- Research Article
- Open Access

# Multiple Positive Solutions for a Class of -Point Boundary Value Problems on Time Scales

- Meiqiang Feng
^{1}, - Xuemei Zhang
^{2, 3}Email author and - Weigao Ge
^{3}

**2009**:219251

https://doi.org/10.1155/2009/219251

© Meiqiang Feng et al. 2009

**Received:**1 December 2008**Accepted:**10 June 2009**Published:**19 July 2009

## Abstract

By constructing an available integral operator and combining Krasnosel'skii-Zabreiko fixed point theorem with properties of Green's function, this paper shows the existence of multiple positive solutions for a class of *m*-point second-order Sturm-Liouville-like boundary value problems on time scales with polynomial nonlinearity. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example, which cannot be handled using the existing results.

## Keywords

- Fixed Point Theorem
- Epidemic Model
- Real Banach Space
- Point Index
- Equation Boundary

## 1. Introduction

Recently, there have been many papers working on the existence of positive solutions to boundary value problems for differential equations on time scales; see, for example, [1–20]. This has been mainly due to its unification of the theory of differential and difference equations. An introduction to this unification is given in [11, 12, 18, 19]. Now, this study is still a new area of fairly theoretical exploration in mathematics. However, it has led to several important applications, for example, in the study of insect population models, neural networks, heat transfer, and epidemic models; see, for example, [10, 11]. For some other excellent results and applications of the case that boundary value problems on time scales to a variety of problems from Khan et al. [21], Agarose et al. [22], Wang [23], Sun [24], Feng et al. [25], Feng et al. [26] and Feng et al. [27].

*m*-point nonlinear dynamic equation on time scales with polynomial nonlinearity:

By means of fixed point index theory in a cone, the author established the existence of two nonnegative solutions for problem (1.5).

where is continuous.

As far as we know, there is no paper to study the existence of multiple positive solutions to problem (1.1) on time scales with polynomial nonlinearity. The objective of the present paper is to fill this gap. On the other hand, many difficulties occur when we study BVPs on time scales. For example, basic tools from calculus such as Fermat's theorem, Rolle's theorem and the intermediate value theorem may not necessarily hold. So it is interesting and important to discuss the problem (1.1). The purpose of this paper is to prove that the problem (1.1) possesses at least two positive solutions. Moreover, the methods used in this paper are different from [6, 28] and the results obtained in this paper generalize some results in [6, 28] to some degree.

The time scale related notations adopted in this paper can be found, if not explained specifically, in almost all literature related to time scales. The readers who are unfamiliar with this area can consult for example [11, 12, 18, 19] for details.

For convenience, we list the following well-known definitions.

Definition 1.1.

A time scale is a nonempty closed subset of .

Definition 1.2.

Define the forward (backward) jump operator at for at for by for all .

We assume throughout that has the topology that it inherits from the standard topology on and say is right-scattered, left-scattered, right-dense and left-dense if and , respectively. Finally, we introduce the sets and . which are derived from the time scale as follows. If has a left-scattered maximum , then , otherwise . If has a right-scattered minimum , then , .

Definition 1.3.

Definition 1.4.

for all . Call the nabla derivative of at the point .

If then . If then is the forward difference operator while is the backward difference operator.

Definition 1.5.

A function is called rd-continuous provided it is continuous at all right dense points of and its left sided limit exists (finite) at left dense . We let denote the set of rd-continuous functions .

Definition 1.6.

is called ld-continuous provided it is continuous at all left and its right sided limit exists (finite) at right dense . We let denote the set of ld-continuous .

Definition 1.7.

for all .

Definition 1.8.

*f*by

for all .

## 2. Preliminaries

In this section, we provide some necessary background. In particular, we state some properties of Green's function associated with problem (1.1), and we then state a fixed-point theorem which is crucial to prove our main results.

The basic space used in this paper is . It is well known that is a Banach space with the norm defined by . Let be a cone of , , where .

respectively.

Lemma 2.1 (see [6]).

From Lemma 2.1 and the definition of , we can prove that has the following properties.

Proposition 2.2.

where

In fact, from Lemma 2.1, we have for Therefore (2.5) holds.

Proposition 2.3.

Proof.

In fact, from Lemma 2.1, we obtain for So .

On the other hand, from Lemma 2.1, we know that for . This together with implies that for . Hence is nondecreasing on , is nonincreasing on . So (2.6) holds.

Proposition 2.4.

Proof.

Therefore (2.7) holds.

Lemma 2.5 (see [6]).

The following lemma is crucial to prove our main results.

is satisfied. Then has at least one fixed point in .

## 3. Main Results

In this section, we apply Lemma 2.6 to establish the existence of at least two positive solutions for BVP (1.1).

The following assumptions will stand throughout this paper.

where and are defined in (1.4), respectively.

for and given in (2.2) and (2.12), respectively.

If holds, then we can show that have the following properties.

Proposition 3.1.

where

Proof.

Then from (1.2)–(1.4) and , we obtain Therefore,

On the other hand, since

This and imply (3.3) holds.

Proposition 3.2.

Proof.

The proof is similar to that of Proposition 3.1. So we omit it.

where is defined in (2.10).

By (2.14), it is well known that the problem (1.1) has a positive solution if and only if is a fixed point of .

Lemma 3.3.

Suppose that (1.2)–(1.4) and - hold. Then and is completely continuous.

Proof.

On the other hand, for , by (3.9),(3.10) and (2.7), we obtain

Therefore , that is, .

Next by standard methods and the Ascoli-Arzela theorem one can prove that is completely continuous. So it is omitted.

Theorem 3.4.

where and are defined in (3.3), (3.7) and in Proposition 3.1, respectively.

Proof.

Let be the cone preserving, completely continuous operator that was defined by (3.9).

Let , where . Choosing and satisfy

Now we prove that

In fact, if there exists such that , then for , we have

where defined by (2.17).

Therefore , that is, , which is a contradiction. Hence (3.14) holds.

Next, turning to (3.15). If there exists such that , then for , we have

where are defined by (2.17).

Therefore , that is, , which is a contradiction. Hence (3.15) holds.

It remains to prove

In fact, if there exists such that , then for , we have

which is a contradiction, where are defined by (2.17). Hence (3.18) holds. From Lemma 2.6, (3.14), (3.15) and (3.18) yield that the problem (1.1) has at least two solutions and . The proof is complete.

## 4. Example

Example 4.1.

To illustrate how our main results can be used in practice we present an example.

Let . Take in (1.1). Now we consider the following three point boundary value problem

and

Let . Then and

It follows that and hold.

Finally, we prove that

Therefore, the conditions of Theorem 3.4 hold. Hence problem (4.1) has at least two positive solutions.

Remark 4.2.

Example 4.1 implies that there is a large number of functions that satisfy the conditions of Theorem 3.4. In addition, the conditions of Theorem 3.4 are also easy to check.

## Declarations

### Acknowledgments

This work is sponsored by the National Natural Science Foundation of China (10671012) and the Scientific Creative Platform Foundation of Beijing Municipal Commission of Education (PXM2008-014224-067420). The authors thank the referee for his careful reading of the manuscript and useful suggestions.

## Authors’ Affiliations

## References

- Agarwal RP, Bohner M, Wong PJY:
**Sturm-Liouville eigenvalue problems on time scales.***Applied Mathematics and Computation*1999,**99**(2–3):153–166. 10.1016/S0096-3003(98)00004-6MATHMathSciNetView ArticleGoogle Scholar - Avery RI, Anderson DR:
**Existence of three positive solutions to a second-order boundary value problem on a measure chain.***Journal of Computational and Applied Mathematics*2002,**141**(1–2):65–73. 10.1016/S0377-0427(01)00436-8MATHMathSciNetView ArticleGoogle Scholar - Henderson J:
**Multiple solutions for th order Sturm-Liouville boundary value problems on a measure chain.***Journal of Difference Equations and Applications*2000,**6**(4):417–429. 10.1080/10236190008808238MATHMathSciNetView ArticleGoogle Scholar - Anderson D, Avery R, Henderson J:
**Existence of solutions for a one dimensional -Laplacian on time-scales.***Journal of Difference Equations and Applications*2004,**10**(10):889–896. 10.1080/10236190410001731416MATHMathSciNetView ArticleGoogle Scholar - Bohner M, Luo H:
**Singular second-order multipoint dynamic boundary value problems with mixed derivatives.***Advances in Difference Equations*2006,**2006:**-15.Google Scholar - Anderson DR, Ma R:
**Second-order -point eigenvalue problems on time scales.***Advances in Difference Equations*2006,**2006:**-17.Google Scholar - Peterson AC, Raffoul YN, Tisdell CC:
**Three point boundary value problems on time scales.***Journal of Difference Equations and Applications*2004,**10**(9):843–849. 10.1080/10236190410001702481MATHMathSciNetView ArticleGoogle Scholar - Henderson J, Tisdell CC:
**Topological transversality and boundary value problems on time scales.***Journal of Mathematical Analysis and Applications*2004,**289**(1):110–125. 10.1016/j.jmaa.2003.08.030MATHMathSciNetView ArticleGoogle Scholar - Henderson J, Peterson A, Tisdell CC:
**On the existence and uniqueness of solutions to boundary value problems on time scales.***Advances in Difference Equations*2004,**2004**(2):93–109. 10.1155/S1687183904308071MATHMathSciNetView ArticleGoogle Scholar - Agarwal RP, Bohner M, Li W-T:
*Nonoscillation and Oscillation: Theory for Functional Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics*.*Volume 267*. Marcel Dekker, New York, NY, USA; 2004:viii+376.Google Scholar - Bohner M, Peterson A:
*Dynamic Equations on Time Scales: An Introduction with Applications*. Birkhäuser, Boston, Mass, USA; 2001:x+358.View ArticleGoogle Scholar - Bohner M, Peterson A (Eds):
*Advances in Dynamic Equations on Time Scales*. Birkhäuser, Boston, Mass, USA; 2003:xii+348.MATHGoogle Scholar - Anderson DR:
**Extension of a second-order multi-point problem to time scales.***Dynamic Systems and Applications*2003,**12**(3–4):393–403.MATHMathSciNetGoogle Scholar - Erbe L, Peterson A:
**Green's functions and comparison theorems for differential equations on measure chains.***Dynamics of Continuous, Discrete and Impulsive Systems*1999,**6**(1):121–137.MATHMathSciNetView ArticleGoogle Scholar - Anderson DR:
**Eigenvalue intervals for a two-point boundary value problem on a measure chain.***Journal of Computational and Applied Mathematics*2002,**141**(1–2):57–64. 10.1016/S0377-0427(01)00435-6MATHMathSciNetView ArticleGoogle Scholar - He Z, Jiang X:
**Triple positive solutions of boundary value problems for -Laplacian dynamic equations on time scales.***Journal of Mathematical Analysis and Applications*2006,**321**(2):911–920. 10.1016/j.jmaa.2005.08.090MATHMathSciNetView ArticleGoogle Scholar - Chyan CJ, Henderson J:
**Eigenvalue problems for nonlinear differential equations on a measure chain.***Journal of Mathematical Analysis and Applications*2000,**245**(2):547–559. 10.1006/jmaa.2000.6781MATHMathSciNetView ArticleGoogle Scholar - Lakshmikantham V, Sivasundaram S, Kaymakcalan B:
*Dynamic Systems on Measure Chains, Mathematics and Its Applications*.*Volume 370*. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1996:x+285.View ArticleGoogle Scholar - Hilger S:
**Analysis on measure chains—a unified approach to continuous and discrete calculus.***Results in Mathematics*1990,**18**(1–2):18–56.MATHMathSciNetView ArticleGoogle Scholar - Erbe L, Peterson A, Saker SH:
**Hille-Kneser-type criteria for second-order dynamic equations on time scales.***Advances in Difference Equations*2006,**2006:**-18.Google Scholar - Khan RA, Nieto JJ, Otero-Espinar V:
**Existence and approximation of solution of three-point boundary value problems on time scales.***Journal of Difference Equations and Applications*2008,**14**(7):723–736. 10.1080/10236190701840906MATHMathSciNetView ArticleGoogle Scholar - Agarose RP, Other-Espial V, Parera K, Vivre DR:
**Multiple positive solutions in the sense of distributions of singular BAPS on time scales and an application to Eden-Fowler equations.***Advances in Difference Equations*2008,**2008:**-13.Google Scholar - Wang D-B:
**Three positive solutions of three-point boundary value problems for -Laplacian dynamic equations on time scales.***Nonlinear Analysis: Theory, Methods & Applications*2008,**68**(8):2172–2180. 10.1016/j.na.2007.01.037MATHMathSciNetView ArticleGoogle Scholar - Sun J-P:
**A new existence theorem for right focal boundary value problems on a measure chain.***Applied Mathematics Letters*2005,**18**(1):41–47. 10.1016/j.aml.2003.04.008MATHMathSciNetView ArticleGoogle Scholar - Feng M, Zhang X, Ge W:
**Positive solutions for a class of boundary value problems on time scales.***Computers & Mathematics with Applications*2007,**54**(4):467–475. 10.1016/j.camwa.2007.01.031MATHMathSciNetView ArticleGoogle Scholar - Feng M-Q, Li X-G, Ge W-G:
**Triple positive solutions of fourth-order four-point boundary value problems of -Laplacian dynamic equations on time scales.***Advances in Difference Equations*2008,**2008:**-9.Google Scholar - Feng M, Feng H, Zhang X, Ge W:
**Triple positive solutions for a class of -point dynamic equations on time scales with -Laplacian.***Mathematical and Computer Modelling*2008,**48**(7–8):1213–1226. 10.1016/j.mcm.2007.12.016MATHMathSciNetView ArticleGoogle Scholar - Xu X:
*Multiple solutions for impulsive singular differential equations boundary value problems, Doctorial thesis*. Shandong University, Shandong, China; 2001.Google Scholar - Deimling K:
*Nonlinear Functional Analysis*. Springer, Berlin, Germany; 1985:xiv+450.MATHView ArticleGoogle Scholar - Guo DJ, Lakshmikantham V:
*Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering*.*Volume 5*. Academic Press, Boston, Mass, USA; 1988:viii+275.Google Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.