Skip to main content

Singular second-order multipoint dynamic boundary value problems with mixed derivatives

Abstract

We study a certain singular second-order m-point boundary value problem on a time scale and establish the existence of a solution. The proof of our main result is based upon the Leray-Schauder continuation theorem.

[12345678910111213141516171819202122]

References

  1. 1.

    Agarwal RP, O'Regan D: Some new results for singular problems with sign changing nonlinearities. Journal of Computational and Applied Mathematics 2000,113(1–2):1–15. 10.1016/S0377-0427(99)00239-3

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Ahlbrandt CD, Morian C: Partial differential equations on time scales. Journal of Computational and Applied Mathematics 2002,141(1–2):35–55. Special issue on Dynamic Equations on Time Scales, edited by R. P. Agarwal, M. Bohner, and D. O'Regan 10.1016/S0377-0427(01)00434-4

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Anderson DR, Avery RI: An even-order three-point boundary value problem on time scales. Journal of Mathematical Analysis and Applications 2004,291(2):514–525. 10.1016/j.jmaa.2003.11.013

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Asakawa H: Nonresonant singular two-point boundary value problems. Nonlinear Analysis Series A: Theory and Methods 2001,44(6):791–809. 10.1016/S0362-546X(99)00308-9

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Atici FM, Guseinov GSh: On Green's functions and positive solutions for boundary value problems on time scales. Journal of Computational and Applied Mathematics 2002,141(1–2):75–99. Special issue on Dynamic Equations on Time Scales, edited by R. P. Agarwal, M. Bohner, and D. O'Regan 10.1016/S0377-0427(01)00437-X

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bohner M, Peterson A: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser Boston, Massachusetts; 2001:x+358.

    Google Scholar 

  7. 7.

    Bohner M, Peterson A (Eds): Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Massachusetts; 2003:xii+348.

    Google Scholar 

  8. 8.

    DaCunha JJ, Davis JM, Singh PK: Existence results for singular three point boundary value problems on time scales. Journal of Mathematical Analysis and Applications 2004,295(2):378–391. 10.1016/j.jmaa.2004.02.049

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Gupta CP, Ntouyas SK, Tsamatos PCh: Solvability of an m -point boundary value problem for second order ordinary differential equations. Journal of Mathematical Analysis and Applications 1995,189(2):575–584. 10.1006/jmaa.1995.1036

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    He Z: Existence of two solutions of m -point boundary value problem for second order dynamic equations on time scales. Journal of Mathematical Analysis and Applications 2004,296(1):97–109. 10.1016/j.jmaa.2004.03.051

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Henderson J, Kaufmann ER: Focal boundary value problems for singular difference equations. Computers & Mathematics with Applications 1998,36(10–12):1–10.

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Henderson J, Yin W: Focal boundary-value problems for singular ordinary differential equations. In Advances in Nonlinear Dynamics, Stability Control Theory Methods Appl.. Volume 5. Gordon and Breach, Amsterdam; 1997:283–295.

    Google Scholar 

  13. 13.

    Hilger S: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results in Mathematics 1990,18(1–2):18–56.

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Ma R: Existence of positive solutions for superlinear semipositone m -point boundary-value problems. Proceedings of the Edinburgh Mathematical Society. Series II 2003,46(2):279–292. 10.1017/S0013091502000391

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Ma R, Luo H: Existence of solutions for a two-point boundary value problem on time scales. Applied Mathematics and Computation 2004,150(1):139–147. 10.1016/S0096-3003(03)00204-2

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Ma R, O'Regan D: Solvability of singular second order m -point boundary value problems. Journal of Mathematical Analysis and Applications 2005,301(1):124–134. 10.1016/j.jmaa.2004.07.009

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Mawhin J: Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics. Volume 40. American Mathematical Society, Rhode Island; 1979:v+122.

    Google Scholar 

  18. 18.

    O'Regan D: Theory of Singular Boundary Value Problems. World Scientific, New Jersey; 1994:xii+154.

    Google Scholar 

  19. 19.

    Taliaferro SD: A nonlinear singular boundary value problem. Nonlinear Analysis 1979,3(6):897–904. 10.1016/0362-546X(79)90057-9

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Wong PJY, Agarwal RP: On the existence of solutions of singular boundary value problems for higher order difference equations. Nonlinear Analysis 1997,28(2):277–287. 10.1016/0362-546X(95)00151-K

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Zhang Y: Positive solutions of singular sublinear Emden-Fowler boundary value problems. Journal of Mathematical Analysis and Applications 1994,185(1):215–222. 10.1006/jmaa.1994.1243

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Zhang Z, Wang J: The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems. Journal of Computational and Applied Mathematics 2002,147(1):41–52. 10.1016/S0377-0427(02)00390-4

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Bohner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bohner, M., Luo, H. Singular second-order multipoint dynamic boundary value problems with mixed derivatives. Adv Differ Equ 2006, 054989 (2006). https://doi.org/10.1155/ADE/2006/54989

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation