Skip to content

Advertisement

  • Research
  • Open Access

On the behavior of solutions of the system of rational difference equations x n + 1 = x n - 1 y n x n - 1 - 1 , y n + 1 = y n - 1 x n y n - 1 - 1 , z n + 1 = 1 y n z n

Advances in Difference Equations20112011:40

https://doi.org/10.1186/1687-1847-2011-40

Received: 2 March 2011

Accepted: 6 October 2011

Published: 6 October 2011

Abstract

In this article, we investigate the solutions of the system of difference equations x n + 1 = x n - 1 y n x n - 1 - 1 , y n + 1 = y n - 1 x n y n - 1 - 1 , z n + 1 = 1 y n z n where x 0, x -1, y 0, y -1, z 0, z -1 real numbers such that y 0 x -1 ≠ 1, x 0 y -1 ≠ 1 and y 0 z 0 ≠ 0.

Keywords

  • Differential Equation
  • Real Number
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis

1. Introduction

In [1], Kurbanli et al. studied the behavior of positive solutions of the system of rational difference equations
x n + 1 = x n - 1 y n x n - 1 + 1 , y n + 1 = y n - 1 x n y n - 1 + 1 .
In [2], Cinar studied the solutions of the systems of difference equations
x n + 1 = 1 y n , y n + 1 = y n x n - 1 y n - 1 .
In [3], Kurbanli, studied the behavior of solutions of the system of rational difference equations
x n + 1 = x n - 1 y n x n - 1 - 1 , y n + 1 = y n - 1 x n y n - 1 - 1 , z n + 1 = z n - 1 y n z n - 1 - 1 .
In [4], Papaschinnopoulos and Schinas proved the boundedness, persistence, the oscillatory behavior, and the asymptotic behavior of the positive solutions of the system of difference equations
x n + 1 = i = 0 k A i y n - i p i , y n + 1 = i = 0 k B i x n - i q i
In [5], Clark and Kulenović investigate the global stability properties and asymptotic behavior of solutions of the system of difference equations
x n + 1 = x n a + c y n , y n + 1 = y n b + d x n .
In [6], Camouzis and Papaschinnopoulos studied the global asymptotic behavior of positive solutions of the system of rational difference equations
x n + 1 = 1 + x n y n - m , y n + 1 = 1 + y n x n - m .
In [7], Kulenović and Nurkanović studied the global asymptotic behavior of solutions of the system of difference equations
x n + 1 = a + x n b + y n , y n + 1 = c + y n d + z n , z n + 1 = e + z n f + x n .
In [8], Özban studied the positive solutions of the system of rational difference equations
x n + 1 = 1 y n - k , y n + 1 = y n x n - m y n - m - k .
In [9], Zhang et al. investigated the behavior of the positive solutions of the system of the difference equations
x n = A + 1 y n - p , y n = A + y n - 1 x n - r y n - s .
In [10], Yalcinkaya studied the global asymptotic stability of the system of difference equations
z n + 1 = t n z n - 1 + a t n + z n - 1 , t n + 1 = z n t n - 1 + a z n + t n - 1
In [11], Irićanin and Stević studied the positive solutions of the system of difference equations
x n + 1 ( 1 ) = 1 + x n ( 2 ) x n - 1 ( 3 ) , x n + 1 ( 2 ) = 1 + x n ( 3 ) x n - 1 ( 4 ) , , x n + 1 ( k ) = 1 + x n ( 1 ) x n - 1 ( 2 ) , x n + 1 ( 1 ) = 1 + x n ( 2 ) + x n - 1 ( 3 ) x n - 2 ( 4 ) , x n + 1 ( 2 ) = 1 + x n ( 3 ) + x n - 1 ( 4 ) x n - 2 ( 5 ) , , x n + 1 ( k ) = 1 + x n ( 1 ) + x n - 1 ( 2 ) x n - 2 ( 3 )

Although difference equations are very simple in form, it is extremely difficult to understand throughly the global behavior of their solutions, for example, see Refs. [1234].

In this article, we investigate the behavior of the solutions of the difference equation system
x n + 1 = x n - 1 y n x n - 1 - 1 , y n + 1 = y n - 1 x n y n - 1 - 1 , z n + 1 = 1 y n z n
(1.1)

where x 0, x -1, y 0, y -1, z 0, z -1 real numbers such that y 0 x -1 ≠ 1, x 0 y -1 ≠ 1 and y 0 z 0 ≠ 0.

2. Main results

Theorem 1. Let y 0 = a, y -1 = b, x 0 = c, x -1 = d, z 0 = e, z -1 = f be real numbers such that y 0 x -1 ≠ 1, x 0 y -1 ≠ 1 and y 0 z 0 ≠ 0. Let {x n , y n , z n } be a solution of the system (1.1). Then all solutions of (1.1) are
x n = d ( a d - 1 ) n , n - - - o d d c ( c b - 1 ) n , n - - - e v e n
(1.2)
y n = b ( c b - 1 ) n , n - - - o d d a ( a d - 1 ) n , n - - - e v e n
(1.3)
z n = b n - 1 a n e a d - 1 c d - 1 i = 1 k i , n - - - o d d a n e ( a d - 1 ) i = 1 k ( i - 1 ) ( c b - 1 ) i = 1 k i b n , n - - - e v e n
(1.4)
Proof. For n = 0, 1, 2, 3, we have
x 1 = x - 1 y 0 x - 1 - 1 = d a d - 1 , y 1 = y - 1 x 0 y - 1 - 1 = b c b - 1 , z 1 = 1 y 0 z 0 = 1 a e , x 2 = x 0 y 1 x 0 - 1 = c b c b - 1 c - 1 = c ( c b - 1 ) , y 2 = y 0 x 1 y 0 - 1 = a d a d - 1 a - 1 = a ( a d - 1 ) z 2 = 1 y 1 z 1 = 1 b c b - 1 1 a e = ( c b - 1 ) a e b , x 3 = x 1 y 2 x 1 - 1 = d a d - 1 a a d - 1 d a d - 1 - 1 = d ( a d - 1 ) 2 , y 3 = y 1 x 2 y 1 - 1 = b c b - 1 c c b - 1 b c b - 1 - 1 = b ( c b - 1 ) 2 , z 3 = 1 y 2 z 2 = 1 a ( a d - 1 ) ( c b - 1 ) a e b = b a 2 e ( a d - 1 ) ( c b - 1 )
for n = k, assume that
x 2 k - 1 = x 2 k - 3 y 2 k - 2 x 2 k - 3 - 1 = d ( a d - 1 ) k , x 2 k = x 2 k - 2 y 2 k - 1 x 2 k - 2 - 1 = c ( c b - 1 ) k , y 2 k - 1 = y 2 k - 3 x 2 k - 2 y 2 k - 3 - 1 = b ( c b - 1 ) k , y 2 k = y 2 k - 2 x 2 k - 1 y 2 k - 2 - 1 = a ( a d - 1 ) k
and
z 2 k - 1 = b k - 1 a k e [ ( a d - 1 ) ( c b - 1 ) ] i = 1 k i , z 2 k = a k e ( a d - 1 ) i = 1 k ( i - 1 ) ( c b - 1 ) i = 1 k i b k
are true. Then, for n = k + 1 we will show that (1.2), (1.3), and (1.4) are true. From (1.1), we have
x 2 k + 1 = x 2 k - 1 y 2 k x 2 k - 1 - 1 = d ( a d - 1 ) k a a d - 1 k d ( a d - 1 ) k - 1 = d ( a d - 1 ) k + 1 , y 2 k + 1 = y 2 k - 1 x 2 k y 2 k - 1 - 1 = b ( c b - 1 ) k c c b - 1 k b ( c b - 1 ) k - 1 = b ( c b - 1 ) k + 1 .
Also, similarly from (1.1), we have
z 2 k + 1 = 1 y 2 k z 2 k = 1 a a d - 1 k a k e ( a d - 1 ) i = 1 k i - 1 ( c b - 1 ) i = 1 k i b k = b k a k + 1 e ( a d - 1 ) i = 1 k i ( c b - 1 ) i = 1 k i .
Also, we have
x 2 k + 2 = x 2 k y 2 k + 1 x 2 k - 1 = c c b - 1 k b ( c b - 1 ) k + 1 c ( c b - 1 ) k - 1 = c c b - 1 k b ( c b - 1 ) c - 1 = c ( c b - 1 ) k + 1 , y 2 k + 2 = y 2 k x 2 k + 1 y 2 k - 1 = a a d - 1 k d ( a d - 1 ) k + 1 a ( a d - 1 ) k - 1 = a a d - 1 k d ( a d - 1 ) a - 1 = a ( a d - 1 ) k + 1
and
z 2 k + 2 = 1 y 2 k + 1 z 2 k + 1 = 1 b ( c b - 1 ) k + 1 b k a k + 1 e ( a d - 1 ) i = 1 k i ( c b - 1 ) i = 1 k i = a k + 1 e ( a d - 1 ) i = 1 k i ( c b - 1 ) i = 1 k + 1 i b k + 1 = a k + 1 e ( a d - 1 ) i = 1 k + 1 ( i - 1 ) ( c b - 1 ) i = 1 k + 1 i b k + 1 .

Corollary 1. Let {x n , y n , z n } be a solution of the system (1.1). Let a, b, c, d, e, f be real numbers such that ad ≠ 1, cb ≠ 1, ae ≠ 0 and b ≠ 0. Also, if ad, cb (1, 2) and b > a then we have
lim n x 2 n - 1 = lim n y 2 n - 1 = lim n z 2 n - 1 =
and
lim n x 2 n = lim n y 2 n = lim n z 2 n = 0 .

Proof. From ad, cb (1, 2) and b > a we have 0 < ad -1 < 1 and 0 < cb - 1 < 1.

Hence, we obtain
lim n x 2 n - 1 = lim n d ( a d - 1 ) n = d lim n 1 ( a d - 1 ) n = d . = - , d < 0 + , d > 0 , lim n y 2 n - 1 = lim n b ( c b - 1 ) n = b lim n 1 ( c b - 1 ) n = b . = - , b < 0 + , b > 0
and
lim n z 2 n - 1 = lim n b n - 1 a n e [ ( a d - 1 ) ( c b - 1 ) ] i = 1 k i = 1 e . = - , e < 0 + , e > 0

Similarly, from ad, cb (1, 2) and b > a, we have 0 < ad - 1 < 1 and 0 < cb - 1 < 1.

Hence, we obtain
lim n x 2 n = lim n c ( c d - 1 ) n = c lim n ( c d - 1 ) n = c . 0 = 0 , lim n y 2 n = lim n a ( a f - 1 ) n = a lim n ( a f - 1 ) n = a . 0 = 0 .
and
lim n z 2 n = lim n a n e ( a d - 1 ) i = 1 k i - 1 ( c b - 1 ) i = 1 k i b n = 0 . e . 0 = 0 .

Corollary 2. Let {x n , y n , z n } be a solution of the system (1.1). Let a, b, c, d, e, f be real numbers such that ad ≠ 1, cb ≠ 1, ae ≠ 0 and b ≠ 0. If a = b and cb = ad = 2 then we have
lim n x 2 n - 1 = d , lim n y 2 n - 1 = b , lim n z 2 n - 1 = 1 a e
and
lim n x 2 n = c , lim n y 2 n = a , lim n z 2 n = e .
Proof. From a = b and cb = ad = 2 then we have, cb - 1 = ad - 1 = 1. Hence, we have
lim n ( c b - 1 ) n = 1
and
lim n ( a d - 1 ) n = 1 .
Also, we have
lim n x 2 n - 1 = lim n d ( a d - 1 ) n = d lim n 1 ( a d - 1 ) n = d . 1 = d , lim n y 2 n - 1 = lim n b ( c b - 1 ) n = b lim n 1 ( c b - 1 ) n = b . 1 = b
and
lim n z 2 n - 1 = lim n b n - 1 a n e [ ( a d - 1 ) ( c b - 1 ) ] i = 1 K i = lim n 1 a e b n - 1 a n - 1 [ ( a d - 1 ) ( c b - 1 ) ] i = 1 k i = 1 a e .
Similarly, we have
lim n x 2 n = lim n c ( c b - 1 ) n = c lim n ( c b - 1 ) n = c . 1 = c , lim n y 2 n = lim n a ( a d - 1 ) n = a lim n ( a d - 1 ) n = a . 1 = a .
and
lim n z 2 n = lim n a n e ( a d - 1 ) i = 1 k ( i - 1 ) ( c b - 1 ) i = 1 k i b n = 1 . e = e .

Corollary 3. Let {x n , y n , z n } be a solution of the system (1.1). Let a, b, c, d, e, f be real numbers such that ad ≠ 1, cb ≠ 1, ae ≠ 0 and b ≠ 0. Also, if 0 < a, b, c, d, e, f < 1 then we have
lim n x 2 n = lim n y 2 n = lim n z 2 n = 0
and
lim n x 2 n - 1 = lim n y 2 n - 1 = lim n z 2 n - 1 = .
Proof. From 0 < a, b, c, d, e, f < 1 we have -1 < ad - 1 < 0 and - 1 < cb - 1 < 0. Hence, we obtain
lim n x 2 n = lim n c ( b c - 1 ) n = c lim n ( b c - 1 ) n = c . 0 = 0 , lim n y 2 n = lim n a ( a d - 1 ) n = a lim n ( a d - 1 ) n = a . 0 = 0
and
lim n z 2 n = lim n a n e ( a d - 1 ) i = 1 k ( i - 1 ) ( c b - 1 ) i = 1 k i b n = e . 0 = 0 .
Similarly, we have
lim n x 2 n - 1 = lim n d ( a d - 1 ) n = d lim n 1 ( a d - 1 ) n = d lim n 1 ( a d - 1 ) n = d . = - , n - o d d + , n - e v e n , lim n y 2 n - 1 = lim n b ( b c - 1 ) n = b lim n 1 ( b c - 1 ) n = b . = - , n - o d d + , n - e v e n .
and
lim n z 2 n - 1 = lim n b n - 1 a n e [ ( a d - 1 ) ( c b - 1 ) ] i = 1 k i = + .

Corollary 4. Let {x n , y n , z n } be a solution of the system (1.1). Let a, b, c, d, e, f be real numbers such that ad ≠ 1, cb ≠ 1, ae ≠ 0, and b ≠ 0. Also, if 0 < a, b, c, d, e, f < 1 then we have
lim n x 2 n y 2 n - 1 = c b , lim n x 2 n - 1 y 2 n = a d
and
lim n z 2 n - 1 z 2 n = .

Proof. The proof is clear from Theorem 1. □

Declarations

Authors’ Affiliations

(1)
Department Of Mathematics, Faculty Of Education, Selcuk University, Konya, Turkey

References

  1. Kurbanli AS, Çinar C, Yalcinkaya I:On the behavior of positive solutions of the system of rational difference equations x n + 1 = x n - 1 y n x n - 1 + 1 , y n + 1 = y n - 1 x n y n - 1 + 1 . Math Comput Model 2011,53(5-6):1261-1267. 10.1016/j.mcm.2010.12.009View ArticleMathSciNetMATHGoogle Scholar
  2. Çinar C:On the positive solutions of the difference equation system x n + 1 = 1 y n , y n + 1 = y n x n - 1 y n - 1 . Appl Math Comput 2004, 158: 303-305. 10.1016/j.amc.2003.08.073MathSciNetView ArticleMATHGoogle Scholar
  3. Kurbanli AS:On the behavior of solutions of the system of rational difference equations x n + 1 = x n - 1 y n x n - 1 - 1 , y n + 1 = y n - 1 x n y n - 1 - 1 , z n + 1 = z n - 1 y n z n - 1 - 1 . Discrete Dynamics Natural and Society 2011, 2011: 12. Article ID 932362MathSciNetMATHGoogle Scholar
  4. Papaschinopoulos G, Schinas CJ: On the system of two difference equations. J Math Anal Appl 2002, 273: 294-309. 10.1016/S0022-247X(02)00223-8MathSciNetView ArticleMATHGoogle Scholar
  5. Clark D, Kulenović MRS: A coupled system of rational difference equations. Comput Math Appl 2002, 43: 849-867. 10.1016/S0898-1221(01)00326-1MathSciNetView ArticleMATHGoogle Scholar
  6. Camouzis E, Papaschinopoulos G:Global asymptotic behavior of positive solutions on the system of rational difference equations x n + 1 = 1 + x n y n - m , y n + 1 = 1 + y n x n - m . Appl Math Lett 2004, 17: 733-737. 10.1016/S0893-9659(04)90113-9MathSciNetView ArticleMATHGoogle Scholar
  7. Kulenović MRS, Nurkanović Z: Global behavior of a three-dimensional linear fractional system of difference equations. J Math Anal Appl 2005, 310: 673-689.MathSciNetView ArticleMATHGoogle Scholar
  8. Özban AY:On the positive solutions of the system of rational difference equations x n + 1 = 1 y n - k , y n + 1 = y n x n - m y n - m - k . J Math Anal Appl 2006, 323: 26-32. 10.1016/j.jmaa.2005.10.031MathSciNetView ArticleMATHGoogle Scholar
  9. Zhang Y, Yang X, Megson GM, Evans DJ:On the system of rational difference equations x n = A + 1 y n - p , y n = A + y n - 1 x n - r y n - s . Appl Math Comput 2006, 176: 403-408. 10.1016/j.amc.2005.09.039MathSciNetView ArticleGoogle Scholar
  10. Yalcinkaya I: On the global asymptotic stability of a second-order system of difference equations. Discrete Dyn Nat Soc 2008, 2008: 12. (Article ID 860152)MathSciNetMATHGoogle Scholar
  11. Irićanin B, Stević S: Some systems of nonlinear difference equations of higher order with periodic solutions. Dyn Contin Discrete Impuls Syst Ser A Math Anal 2006, 13: 499-507.MathSciNetMATHGoogle Scholar
  12. Agarwal RP, Li WT, Pang PYH: Asymptotic behavior of a class of nonlinear delay difference equations. J Difference Equat Appl 2002, 8: 719-728. 10.1080/1023619021000000735MathSciNetView ArticleMATHGoogle Scholar
  13. Agarwal RP: Difference Equations and Inequalities. 2nd edition. Marcel Dekker, New York; 2000.Google Scholar
  14. Papaschinopoulos G, Schinas CJ: On a system of two nonlinear difference equations. J Math Anal Appl 1998, 219: 415-426. 10.1006/jmaa.1997.5829MathSciNetView ArticleMATHGoogle Scholar
  15. Özban AY:On the system of rational difference equations x n = a y n - 3 , y n = b y n - 3 x n - q y n - q . Appl Math Comput 2007, 188: 833-837. 10.1016/j.amc.2006.10.034MathSciNetView ArticleMATHGoogle Scholar
  16. Clark D, Kulenovic MRS, Selgrade JF: Global asymptotic behavior of a two-dimensional difference equation modelling competition. Nonlinear Anal 2003, 52: 1765-1776. 10.1016/S0362-546X(02)00294-8MathSciNetView ArticleMATHGoogle Scholar
  17. Yang X, Liu Y, Bai S:On the system of high order rational difference equations x n = a y n - p , y n = b y n - p x n - q y n - q . Appl Math Comput 2005, 171: 853-856. 10.1016/j.amc.2005.01.092MathSciNetView ArticleGoogle Scholar
  18. Yang X:On the system of rational difference equations x n = A + y n - 1 x n - p y n - q , y n = A + x n - 1 x n - r y n - s . J Math Anal Appl 2005, 307: 305-311. 10.1016/j.jmaa.2004.10.045MathSciNetView ArticleGoogle Scholar
  19. Zhang Y, Yang X, Evans DJ, Zhu C:On the nonlinear difference equation system x n + 1 = A + y n - m x n , y n + 1 = A + x n - m y n . Comput Math Appl 2007, 53: 1561-1566. 10.1016/j.camwa.2006.04.030MathSciNetView ArticleGoogle Scholar
  20. Yalcinkaya I, Cinar C:Global asymptotic stability of two nonlinear difference equations z n + 1 = t n + z n - 1 t n z n - 1 + a , t n + 1 = z n + t n - 1 z n t n - 1 + a . Fasciculi Mathematici 2010, 43: 171-180.MathSciNetGoogle Scholar
  21. Yalcinkaya I, Çinar C, Simsek D: Global asymptotic stability of a system of difference equations. Appl Anal 2008,87(6):689-699. 10.1080/00036810802163279MathSciNetView ArticleMATHGoogle Scholar
  22. Yalcinkaya I, Cinar C: On the solutions of a systems of difference equations. Int J Math Stat Autumn 2011.,9(A11):Google Scholar
  23. Cinar C:On the positive solutions of the difference equation x n + 1 = x n - 1 1 + x n x n - 1 . Appl Math Comput 2004, 150: 21-24. 10.1016/S0096-3003(03)00194-2MathSciNetView ArticleMATHGoogle Scholar
  24. Cinar C:On the positive solutions of the difference equation x n + 1 = a x n - 1 1 + b x n x n - 1 . Appl Math Comput 2004, 156: 587-590. 10.1016/j.amc.2003.08.010MathSciNetView ArticleMATHGoogle Scholar
  25. Cinar C:On the positive solutions of the difference equation x n + 1 = x n - 1 1 + a x n x n - 1 . Appl Math Comput 2004, 158: 809-812. 10.1016/j.amc.2003.08.140MathSciNetView ArticleMATHGoogle Scholar
  26. Cinar C:On the periodic cycle of x ( n + 1 ) = a n + b n x n c n x n - 1 . Appl Math Comput 2004, 150: 1-4. 10.1016/S0096-3003(03)00182-6MathSciNetView ArticleGoogle Scholar
  27. Abu-Saris R, Çinar C, Yalcinkaya I:On the asymptotic stability of x n + 1 = a + x n x n - k x n + x n - k . Comput Math Appl 2008,56(5):1172-1175. 10.1016/j.camwa.2008.02.028MathSciNetView ArticleMATHGoogle Scholar
  28. Çinar C:On the difference equation x n + 1 = x n - 1 - 1 + x n x n - 1 . Appl Math Comput 2004, 158: 813-816. 10.1016/j.amc.2003.08.122MathSciNetView ArticleMATHGoogle Scholar
  29. Çinar C:On the solutions of the difference equation x n + 1 = x n - 1 - 1 + a x n x n - 1 . Appl Math Comput 2004, 158: 793-797. 10.1016/j.amc.2003.08.139MathSciNetView ArticleMATHGoogle Scholar
  30. Kurbanli AS:On the behavior of solutions of the system of rational difference equations x n + 1 = x n - 1 y n x n - 1 - 1 , y n + 1 = y n - 1 x n y n - 1 - 1 . World Appl Sci J 2010, in press.Google Scholar
  31. Elabbasy EM, El-Metwally H, Elsayed EM: On the solutions of a class of difference equations systems. Demonstratio Mathematica 2008,41(1):109-122.MathSciNetMATHGoogle Scholar
  32. Elsayed EM: On the solutions of a rational system of difference equations. Fasciculi Mathematici 2010, 45: 25-36.MathSciNetMATHGoogle Scholar
  33. Elsayed EM: Dynamics of a recursive sequence of higher order. Commun Appl Nonlinear Anal 2009,16(2):37-50.MathSciNetMATHGoogle Scholar
  34. Elsayed EM: On the solutions of higher order rational system of recursive sequences. Mathematica Balkanica 2008,21(3-4):287-296.MathSciNetMATHGoogle Scholar

Copyright

© Kurbanli; licensee Springer. 2011

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement