales and obtained many good results [2534]. However, to the best of our knowledge, there is no paper published on the stability of fuzzy BAM neural networks with time delays in the leakage terms on time scales.

Motivated by the above, in this paper, we integrate fuzzy operations into BAM neural networks with time delays in the leakage terms and study the stability of considered neural networks on time scales. By using a fixed point theorem and differential inequality techniques, we consider the existence and global exponential stability of an equilibrium point for the following BAM neural network with time-varying delays in leakage terms on time scales:

{ x i Δ ( t ) = a i x i ( t δ i ( t ) ) + j = 1 m c j i f j ( y j ( t τ j i ( t ) ) ) + j = 1 m α j i f j ( y j ( t τ j i ( t ) ) ) x i Δ ( t ) = + j = 1 m T j i μ j + j = 1 m β j i f j ( y j ( t τ j i ( t ) ) ) x i Δ ( t ) = + j = 1 m H j i μ j + I i , t T , i = 1 , 2 , , n , y j Δ ( t ) = b j y j ( t η j ( t ) ) + i = 1 n d i j g i ( x i ( t σ i j ( t ) ) ) + i = 1 n p i j g i ( x i ( t σ i j ( t ) ) ) y j Δ ( t ) = + i = 1 n F i j ν i + i = 1 n q i j g i ( x i ( t σ i j ( t ) ) ) y j Δ ( t ) = + i = 1 n G i j ν i + J j , t T , j = 1 , 2 , , m ,
(1.1)

where is a time scale; n, m are the number of neurons in layers; x i (t) and y j (t) denote the activations of the i th neuron and the j th neuron at time t; a i >0 and b j >0 represent the rate at which the i th neuron and the j th neuron will reset their potential to the resting state in isolation when they are disconnected from the network and the external inputs; 0< δ i < δ i + and 0< η j < η j + denote the leakage delays; f j , g i are the input-output functions (the activation functions); 0 τ j i (t) τ j i and 0 σ i j (t) σ i j are transmission delays; t τ j i (t)T, t σ i j (t)T, t δ i (t) [ 0 , ) T and t η j (t) [ 0 , ) T ; c j i , d i j are elements of feedback templates; α j i , p i j denote the elements of fuzzy feedback MIN templates and β j i , q i j are the elements of fuzzy feedback MAX templates; T j i , F i j are fuzzy feed-forward MIN templates and H j i , G i j are fuzzy feed-forward MAX templates; μ j , ν i denote the input of the i th neuron and the j th neuron; I i , J j denote biases of the i th neuron and the j th neuron, i=1,2,,n, j=1,2,,m, and denote the fuzzy AND and fuzzy OR operations, respectively.

The initial condition of (1.1) is of the form

{ x i ( s ) = φ i ( s ) , s [ σ , 0 ] T , σ = max { max ( i , j ) σ i j , max i δ i + } , i = 1 , 2 , , n , y j ( s ) = ψ j ( s ) , s [ τ , 0 ] T , τ = max { max ( i , j ) τ j i , max j η j + } , j = 1 , 2 , , m ,

where φ i (), ψ j () denote positive real-valued continuous functions on [ σ , 0 ] T and [ τ , 0 ] T , respectively.

For the sake of convenience, we introduce some notations. For matrix D, D T denotes the transpose of D, ρ(D) denotes the spectral radius of D. A matrix or a vector D0 means that all entries of D are greater than or equal to zero, D>0 can be defined similarly. For matrices or vectors D and E, DE (respectively D>E) means that DE0 (respectively DE>0).

Throughout this paper, we assume that the following condition holds:

  1. (H)

    f j , g i C(R,R) and there exist positive constants L j f , L i g such that

    | f j ( u ) f j ( v ) | L j f |uv|, | g i ( u ) g i ( v ) | L i g |uv|

for all u,vR, i=1,2,,n, j=1,2,,m.

The organization of the rest of this paper is as follows. In Section 2, we introduce some preliminary results which are needed in the later sections. In Section 3, we establish some sufficient conditions for the existence and uniqueness of the equilibrium point of (1.1). In Section 4, we prove the equilibrium point of (1.1) is globally exponentially stable. In Section 5, we give an example to illustrate the feasibility and effectiveness of our results obtained in previous sections.

2 Preliminaries

In this section, we state some preliminary results.

Definition 2.1 [25]

Let be a nonempty closed subset (time scale) of . The forward and backward jump operators σ,ρ:TT and the graininess μ:T R + are defined, respectively, by

σ(t)=inf{sT:s>t},ρ(t)=sup{sT:s<t}andμ(t)=σ(t)t.

Lemma 2.1 [25]

Assume that p,q:TR are two regressive functions, then

  1. (i)

    e 0 (t,s)1 and e p (t,t)1;

  2. (ii)

    e p (t,s)= 1 e p ( s , t ) = e p (s,t);

  3. (iii)

    e p (t,s) e p (s,r)= e p (t,r);

  4. (iv)

    ( e p ( t , s ) ) Δ =p(t) e p (t,s).

Lemma 2.2 [25]

Let f, g be Δ-differentiable functions on T, then

  1. (i)

    ( ν 1 f + ν 2 g ) Δ = ν 1 f Δ + ν 2 g Δ for any constants ν 1 , ν 2 ;

  2. (ii)

    ( f g ) Δ (t)= f Δ (t)g(t)+f(σ(t)) g Δ (t)=f(t) g Δ (t)+ f Δ (t)g(σ(t)).

Lemma 2.3 [35]

Assume that p(t)0 for ts, then e p (t,s)1.

Definition 2.2 [35]

A function r:TR is called regressive if

1+μ(t)r(t)0

for all t T k . The set of all regressive and rd-continuous functions r:TR will be denoted by . We define the set R + ={rR:1+μ(t)r(t)>0,tT}.

Lemma 2.4 [35]

Suppose that p R + , then

  1. (i)

    e p (t,s)>0 for all t,sT;

  2. (ii)

    if p(t)q(t) for all ts, t,sT, then e p (t,s) e q (t,s) for all ts.

Lemma 2.5 [35]

If pR and a,b,cT, then

[ e p ( c , ) ] Δ =p [ e p ( c , ) ] σ

and

a b p(t) e p ( c , σ ( t ) ) Δt= e p (c,a) e p (c,b).

Lemma 2.6 [35]

Let a T k , bT and assume that f:T× T k R is continuous at (t,t), where t T k with t>a. Also assume that f Δ (t,) is rd-continuous on [a,σ(t)]. Suppose that for each ε>0, there exists a neighborhood U of τ[a,σ(t)] such that

| f ( σ ( t ) , τ ) f ( s , τ ) f Δ ( t , τ ) ( σ ( t ) s ) | ε | σ ( t ) s | ,sU,

where f Δ denotes the derivative of f with respect to the first variable. Then

  1. (i)

    g(t):= a t f(t,τ)Δτ implies g Δ (t):= a t f Δ (t,τ)Δτ+f(σ(t),t);

  2. (ii)

    h(t):= t b f(t,τ)Δτ implies h Δ (t):= t b f Δ (t,τ)Δτf(σ(t),t).

Definition 2.3 A point z = ( x 1 , x 2 , , x n , y 1 , y 2 , , y m ) T R n + m is said to be an equilibrium point of (1.1) if z(t)= z is a solution of (1.1).

Lemma 2.7 [17]

Let f j be defined on R, j=1,2,,m. Then, for any a i j R, i=1,2,,n, j=1,2,,m, we have the following estimations:

| j = 1 m a i j f j ( u j ) j = 1 m a i j f j ( v j ) | j = 1 m | a i j | | f j ( u j ) f j ( v j ) |

and

| j = 1 m a i j f j ( u j ) j = 1 m a i j f j ( v j ) | j = 1 m | a i j | | f j ( u j ) f j ( v j ) | ,

where u j , v j R, j=1,2,,m.

Definition 2.4 [36]

A real matrix A= ( a i j ) n × n is said to be an M-matrix if a i j 0, i,j=1,2,,n, ij and all successive principal minors of A are positive.

Lemma 2.8 [36]

Let A= ( a i j ) n × n be a matrix with nonpositive off-diagonal elements, then the following statements are equivalent:

  1. (i)

    A is an M-matrix;

  2. (ii)

    there exists a vector η>0 such that Aη>0;

  3. (iii)

    there exists a vector ξ>0 such that ξ T A>0;

  4. (iv)

    there exists a positive definite n×n diagonal matrix D such that AD+D A T >0.

Lemma 2.9 [36]

Let A0 be an l×l matrix with ρ(A)<1, then ( E l A ) 1 0, where ρ(A) denotes the spectral radius of A and E l is the identity matrix of size l.

Definition 2.5 Let z = ( x 1 , x 2 , , x n , y 1 , y 2 , , y m ) T be an equilibrium point of (1.1). If there exists a positive constant λ with λ R + such that for t 0 [ ϑ , 0 ] T , there exists M>1 such that for an arbitrary solution z(t)= ( x 1 ( t ) , x 2 ( t ) , , x n ( t ) , y 1 ( t ) , y 2 ( t ) , , y m ( t ) ) T of (1.1) with initial value ϕ(s)= ( φ 1 ( s ) , φ 2 ( s ) , , φ n ( s ) , ψ 1 ( s ) , ψ 2 ( s ) , , ψ m ( s ) ) T satisfies

| z ( t ) z | 1 M ϕ z e λ (t, t 0 ),t [ t 0 , ) T ,t t 0 ,

where ϑ=max{σ,τ}, | z ( t ) z | 1 =max{ max 1 i n {| x i (t) x i |}, max 1 j m {| y j (t) y j |}}, ϕ z =max{ max 1 i n max s [ σ , 0 ] T {| φ i (s) x i |}, max 1 j m max s [ τ , 0 ] T {| ψ j (s) y j |}}. Then the equilibrium point z is said to be globally exponentially stable.

3 Existence and uniqueness of an equilibrium point

In this section, we study the existence and uniqueness of an equilibrium point of (1.1).

Theorem 3.1 Let (H) hold. Suppose further that ρ(F)<1, where F= A 1 BL, A=diag( a 1 , a 2 ,, a n , b 1 , b 2 ,, b m ), L=diag( L 1 f , L 2 f ,, L m f , L 1 g , L 2 g ,, L n g ) and

B= ( 0 n × n P T Q T 0 m × m ) ,

P= ( | c j i | + | α j i | + | β j i | ) m × n , Q= ( | d i j | + | p i j | + | q i j | ) n × m . Then (1.1) has one unique equilibrium point.

Proof Let z = ( x 1 , x 2 , , x n , y 1 , y 2 , , y m ) T be an equilibrium point of (1.1), then we have

{ a i x i = j = 1 m c j i f j ( y j ) + j = 1 m α j i f j ( y j ) a i x i = + j = 1 m T j i μ j + j = 1 m β j i f j ( y j ) + j = 1 m H j i μ j + I i , b j y j = i = 1 n d i j g i ( x i ) + i = 1 n p i j g i ( x i ) + i = 1 n F i j ν i b j y j = + i = 1 n q i j g i ( x i ) + i = 1 n G i j ν i + J j ,

where i=1,2,,n, j=1,2,,m. Define a mapping Φ: R n + m R n + m as follows:

Φ( x 1 , x 2 ,, x n , y 1 , y 2 ,, y m )= ( Φ 1 , Φ 2 , , Φ n , Φ n + 1 , , Φ n + m ) T ,

where

{ Φ i = a i 1 [ j = 1 m c j i f j ( y j ) + j = 1 m α j i f j ( y j ) Φ i = + j = 1 m T j i μ j + j = 1 m β j i f j ( y j ) + j = 1 m H j i μ j + I i ] , Φ n + j = b j 1 [ i = 1 n d i j g i ( x i ) + i = 1 n p i j g i ( x i ) + i = 1 n F i j ν i Φ n + j = + i = 1 n q i j g i ( x i ) + i = 1 n G i j ν i + J j ]

for i=1,2,,n, j=1,2,,m. Obviously, we need to show that Φ: R n + m R n + m is a contraction mapping on R n + m . In fact, for any Θ=( h 1 , h 2 ,, h n , v 1 , v 2 ,, v m ) and Θ ¯ =( h ¯ 1 , h ¯ 2 ,, h ¯ n , v ¯ 1 , v ¯ 2 ,, v ¯ m ) R n + m , we have

| Φ i ( h i ) Φ i ( h ¯ i ) | = | a i 1 j = 1 m c j i ( f j ( v j ) f j ( v ¯ j ) ) | + | a i 1 j = 1 m α j i ( f j ( v j ) f j ( v ¯ j ) ) | + | a i 1 j = 1 m β j i ( f j ( v j ) f j ( v ¯ j ) ) | a i 1 j = 1 m ( | c j i | + | α j i | + | β j i | ) L j f | v j v ¯ j | , i = 1 , 2 , , n

and

| Φ n + j ( v j ) Φ n + j ( v ¯ j ) | = | b j 1 i = 1 n d i j ( g i ( h i ) g i ( h ¯ i ) ) | + | b j 1 i = 1 n p i j ( g i ( h i ) g i ( h ¯ i ) ) | + | b j 1 i = 1 n q i j ( g i ( h i ) g i ( h ¯ i ) ) | b j 1 i = 1 n ( | d i j | + | p i j | + | q i j | ) L i g | h i h ¯ i | , j = 1 , 2 , , m .

It follows that

| Φ ( h 1 , h 2 , , h n , v 1 , v 2 , , v m ) Φ ( h ¯ 1 , h ¯ 2 , , h ¯ n , v ¯ 1 , v ¯ 2 , , v ¯ m ) | ( a 1 1 j = 1 m ( | c j 1 | + | α j 1 | + | β j 1 | ) L j f | v j v ¯ j | a n 1 j = 1 m ( | c j n | + | α j n | + | β j n | ) L j f | v j v ¯ j | b 1 1 i = 1 n ( | d i 1 | + | p i 1 | + | q i 1 | ) L i g | h i h ¯ i | b m 1 i = 1 n ( | d i m | + | p i m | + | q i m | ) L i g | h i h ¯ i | ) = F ( | h 1 h ¯ 1 | | h n h ¯ n | | v 1 v ¯ 1 | | v m v ¯ m | ) .
(3.1)

Let N be a positive integer. In view of (3.1), we have

| Φ N ( h 1 , , h n , v 1 , , v m ) Φ N ( h ¯ 1 , , h ¯ n , v ¯ 1 , , v ¯ m ) | F N ( | h 1 h ¯ 1 | , , | h n h ¯ n | , | v 1 v ¯ 1 | , , | v m v ¯ m | ) T .

Since ρ(F)<1, we obtain lim N + F N =0, which implies that there exist a positive integer M and a positive constant r<1 such that

F M = ( A 1 B L ) M = ( l i j ) ( n + m ) × ( n + m ) , j = 1 n + m l i j r,i=1,2,,n+m.

Hence, we have

| Φ M ( h 1 , , h n , v 1 , , v m ) Φ M ( h ¯ 1 , , h ¯ n , v ¯ 1 , , v ¯ m ) | F M ( | h 1 h ¯ 1 | | h n h ¯ n | | v 1 v ¯ 1 | | v m v ¯ m | ) F M ( h 1 h ¯ 1 h n h ¯ n v 1 v ¯ 1 v m v ¯ m ) = Θ Θ ¯ ( j = 1 n + m l 1 j j = 1 n + m l n j j = 1 n + m l ( n + 1 ) j j = 1 n + m l ( n + m ) j ) ,

which implies that Φ M (Θ) Φ M ( Θ ¯ )rΘ Θ ¯ . Since r<1, it is obvious that the mapping Φ M : R n + m R n + m is a contraction mapping. By the fixed point theorem of a Banach space, Φ possesses a unique fixed point in R n + m , that is, there exists a unique equilibrium point of (1.1). The proof of Theorem 3.1 is completed. □

4 Global exponential stability of an equilibrium point

In this section, we study the global exponential stability of the equilibrium point of (1.1).

Theorem 4.1 Let (H) and ρ(F)<1 hold. Suppose further that

(H5) max{ ϵ 1 , ϵ 2 }<1, where

ϵ 1 = max 1 i n { a i δ i + + ( δ i + + a i 1 ) j = 1 m ( | c j i | + | α j i | + | β j i | ) L j f }

and

ϵ 2 = max 1 j m { b j η j + + ( η j + + b j 1 ) i = 1 n ( | d i j | + | p i j | + | q i j | ) L i g } .

Then the equilibrium point of (1.1) is globally exponentially stable.

Proof By Theorem 3.1, (1.1) has a unique equilibrium point z = ( x 1 , x 2 , , x n , y 1 , y 2 , , y m ) T . Suppose that z(t)= ( x 1 ( t ) , x 2 ( t ) , , x n ( t ) , y 1 ( t ) , y 2 ( t ) , , y m ( t ) ) T is an arbitrary solution of (1.1) with the initial condition ϕ(s)= ( φ 1 ( s ) , φ 2 ( s ) , , φ n ( s ) , ψ 1 ( s ) , ψ 2 ( s ) , , ψ m ( s ) ) T . Let w(t)= ( u 1 ( t ) , u 2 ( t ) , , u n ( t ) , v 1 ( t ) , v 2 ( t ) , , v m ( t ) ) T =z(t) z , where u i (t)= x i (t) x i , v j (t)= y j (t) y j , i=1,2,,n, j=1,2,,m. Then (1.1) can be rewritten as

{ u i Δ ( t ) = a i u i ( t δ i ( t ) ) + j = 1 m c j i f ˜ j ( v j ( t τ j i ( t ) ) ) + j = 1 m α j i f j ( v j ( t τ j i ( t ) ) + y j ) u i Δ ( t ) = j = 1 m α j i f j ( y j ) + j = 1 m β j i f j ( v j ( t τ j i ( t ) ) + y j ) u i Δ ( t ) = j = 1 m β j i f j ( y j ) , i = 1 , 2 , , n , v j Δ ( t ) = b j v j ( t η j ( t ) ) + i = 1 n d i j g ˜ i ( u i ( t σ i j ( t ) ) ) + i = 1 n p i j g i ( u i ( t σ i j ( t ) ) + x i ) v j Δ ( t ) = i = 1 n p i j g i ( x i ) + i = 1 n q i j g i ( u i ( t σ i j ( t ) ) + x i ) v j Δ ( t ) = i = 1 n q i j g i ( x i ) , j = 1 , 2 , , m ,
(4.1)

where tT and

f ˜ j ( v j ( t τ j i ( t ) ) ) = f j ( y j ( t τ j i ( t ) ) ) f j ( y j ) , g ˜ i ( u i ( t σ i j ( t ) ) ) = g i ( x i ( t σ i j ( t ) ) ) g i ( x i ) .

The initial condition of (4.1) is the following:

{ u i ( s ) = φ i ( s ) x i , s [ σ , 0 ] T , i = 1 , 2 , , n , v j ( s ) = ψ j ( s ) y j , s [ τ , 0 ] T , j = 1 , 2 , , m .

We rewrite (4.1) as follows:

u i Δ ( s ) + a i u i ( s ) = a i s δ i ( s ) s u i Δ ( θ ) Δ θ + j = 1 m c j i f ˜ j ( v j ( s τ j i ( s ) ) ) + j = 1 m α j i f j ( v j ( s τ j i ( s ) ) + y j ) j = 1 m α j i f j ( y j ) + j = 1 m β j i f j ( v j ( s τ j i ( s ) ) + y j ) j = 1 m β j i f j ( y j ) , i = 1 , 2 , , n
(4.2)

and

v j Δ ( s ) + b j v j ( s ) = b j s η j ( s ) s v j Δ ( θ ) Δ θ + i = 1 n d i j g ˜ i ( u i ( s σ i j ( s ) ) ) + i = 1 n p i j g i ( u i ( s σ i j ( s ) ) + x i ) i = 1 n p i j g i ( x i ) + i = 1 n q i j g i ( u i ( s σ i j ( s ) ) + x i ) i = 1 n q i j g i ( x i ) , j = 1 , 2 , , m .
(4.3)

Multiplying both sides of (4.2) by e a i (t,σ(s)) and integrating on [ t 0 , t ] T , where t 0 [ ϑ , 0 ] T , we get

u i ( t ) = u i ( t 0 ) e a i ( t , t 0 ) + t 0 t e a i ( t , σ ( s ) ) { a i s δ i ( s ) s u i Δ ( θ ) Δ θ + j = 1 m c j i f ˜ j ( v j ( s τ j i ( s ) ) ) + j = 1 m α j i f j ( v j ( s τ j i ( s ) ) + y j ) j = 1 m α j i f j ( y j ) + j = 1 m β j i f j ( v j ( s τ j i ( s ) ) + y j ) j = 1 m β j i f j ( y j ) } Δ s , i = 1 , 2 , , n .
(4.4)

Similarly, multiplying both sides of (4.3) by e b j (t,σ(s)) and integrating on [ t 0 , t ] T , we get

v j ( t ) = v j ( t 0 ) e b j ( t , t 0 ) + t 0 t e b j ( t , σ ( s ) ) { b j s η j ( s ) s v j Δ ( θ ) Δ θ + i = 1 n d i j g ˜ i ( u i ( s σ i j ( s ) ) ) + i = 1 n p i j g i ( u i ( s σ i j ( s ) ) + x i ) i = 1 n p i j g i ( x i ) + i = 1 n q i j g i ( u i ( s σ i j ( s ) ) + x i ) i = 1 n q i j g i ( x i ) } Δ s , j = 1 , 2 , , m .
(4.5)

For a positive constant α<min{ min 1 i n a i , min 1 j m b j } with α R + , we have e α (t, t 0 )>1 for t< t 0 . Take M>max{ 1 ϵ 1 , 1 ϵ 2 }. In view of (H5), it is obvious that M>1. Hence, we have

| w ( t ) | 1 M e α (t, t 0 ) ϕ z ,t [ ϑ , t 0 ] T .

We claim that

| w ( t ) | 1 M e α (t, t 0 ) ϕ z ,t ( t 0 , + ) T .
(4.6)

To prove this claim, we show that for any p>1, the following inequality holds:

| w ( t ) | 1 <pM e α (t, t 0 ) ϕ z ,t ( t 0 , + ) T ,
(4.7)

which means that for i=1,2,,n, we have

| u i ( t ) | <pM e α (t, t 0 ) ϕ z ,t ( t 0 , + ) T
(4.8)

and for j=1,2,,m, we have

| v j ( t ) | <pM e α (t, t 0 ) ϕ z ,t ( t 0 , + ) T .
(4.9)

By way of contradiction, assume that (4.7) does not hold. Firstly, we consider the following two cases.

Case One: (4.8) is not true and (4.9) is true. Then there exist t 1 ( t 0 , + ) T and i 0 {1,2,,n} such that

| u i 0 ( t 1 ) | p M e α ( t 1 , t 0 ) ϕ z , | u i 0 ( t ) | < p M e α ( t , t 0 ) ϕ z , t ( t 0 , t 1 ) T , | u l ( t ) | < p M e α ( t , t 0 ) ϕ z for  l i 0 , t ( t 0 , t 1 ] T , l = 1 , 2 , , n .

Hence, there must be a constant c>1 such that

| u i 0 ( t 1 ) | = c p M e α ( t 1 , t 0 ) ϕ z , | u i 0 ( t ) | < c p M e α ( t , t 0 ) ϕ z , t ( t 0 , t 1 ) T , | u l ( t ) | < c p M e α ( t , t 0 ) ϕ z for  l i 0 , t ( t 0 , t 1 ] T , l = 1 , 2 , , n .

Note that in view of (4.4), we have

| u i 0 ( t 1 ) | = | u i 0 ( t 0 ) e a i 0 ( t 1 , t 0 ) + t 0 t 1 e a i 0 ( t 1 , σ ( s ) ) × { a i 0 s δ i 0 ( s ) s u i 0 Δ ( θ ) Δ θ + j = 1 m c j i 0 f ˜ j ( v j ( s τ j i 0 ( s ) ) ) + j = 1 m α j i 0 f j ( v j ( s τ j i 0 ( s ) ) + y j ) j = 1 m α j i 0 f j ( y j ) + j = 1 m β j i 0 f j ( v j ( s τ j i 0 ( s ) ) + y j ) j = 1 m β j i 0 f j ( y j ) } Δ s | = | u i 0 ( t 0 ) e a i 0 ( t 1 , t 0 ) + t 0 t 1 e a i 0 ( t 1 , σ ( s ) ) × { a i 0 s δ i 0 ( s ) s [ a i 0 u i 0 ( θ δ i 0 ( θ ) ) + j = 1 m c j i 0 f ˜ j ( v j ( θ τ j i 0 ( θ ) ) ) + j = 1 m α j i 0 f j ( v j ( θ τ j i 0 ( θ ) ) + y j ) j = 1 m α j i 0 f j ( y j ) + j = 1 m β j i 0 f j ( v j ( θ τ j i 0 ( θ ) ) + y j ) j = 1 m β j i 0 f j ( y j ) ] Δ θ + j = 1 m c j i 0 f ˜ j ( v j ( s τ j i 0 ( s ) ) ) + j = 1 m α j i 0 f j ( v j ( s τ j i 0 ( s ) ) + y j ) j = 1 m α j i 0 f j ( y j ) + j = 1 m β j i 0 f j ( v j ( s τ j i 0 ( s ) ) + y j ) j = 1 m β j i 0 f j ( y j ) } Δ s | e a i 0 ( t 1 , t 0 ) ϕ z + t 0 t 1 e a i 0 ( t 1 , σ ( s ) ) × { a i 0 s δ i 0 ( s ) s [ a i 0 | u i 0 ( θ δ i 0 ( θ ) ) | + | j = 1 m c j i 0 f ˜ j ( v j ( θ τ j i 0 ( θ ) ) ) + j = 1 m α j i 0 f j ( v j ( θ τ j i 0 ( θ ) ) + y j ) j = 1 m α j i 0 f j ( y j ) + j = 1 m β j i 0 f j ( v j ( θ τ j i 0 ( θ ) ) + y j ) j = 1 m β j i 0 f j ( y j ) | ] Δ θ + | j = 1 m c j i 0 f ˜ j ( v j ( s τ j i 0 ( s ) ) ) + j = 1 m α j i 0 f j ( v j ( s τ j i 0 ( s ) ) + y j ) j = 1 m α j i 0 f j ( y j ) + j = 1 m β j i 0 f j ( v j ( s τ j i 0 ( s ) ) + y j ) j = 1 m β j i 0 f j ( y j ) | } Δ s ϕ z + t 0 t 1 e a i 0 ( t 1 , σ ( s ) ) { a i 0 δ i 0 + [ a i 0 c p M e α ( t 1 , t 0 ) ϕ z + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f c p M e α ( t 1 , t 0 ) ϕ z ] + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f c p M e α ( t 1 , t 0 ) ϕ z } Δ s ϕ z e α ( t 1 , t 0 ) + t 0 t 1 e a i 0 ( t 1 , σ ( s ) ) × { a i 0 δ i 0 + [ a i 0 c p M e α ( t 1 , t 0 ) ϕ z + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f c p M e α ( t 1 , t 0 ) ϕ z ] + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f c p M e α ( t 1 , t 0 ) ϕ z } Δ s = ϕ z e α ( t 1 , t 0 ) + c p M e α ( t 1 , t 0 ) ϕ z × t 0 t 1 e a i 0 ( t 1 , σ ( s ) ) { a i 0 δ i 0 + [ a i 0 + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f ] + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f } Δ s = ϕ z e α ( t 1 , t 0 ) 1 a i 0 c p M e α ( t 1 , t 0 ) ϕ z × { a i 0 δ i 0 + [ a i 0 + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f ] + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f } t 0 t 1 ( a i 0 ) e a i 0 ( t 1 , σ ( s ) ) Δ s = ϕ z e α ( t 1 , t 0 ) 1 a i 0 ( e a i 0 ( t 1 , t 0 ) 1 ) c p M e α ( t 1 , t 0 ) ϕ z × { a i 0 δ i 0 + [ a i 0 + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f ] + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f } < c p M ϕ z e α ( t 1 , t 0 ) × { 1 c p M + 1 a i 0 [ a i 0 δ i 0 + ( a i 0 + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f ) + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f ] } < c p M ϕ z e α ( t 1 , t 0 ) × { 1 M + 1 a i 0 [ a i 0 δ i 0 + ( a i 0 + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f ) + j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f ] } = c p M ϕ z e α ( t 1 , t 0 ) × ( 1 M + a i 0 δ i 0 + + ( δ i 0 + + a i 0 1 ) j = 1 m ( | c j i 0 | + | α j i 0 | + | β j i 0 | ) L j f ) < c p M e α ( t 1 , t 0 ) ϕ z ,

which is a contradiction.

Case Two: (4.8) is true and (4.9) is not true. Then there exist t 2 ( t 0 , + ) T and j 0 {1,2,,n} such that

| v j 0 ( t 2 ) | p M e α ( t 2 , t 0 ) ϕ z , | v j 0 ( t ) | < p M e α ( t , t 0 ) ϕ z , t ( t 0 , t 2 ) T , | v k ( t ) | < p M e α ( t , t 0 ) ϕ z for  k j 0 , t ( t 0 , t 2 ] T , k = 1 , 2 , , m .

Hence, there must be a constant c 1 >1 such that

| v j 0 ( t 2 ) | = c 1 p M e α ( t 2 , t 0 ) ϕ z , | v j 0 ( t ) | < c 1 p M e α ( t , t 0 ) ϕ z , t ( t 0 , t 2 ) T , | v k ( t ) | < c 1 p M e α ( t , t 0 ) ϕ z for  k j 0 , t ( t 0 , t 2 ] T , k = 1 , 2 , , m .

Note that in view of (4.5), we have

| v j 0 ( t 2 ) | = | v j 0 ( t 0 ) e b j 0 ( t 2 , t 0 ) + t 0 t 2 e b j 0 ( t 2 , σ ( s ) ) × { b j 0 s η j 0 ( s ) s [ b j 0 v j 0 ( θ η j 0 ( θ ) ) + i = 1 n d i j 0 g ˜ i ( u i ( θ σ i j 0 ( θ ) ) ) + i = 1 n p i j 0 g i ( u i ( θ σ i j 0 ( θ ) ) + x i ) i = 1 n p i j 0 g i ( x i ) + i = 1 n q i j 0 g i ( u i ( θ σ i j 0 ( θ ) ) + x i ) i = 1 n q i j 0 g i ( x i ) ] Δ θ + i = 1 n d i j 0 g ˜ i ( u i ( s σ i j 0 ( s ) ) ) + i = 1 n p i j 0 g i ( u i ( s σ i j 0 ( s ) ) + x i ) i = 1 n p i j 0 g i ( x i ) + i = 1 n q i j 0 g i ( u i ( s σ i j 0 ( s ) ) + x i ) i = 1 n q i j 0 g i ( x i ) } Δ s | e b j 0 ( t 2 , t 0 ) ϕ z + | t 0 t 2 e b j 0 ( t 2 , σ ( s ) ) × { b j 0 s η j 0 ( s ) s [ b j 0 v j 0 ( θ η j 0 ( θ ) ) + i = 1 n d i j 0 g ˜ i ( u i ( θ σ i j 0 ( θ ) ) ) + i = 1 n p i j 0 g i ( u i ( θ σ i j 0 ( θ ) ) + x i ) i = 1 n p i j 0 g i ( x i ) + i = 1 n q i j 0 g i ( u i ( θ σ i j 0 ( θ ) ) + x i ) i = 1 n q i j 0 g i ( x i ) ] Δ θ + i = 1 n d i j 0 g ˜ i ( u i ( s σ i j 0 ( s ) ) ) + i = 1 n p i j 0 g i ( u i ( s σ i j 0 ( s ) ) + x i ) i = 1 n p i j 0 g i ( x i ) + i = 1 n q i j 0 g i ( u i ( s σ i j 0 ( s ) ) + x i ) i = 1 n q i j 0 g i ( x i ) } Δ s | ϕ z + t 0 t 2 e b j 0 ( t 2 , σ ( s ) ) { b j 0 η j 0 + [ b j 0 c 1 p M e α ( t 2 , t 0 ) ϕ z + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g c 1 p M e α ( t 2 , t 0 ) ϕ z ] + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g c 1 p M e α ( t 2 , t 0 ) ϕ z } Δ s ϕ z e α ( t 2 , t 0 ) + t 0 t 2 e b j 0 ( t 2 , σ ( s ) ) × { b j 0 η j 0 + [ b j 0 c 1 p M e α ( t 2 , t 0 ) ϕ z + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g c 1 p M e α ( t 2 , t 0 ) ϕ z ] + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g c 1 p M e α ( t 2 , t 0 ) ϕ z } Δ s = ϕ z e α ( t 2 , t 0 ) + c 1 p M e α ( t 2 , t 0 ) ϕ z × t 0 t 2 e b j 0 ( t 2 , σ ( s ) ) { b j 0 η j 0 + [ b j 0 + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g ] + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g } Δ s = ϕ z e α ( t 2 , t 0 ) 1 b j 0 c 1 p M e α ( t 2 , t 0 ) ϕ z × { b j 0 η j 0 + [ b j 0 + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g ] + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g } t 0 t 2 e b j 0 ( t 2 , σ ( s ) ) Δ s = ϕ z e α ( t 2 , t 0 ) 1 b j 0 ( e b j 0 ( t 2 , t 0 ) 1 ) c 1 p M e α ( t 2 , t 0 ) ϕ z × { b j 0 η j 0 + [ b j 0 + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g ] + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g } < c 1 p M ϕ z e α ( t 2 , t 0 ) × { 1 c 1 p M + 1 b j 0 [ b j 0 η j 0 + ( b j 0 + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g ) + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g ] } < c 1 p M ϕ z e α ( t 2 , t 0 ) × { 1 M + 1 b j 0 [ b j 0 η j 0 + ( b j 0 + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g ) + i = 1 n ( | d i j 0 | + | p i j 0 | + | q i j 0 | ) L i g ] } = c 1 p M ϕ z e α ( t 2 , t 0 ) ( 1 M + b j η j + + ( η j + + b j 1 ) i = 1 n ( | d i j | + | p i j | + | q i j | ) L i g ) < c 1 p M e α ( t 2 , t 0 ) ϕ z ,

which is also a contradiction.

By the above two cases, for other cases of negative proposition of (4.7), we can obtain a contradiction. Therefore, (4.7) holds. Let p1, then (4.6) holds. Hence, we have that

| w ( t ) | 1 M ϕ z e α (t, t 0 ),t [ ϑ , ) T ,t t 0 ,

which means that the equilibrium point z of (1.1) is globally exponentially stable. The proof of Theorem 4.1 is completed. □

5 Example

In this section, we present an example to illustrate the feasibility of our results.

Example 5.1 Let n=m=2. Consider the following fuzzy BAM system with delays in leakage terms on a time scale :

{ x i Δ ( t ) = a i x i ( t δ i ( t ) ) + j = 1 2 c j i f j ( y j ( t τ j i ( t ) ) ) + j = 1 2 α j i f j ( y j ( t τ j i ( t ) ) ) x i Δ ( t ) = + j = 1 2 T j i μ j + j = 1 2 β j i f j ( y j ( t τ j i ( t ) ) ) + j = 1 2 H j i μ j + I i , t T , i = 1 , 2 , y j Δ ( t ) = b j y j ( t η j ( t ) ) + i = 1 2 d i j g i ( x i ( t σ i j ( t ) ) ) + i = 1 2 p i j g i ( x i ( t σ i j ( t ) ) ) y j Δ ( t ) = + i = 1 2 F i j ν i + i = 1 2 q i j g i ( x i ( t σ i j ( t ) ) ) + i = 1 2 G i j ν i + J j , t T , j = 1 , 2 ,
(5.1)

where time delays δ i , τ j i , η j , σ i j , i,j=1,2 are defined as those in system (1.1) and the coefficients are as follows:

( a 1 0 0 a 2 ) = ( 3 0 0 4 ) , ( b 1 0 0 b 2 ) = ( 2 0 0 3 ) , ( c j i ) 2 × 2 = ( 0.01 0.03 0.06 0.04 ) , ( α j i ) 2 × 2 = ( 0.02 0 0.01 0.04 ) , ( β j i ) 2 × 2 = ( 0.05 0.03 0 0.02 ) , ( d i j ) 2 × 2 = ( 0.03 0.01 0.04 0.02 ) , ( p i j ) 2 × 2 = ( 0.03 0.02 0.01 0.04 ) , ( q i j ) 2 × 2 = ( 0 0.01 0.02 0.03 ) , ( δ i ( t ) ) 2 × 2 = ( 0.001 | sin t | 0 0 0.006 | cos t | ) , ( I i ) 2 × 1 = ( 3 4 ) , ( η j ( t ) ) 2 × 2 = ( 0.002 | sin 2 t | 0 0 0.004 | sin t 1 | ) , ( J j ) 2 × 1 = ( 2 1 ) , f j ( u j ) = 0.02 | u j | , g i ( v i ) = 0.04 ( | v i + 1 | | v i 1 | ) , μ j = ν i = 1 , i , j = 1 , 2 ,

and ( T j i ) 2 × 2 = ( H j i ) 2 × 2 = ( F i j ) 2 × 2 = ( G i j ) 2 × 2 are identity matrices. By calculating, we have L j f = L i g =0.02. We can verify that for T=R and T=Z, all the conditions of Theorem 3.1 and Theorem 4.1 are satisfied. Hence, for T=R or T=Z, (5.1) always has one unique equilibrium point, which is globally exponentially stable.

References

  1. Kosko B: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 1988, 18: 49-60. 10.1109/21.87054

    Article  MathSciNet  Google Scholar 

  2. Zhao HY: Global stability of bidirectional associative memory neural networks with distributed delays. Phys. Lett. A 2002, 297: 182-190. 10.1016/S0375-9601(02)00434-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Li YK: Existence and stability of periodic solution for BAM neural networks with distributed delays. Appl. Math. Comput. 2004, 159: 847-862. 10.1016/j.amc.2003.11.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Park JH, Park CH, Kwon OM, Lee SM: A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl. Math. Comput. 2008, 199: 716-722. 10.1016/j.amc.2007.10.032

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhou Q: Global exponential stability of BAM neural networks with distributed delays and impulses. Nonlinear Anal., Real World Appl. 2009, 10: 144-153. 10.1016/j.nonrwa.2007.08.019

    Article  MathSciNet  MATH  Google Scholar 

  6. Li YK: Global exponential stability of BAM neural networks with delays and impulses. Chaos Solitons Fractals 2005, 24: 279-285.

    Article  MathSciNet  MATH  Google Scholar 

  7. Zheng B, Zhang Y, Zhang C: Global existence of periodic solutions on a simplified BAM neural network model with delays. Chaos Solitons Fractals 2008, 37: 1397-1408. 10.1016/j.chaos.2006.10.029

    Article  MathSciNet  MATH  Google Scholar 

  8. Xia Y, Cao JD, Lin M: New results on the existence and uniqueness of almost periodic solution for BAM neural networks with continuously distributed delays. Chaos Solitons Fractals 2007, 31: 928-936. 10.1016/j.chaos.2005.10.043

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang L, Si L: Existence and exponential stability of almost periodic solution for BAM neural networks with variable coefficients and delays. Appl. Math. Comput. 2007, 194: 215-223. 10.1016/j.amc.2007.04.044

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu C, Li C, Liao X: Variable-time impulses in BAM neural networks with delays. Neurocomputing 2011, 74: 3286-3295. 10.1016/j.neucom.2011.05.005

    Article  Google Scholar 

  11. Yang T, Yang L, Wu C, Chua L: Fuzzy cellular neural networks: theory. Proceedings of IEEE International Workshop on Cellular Neural Networks and Applications 1996, 181-186.

    Google Scholar 

  12. Yuan K, Cao JD, Deng J: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays. Neurocomputing 2006, 69: 1619-1627. 10.1016/j.neucom.2005.05.011

    Article  Google Scholar 

  13. Zhang Q, Xiang R: Global asymptotic stability of fuzzy cellular neural networks with time-varying delays. Phys. Lett. A 2008, 372: 3971-3977. 10.1016/j.physleta.2008.01.063

    Article  MathSciNet  MATH  Google Scholar 

  14. Song Q, Cao JD: Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses. J. Franklin Inst. 2008, 345: 39-59. 10.1016/j.jfranklin.2007.06.001

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang J, Lu J: Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms. Chaos Solitons Fractals 2008, 38: 878-885. 10.1016/j.chaos.2007.01.032

    Article  MathSciNet  MATH  Google Scholar 

  16. Li YK, Yang L, Wu WQ: Periodic solutions for a class of fuzzy BAM neural networks with distributed delays and variable coefficients. Int. J. Bifurc. Chaos 2010, 20: 1551-1565. 10.1142/S0218127410026708

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu Y, Tang W: Exponential stability of fuzzy cellular neural networks with constant and time-varying delays. Phys. Lett. A 2004, 323: 224-233. 10.1016/j.physleta.2004.01.064

    Article  MathSciNet  MATH  Google Scholar 

  18. Gopalsamy K: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht; 1992.

    Book  MATH  Google Scholar 

  19. Li X, Cao JD: Delay-dependent stability of neural networks of neutral type with time delay in the leakage term. Nonlinearity 2010, 23: 1709-1726. 10.1088/0951-7715/23/7/010

    Article  MathSciNet  MATH  Google Scholar 

  20. Li X, Rakkiyappan R, Balasubramanian P: Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations. J. Franklin Inst. 2011, 348: 135-155. 10.1016/j.jfranklin.2010.10.009

    Article  MathSciNet  MATH  Google Scholar 

  21. Li X, Fu X, Balasubramaniam P, Rakkiyappan R: Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations. Nonlinear Anal., Real World Appl. 2010, 11: 4092-4108. 10.1016/j.nonrwa.2010.03.014

    Article  MathSciNet  MATH  Google Scholar 

  22. Balasubramaniam P, Vembarasan V, Rakkiyappan R: Leakage delays in T-S fuzzy cellular neural networks. Neural Process. Lett. 2011, 33: 111-136. 10.1007/s11063-010-9168-3

    Article  MATH  Google Scholar 

  23. Balasubramaniam P, Kalpana M, Rakkiyappan R: Global asymptotic stability of BAM fuzzy cellular neural networks with time delays in the leakage term, discrete and unbounded distributed delays. Math. Comput. Model. 2011, 53: 839-853. 10.1016/j.mcm.2010.10.021

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu BW: Global exponential stability for BAM neural networks with time-varying delays in the leakage terms. Nonlinear Anal., Real World Appl. 2013, 14: 559-566. 10.1016/j.nonrwa.2012.07.016

    Article  MathSciNet  MATH  Google Scholar 

  25. Hilger S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 1990, 18: 18-56. 10.1007/BF03323153

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Z, Liu K: Existence and global exponential stability of a periodic solution to interval general bidirectional associative memory (BAM) neural networks with multiple delays on time scales. Neural Netw. 2011, 24: 427-439. 10.1016/j.neunet.2011.02.001

    Article  MATH  Google Scholar 

  27. Li YK, Chen XR, Zhao L: Stability and existence of periodic solutions to delayed Cohen-Grossberg BAM neural networks with impulses on time scales. Neurocomputing 2009, 72: 1621-1630. 10.1016/j.neucom.2008.08.010

    Article  Google Scholar 

  28. Li YK, Gao S: Global exponential stability for impulsive BAM neural networks with distributed delays on time scales. Neural Process. Lett. 2010, 31: 65-91. 10.1007/s11063-009-9127-z

    Article  Google Scholar 

  29. Zhang JM, Fan M, Zhu HP: Existence and roughness of exponential dichotomies of linear dynamic equations on time scales. Comput. Math. Appl. 2010, 59: 2658-2675.

    Article  MathSciNet  MATH  Google Scholar 

  30. Lakshmikantham V, Vatsala AS: Hybrid systems on time scales. J. Comput. Appl. Math. 2002, 141: 227-235. 10.1016/S0377-0427(01)00448-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Li YK, Zhao KH: Robust stability of delayed reaction-diffusion recurrent neural networks with Dirichlet boundary conditions on time scales. Neurocomputing 2011, 74: 1632-1637. 10.1016/j.neucom.2011.01.006

    Article  Google Scholar 

  32. Li YK, Zhang TW: Global exponential stability of fuzzy interval delayed neural networks with impulses on time scales. Int. J. Neural Syst. 2009, 19: 449-456. 10.1142/S0129065709002142

    Article  Google Scholar 

  33. Li YK, Zhao KH, Ye Y: Stability of reaction-diffusion recurrent neural networks with distributed delays and Neumann boundary conditions on time scales. Neural Process. Lett. 2012, 36: 217-234. 10.1007/s11063-012-9232-2

    Article  Google Scholar 

  34. Li YK, Wang C: Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales. Abstr. Appl. Anal. 2011., 2011: Article ID 341520

    Google Scholar 

  35. Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001.

    Book  MATH  Google Scholar 

  36. Berman A, Plemmons R: Nonnegative Matrices in the Mathematical Science. Academic Press, New York; 1979.

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Sciences Foundation of People’s Republic of China under Grant 10971183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkun Li.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors typed, read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Li, Y., Yang, L. & Sun, L. Existence and exponential stability of an equilibrium point for fuzzy BAM neural networks with time-varying delays in leakage terms on time scales. Adv Differ Equ 2013, 218 (2013). https://doi.org/10.1186/1687-1847-2013-218

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2013-218

Keywords