 Research Article
 Open Access
 Published:
Oscillation Criteria for SecondOrder Forced Dynamic Equations with Mixed Nonlinearities
Advances in Difference Equations volume 2009, Article number: 938706 (2009)
Abstract
We obtain new oscillation criteria for secondorder forced dynamic equations on time scales containing mixed nonlinearities of the form , with , , where is a time scale interval with , the functions are rightdense continuous with , is the forward jump operator, , and . All results obtained are new even for and . In the special case when and our theorems reduce to (Y. G. Sun and J. S. W. Wong, Journal of Mathematical Analysis and Applications. 337 (2007), 549–560). Therefore, our results in particular extend most of the related existing literature from the continuous case to arbitrary time scale.
1. Introduction
Let be a time scale which is unbounded above and a fixed point. For some basic facts on time scale calculus and dynamic equations on time scales, one may consult the excellent texts by Bohner and Peterson [1, 2].
We consider the secondorder forced nonlinear dynamic equations containing mixed nonlinearities of the form
with
where denotes a time scale interval, the functions are rightdense continuous with , is the forward jump operator, , and
By a proper solution of (1.1) on we mean a function which is defined and nontrivial in any neighborhood of infinity and which satisfies (1.1) for all , where denotes the set of rightdense continuously differentiable functions from to . As usual, such a solution of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative. The equation is called oscillatory if every proper solution is oscillatory.
In a special case, (1.1) becomes
which is called halflinear for , superhalflinear for , and subhalflinear for . If , (1.4) takes the form
The oscillation of (1.5) has been studied by many authors, the interested reader is referred to the seminal books by Došlý and Řehák [3] and Agarwal et al. [4, 5], where in addition to mainly oscillation theory, the existence, uniqueness, and continuation of solutions are also discussed. In [3], one may also find several results related to the oscillation of (1.4) when , that is, for
where is the forward difference operator.
There are several methods in the literature for finding sufficient condition for oscillation of solutions in terms of the functions appearing in the corresponding equation, and almost all such conditions involve integrals or sums on infinite intervals [3–19]. The interval oscillation method is different in a sense that the conditions make use of the information of the functions on a union of intervals rather than on an infinite interval. Following ElSayed [20], many authors have employed this technique in various works [20–30]. For instance, Sun et al. [26], Wong [28], and Nasr [25] have studied (1.5) when and , while the case and is taken into account by Sun and Wong in [16]. The results in [25, 28] have been extended by Sun [27] to superlinear delay differential equations of the form
Further extensions of these results can be found in [30, 31], where the authors have studied some related superhalflinear differential equations with delay and advance arguments.
Recently, there have been also numerous papers on secondorder forced dynamic equations on time scales, unifying particularly the discrete and continuous cases and handling many other possibilities. For a sampling of the work done we refer in particular to [6, 8, 9, 12, 13, 22, 32, 33] and the references cited therein. In [22] Anderson and Zafer have extended the above mentioned interval oscillation criteria to secondorder forced superhalflinear dynamic equations with delay and advance arguments including
Our motivation in this study stems from the work contained in [34], where the authors have derived interval criteria for oscillation of secondorder differential equations with mixed nonlinearities of the form
with
by using a Riccati substitution and an inequality of geometricarithmetic mean type. As it is indicated in [34], further research on the oscillation of equations of mixed type is necessary as such equations arise in mathematical modeling, for example, in the growth of bacteria population with competitive species. We aim to make a contribution in this direction for a class of more general equations on time scales of the form (1.1) by combining the techniques used in [22, 34]. Notice that when , , and , (1.1) coincides with (1.9), and therefore our results provide new interval oscillation criteria even for when . Moreover, for the special case we obtain interval oscillation criteria for difference equations with mixed nonlinearities of the form
for which almost nothing is available in the literature.
2. Lemmas
We need the following preparatory lemmas. The first two lemmas are given by Wong and Sun as a single lemma [34, Lemma ] for . The proof for the case is exactly the same, in fact one only needs to replace the exponents by in their proof. Lemma 2.3 is the wellknown Young inequality.
Lemma 2.1.
For any given tuple satisfying
there corresponds an tuple such that
If and (cf. [34] for the case ) one may take
where is any positive number with
Lemma 2.2.
For any given tuple satisfying
there corresponds an tuple such that
If and , it turns out that
Lemma 2.3 (Young's Inequality).
If and are conjugate numbers , then
and equality holds if and only if .
Let . Put , , and . It follows from Lemma 2.3 that
for all . Rewriting the above inequality we also have
for all and .
3. The Main Results
Following [21, 22, 30], denote for with the admissible set
The main results of this paper are contained in the following three theorems. The arguments used in the proofs have common features with the ones developed in [22, 30, 34].
Theorem 3.1.
Suppose that for any given there exist subintervals and of such that
Let be an tuple satisfying (2.2) in Lemma 2.1. If there exists a function , , such that
for , where
then (1.1) is oscillatory.
Proof.
To arrive at a contradiction, let us suppose that is a nonoscillatory solution of (1.1). First, we assume that is positive for all , for some .
Let , where is sufficiently large. Define
It follows that
and hence
By our assumptions (3.2) we have and for . Set
Then (3.7) becomes
In view of the arithmeticgeometric mean inequality, see [35],
and equality (3.9) we obtain
Multiplying both sides of inequality (3.11) by and then using the identity
result in
where
As demonstrated in [7, 12], we know that , and that if and only if
where stands for the inverse function. In our case, since , dynamic equation (3.15) has a unique solution satisfying . Clearly, the unique solution is . Therefore, on .
For the benefit of the reader we sketch a proof of the fact that . Note that if is a rightdense point, then we may write
Applying Young's inequality (Lemma 2.3) with
we easily see that holds. If is a rightscattered point, then can be written as a function of and as
Using differential calculus, see [7], the result follows.
Now integrating the inequality (3.13) from to and using on we obtain
which of course contradicts (3.3). This completes the proof when is eventually positive. The proof when is eventually negative is analogous by repeating the arguments on the interval instead of .
A close look at the proof of Theorem 3.1 reveals that one cannot take . The following theorem is a substitute in that case.
Theorem 3.2.
Suppose that for any given there exists a subinterval of such that
Let be an tuple satisfying (2.5) in Lemma 2.2. If there exists a function such that
where
then (1.1) with is oscillatory.
Proof.
We proceed as in the proof of Theorem 3.1 to arrive at (3.7) with , that is,
Setting
and using again the arithmeticgeometric mean inequality
we have
The remainder of the proof is the same as that of Theorem 3.1.
As it is shown in [34] for the sublinear terms case, we can also remove the sign condition imposed on the coefficients of the subhalflinear terms to obtain interval criterion which is applicable for the case when some or all of the functions , , are nonpositive. We should note that the sign condition on the coefficients of superhalflinear terms cannot be removed alternatively by the same approach. Furthermore, the function cannot take the value zero on intervals of interest in this case. We have the following theorem.
Theorem 3.3.
Suppose that for any given there exist subintervals and of such that
If there exist a function , , and positive numbers and with
such that
for , where
with
then (1.1) is oscillatory.
Proof.
Suppose that (1.1) has a nonoscillatory solution. We may assume that is eventually positive on when is sufficiently large. If is eventually negative, then one can repeat the proof on the interval . Rewrite (1.1) as follows:
with
Clearly,
where
Applying (2.8) and (2.9) to each summation on the right side with
we see that
where
From (3.32) and inequality (3.37) we obtain
where
Set
In view of inequality (3.39) it follows that
The remainder of the proof is the same as that of Theorem 3.1, hence it is omitted.
4. Applications
To illustrate the usefulness of the results we state the corresponding theorems for the special cases , , and . One can easily provide similar results for other specific time scales of interest.
4.1. Differential Equations
Let , then we have , , and
where are continuous functions with , and . Let
Theorem 4.1.
Suppose that for any given there exist subintervals and of such that
Let be an tuple satisfying (2.2) in Lemma 2.1. If there exists a function , , such that
for , where
then (4.1) is oscillatory.
Theorem 4.2.
Suppose that for any given there exists a subinterval of such that
Let be an tuple satisfying (2.5) in Lemma 2.2. If there exists a function such that
where
then (4.1) with is oscillatory.
Theorem 4.3.
Suppose that for any given there exist subintervals and of such that
If there exist a function , , and positive numbers and with
such that
for , where
with
then (4.1) is oscillatory.
4.2. Difference Equations
Let , then we have , , and
where , with , and . Let , and
Theorem 4.4.
Suppose that for any given there exist subintervals and of such that
Let be an tuple satisfying (2.2) in Lemma 2.1. If there exists a function , , such that
for , where
then (4.13) is oscillatory.
Theorem 4.5.
Suppose that for any given there exists a subinterval of such that
Let be an tuple satisfying (2.5) in Lemma 2.2. If there exists a function such that
where
then (4.13) with is oscillatory.
Theorem 4.6.
Suppose that for any given there exist subintervals and of such that
If there exist a function , , and positive numbers and with
such that
for , where
with
then (4.13) is oscillatory.
4.3. Difference Equations
Let with , then we have , and
where with , with , and . Let with , and
Theorem 4.7.
Suppose that for any given there exist subintervals and of such that
Let be an tuple satisfying (2.2) in Lemma 2.1. If there exists a function , , such that
for , where
then (4.25) is oscillatory.
Theorem 4.8.
Suppose that for any given there exists a subinterval of such that
Let be an tuple satisfying (2.5) in Lemma 2.2. If there exists a function such that
where
then (4.25) with is oscillatory.
Theorem 4.9.
Suppose that for any given there exist subintervals and of such that
If there exist a function , , and positive numbers and with
such that
for , where
with
then (4.25) is oscillatory.
5. Examples
We give three simple examples to illustrate the importance of our results. For clarity, we have taken and . Then,
Example 5.1.
Consider the constant coefficient differential equation
where and are real numbers.
Let , and , is arbitrarily large. Applying Theorem 4.2 we see that every solution of (5.2) is oscillatory if
Example 5.2.
Consider the constant coefficient difference equation
where and are real numbers.
Let , and and , is arbitrarily large. It follows from Theorem 4.5 that every solution of (5.4) is oscillatory if
Example 5.3.
Consider the constant coefficient difference equation
where , and are real numbers.
Let , and and , is arbitrarily large. In view of Theorem 4.8, we see that every solution of (5.6) is oscillatory if
6. Remarks

(1)
Literature
Equation (1.1) has been studied by Sun and Wong [34] for the case and . Our results in Section 4.1 coincide with theirs when , and therefore the results can be considered as an extension from to . Since the results in [34] are linked to many wellknown oscillation criteria in the literature, the interval oscillation criteria we have obtained provide further extensions of these to time scales.
The results in Sections 4.2 and 4.3 are all new for all values of the parameters. Although there are some results for difference equations in the special case , there is hardly any interval oscillation criteria for the difference equations case.
Moreover, since our main results in Section 4 are valid for arbitrary time scales, similar interval oscillation criteria can be obtained by considering other particular time scales.

(2)
Generalization
The results obtained in this paper remain valid for more general equations of the form
provided that are continuous and satisfy the growth conditions
To see this, we note that if is eventually positive, then taking into account the intervals where and are nonnegative, the above inequalities result in
The arguments afterward follow analogously.

(3)
Forms Related to (1.1)
Related to (1.1) are the dynamic equations with mixed delta and nabla derivatives
where denotes the backward jump operator and
It is not difficult to see that time scale modifications of the previous arguments give rise to completely parallel results for the above dynamic equations. For an illustrative example we provide below the version of Theorem 3.1 for (6.4). The other theorems for (6.4), (6.5), and (6.6) can be easily obtained by employing arguments developed for (1.1) in this paper.
Theorem 6.1.
Suppose that for any given there exist subintervals and of such that
Let be an tuple satisfying (2.2) in Lemma 2.1. If there exists a function , , such that
for , where
then (6.4) is oscillatory.

(4)
An Open Problem
It is of theoretical and practical interest to obtain interval oscillation criteria when there are only subhalflinear terms in (1.1), that is, when holds for all . Also, the open problems stated in [34] for the special case with naturally carry over for (1.1).
References
Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, Mass, USA; 2001:x+358.
Bohner M, Peterson A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, Mass, USA; 2003:xii+348.
Došlý O, Řehák P: HalfLinear Differential Equations, NorthHolland Mathematics Studies. Volume 202. Elsevier; NorthHolland, Amsterdam, The Netherlands; 2005:xiv+517.
Agarwal RP, Grace SR: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic Publishers, Dordrecht, The Netherlands; 2002.
Agarwal RP, Grace SR, O'Regan D: Oscillation Theory for Second Order Linear, HalfLinear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht, The Netherlands; 2002:xiv+672.
Bohner M, Tisdell CC: Oscillation and nonoscillation of forced second order dynamic equations. Pacific Journal of Mathematics 2007,230(1):5971. 10.2140/pjm.2007.230.59
Došlý O, Marek D: Halflinear dynamic equations with mixed derivatives. Electronic Journal of Differential Equations 2005,2005(90):118.
Erbe L, Peterson A, Saker SH: HilleKnesertype criteria for secondorder linear dynamic equations. Advances in Difference Equations 2006, 2006:18.
Erbe L, Peterson A, Saker SH: Oscillation criteria for secondorder nonlinear delay dynamic equations. Journal of Mathematical Analysis and Applications 2007,333(1):505522. 10.1016/j.jmaa.2006.10.055
Kartsatos AG: Maintenance of oscillations under the effect of a periodic forcing term. Proceedings of the American Mathematical Society 1972, 33: 377383. 10.1090/S00029939197203306220
Manojlović JV: Oscillation criteria for secondorder halflinear differential equations. Mathematical and Computer Modelling 1999,30(56):109119. 10.1016/S08957177(99)00151X
Řehák P: Halflinear dynamic equations on time scales: IVP and oscillatory properties. Nonlinear Functional Analysis and Applications 2002,7(3):361403.
Saker SH: Oscillation criteria of secondorder halflinear dynamic equations on time scales. Journal of Computational and Applied Mathematics 2005,177(2):375387. 10.1016/j.cam.2004.09.028
Sun YG, Agarwal RP:Forced oscillation of thorder nonlinear differential equations. Functional Differential Equations 2004,11(34):587596.
Sun YG, Saker SH: Forced oscillation of higherorder nonlinear differential equations. Applied Mathematics and Computation 2006,173(2):12191226. 10.1016/j.amc.2005.04.065
Sun YG, Wong JSW:Note on forced oscillation of thorder sublinear differential equations. Journal of Mathematical Analysis and Applications 2004,298(1):114119. 10.1016/j.jmaa.2004.03.076
Teufel H Jr.: Forced second order nonlinear oscillation. Journal of Mathematical Analysis and Applications 1972, 40: 148152. 10.1016/0022247X(72)900376
Wang QR, Yang QG: Interval criteria for oscillation of secondorder halflinear differential equations. Journal of Mathematical Analysis and Applications 2004,291(1):224236. 10.1016/j.jmaa.2003.10.028
Wong JSW: Second order nonlinear forced oscillations. SIAM Journal on Mathematical Analysis 1988,19(3):667675. 10.1137/0519047
ElSayed MA: An oscillation criterion for a forced second order linear differential equation. Proceedings of the American Mathematical Society 1993,118(3):813817.
Anderson DR: Oscillation of secondorder forced functional dynamic equations with oscillatory potentials. Journal of Difference Equations and Applications 2007,13(5):407421. 10.1080/10236190601116209
Anderson DR, Zafer A: Interval criteria for secondorder superhalflinear functional dynamic equations with delay and advanced arguments. to appear in Journal of Difference Equations and Applications
Li WT: Interval oscillation of secondorder halflinear functional differential equations. Applied Mathematics and Computation 2004,155(2):451468. 10.1016/S00963003(03)007902
Li WT, Cheng SS: An oscillation criterion for nonhomogenous halflinear differential equations. Applied Mathematics Letters 2002,15(3):259263. 10.1016/S08939659(01)001276
Nasr AH: Sufficient conditions for the oscillation of forced superlinear second order differential equations with oscillatory potential. Proceedings of the American Mathematical Society 1998,126(1):123125. 10.1090/S0002993998043548
Sun YG, Ou CH, Wong JSW: Interval oscillation theorems for a secondorder linear differential equation. Computers & Mathematics with Applications 2004,48(1011):16931699. 10.1016/j.camwa.2003.08.012
Sun YG: A note Nasr's and Wong's papers. Journal of Mathematical Analysis and Applications 2003,286(1):363367. 10.1016/S0022247X(03)004608
Wong JSW: Oscillation criteria for a forced secondorder linear differential equation. Journal of Mathematical Analysis and Applications 1999,231(1):235240. 10.1006/jmaa.1998.6259
Yang Q: Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential. Applied Mathematics and Computation 2003,135(1):4964. 10.1016/S00963003(01)003071
Zafer A: Interval oscillation criteria for second order superhalflinear functional differential equations with delay and advanced arguments. to appear in Mathematische Nachrichten
Güvenilir AF, Zafer A: Secondorder oscillation of forced functional differential equations with oscillatory potentials. Computers & Mathematics with Applications 2006,51(910):13951404. 10.1016/j.camwa.2006.02.002
Řehák P: Hardy inequality on time scales and its applications to halflinear dynamic equations. Journal of Inequalities and Applications 2005,2005(7):495507.
Řehák P: On certain comparison theorems for halflinear dynamic equations on time scales. Abstract and Applied Analysis 2004,2004(7):551565. 10.1155/S1085337504306251
Sun YG, Wong JSW: Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities. Journal of Mathematical Analysis and Applications 2007,334(1):549560. 10.1016/j.jmaa.2006.07.109
Beckenbach EF, Bellman R: Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F.. Volume 30. Springer, Berlin, Germany; 1961:xii+198.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Agarwal, R.P., Zafer, A. Oscillation Criteria for SecondOrder Forced Dynamic Equations with Mixed Nonlinearities. Adv Differ Equ 2009, 938706 (2009). https://doi.org/10.1155/2009/938706
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2009/938706
Keywords
 Dynamic Equation
 Oscillation Criterion
 Jump Operator
 Infinite Interval
 Time Scale Modification