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Abstract
The goal of this paper is to present a new class of operators satisfying the Prešić-type
rational η-contraction condition in the setting of usual metric spaces. New fixed point
results are also obtained for these operators. Our results generalize, extend, and unify
many papers in this direction. Moreover, two examples are derived to support and
document our theoretical results. Finally, to strengthen our paper and its contribution
to applications, some convergence results for a class of matrix difference equations
are investigated.
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1 Introduction and preliminaries
In 1922, Banach [1] presented his principle which states: A self-mapping � defined on a
complete metric space (�,� ) has a unique fixed point (FP), i.e., ζ ∗ ∈�, ζ ∗ = �ζ ∗, provided
� is a contraction, that is, for a constant α ∈ (0, 1), we have

� (�ζ1,�ζ2) ≤ α� (ζ1, ζ2), ∀ζ1, ζ2 ∈�.

Due to the ease of this principle and its essence, which is related to many applications
in various branches of mathematics, many researchers have created various supplements
and additions. For example, see [2–8].

From now until the end of our manuscript, we will consider z as a positive integer and
(�,� ) as a complete metric space.

In 1965, Banach FP theorem was extended by Prešić [9]. He used his results to ensure
the convergence of a certain type of sequences as follows:

Theorem 1.1 ([9]) Let � : �z →� be a mapping satisfying the condition below:

�
(
�(ζ1, ζ2, . . . , ζz),�(ζ2, . . . ζz, ζz+1)

)
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≤ γ1� (ζ1, ζ2) + γ2� (ζ2, ζ3) + · · · + γz� (ζz, ζz+1) (1.1)

for all ζ1, . . . , ζz+1 ∈ �, where γ1,γ2, . . . ,γz are nonnegative constants so that
∑z

j=1 γj < 1.
Then there is a unique point ζ ∗ ∈� so that �(ζ ∗, . . . , ζ ∗) = ζ ∗. Also if, for any chosen points
ζ1, . . . , ζz in � and for l ∈ N,

ζl+z = �(ζl, ζl+1, . . . , ζl+z–1), (1.2)

then the sequence {ζl} is convergent and ζ ∗ = liml→∞ ζl = �(liml→∞ ζl, liml→∞ ζl, . . . ,
liml→∞ ζl).

Remark 1.2 From Theorem 1.1, we note the following:
• An operator � : �z →� fulfilling (1.1) is said to be a Prešić operator;
• A point ζ ∗ ∈� is called an FP of � if �(ζ ∗, . . . , ζ ∗) = ζ ∗;
• If we put z = 1, we directly obtain the Banach contraction principle (BCP).

The results of Prešić [9] have been generalized by Ćirić and Prešić [10] as follows:

Theorem 1.3 ([10]) Assume that � : �z → � satisfies

�
(
�(ζ1, ζ2, . . . , ζz),�(ζ2, . . . , ζz, ζz+1)

)

≤ γ max
{
� (ζ1, ζ2),� (ζ2, ζ3), . . . ,� (ζz, ζz+1)

}
, (1.3)

for any ζ1, . . . , ζz+1 ∈ �, where γ ∈ (0, 1). Then there is ζ ∗ ∈ � so that �(ζ ∗, . . . , ζ ∗) = ζ ∗.
Further, for any chosen points ζ1, . . . , ζz ∈�, the sequence {ζl} described in (1.2) is convergent
and

lim
l→∞

ζl = �

(
lim

l→∞
ζl, lim

l→∞
ζl, . . . , lim

l→∞
ζl

)
.

Also, if

�
(
�
(
ζ ∗, . . . , ζ ∗),�

(
ζ ′, . . . , ζ ′)) < �

(
ζ ∗, ζ ′)

holds for all ζ ∗, ζ ′ ∈� with ζ ∗ 	= ζ ′, then the FP is unique in �.

Pâcurar [11] was able to present a convergence theorem for Prešić–Kannan contraction.
For more details along this line of research, we refer the readers to [12–14].

Theorem 1.4 ([11]) Suppose that � : �z → �. If there is γ ∈ R with γ z(1 + z) ∈ (0, 1) so
that the inequality

�
(
�(ζ1, . . . , ζz),�(ζ2, . . . , ζz+1)

)≤ γ

z+1∑

j=1

�
(
ζj,�(ζj, . . . , ζj)

)
, (1.4)

is satisfied for each (ζ1, . . . , ζz+1) ∈�z+1, then
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• � possesses a unique FP ζ ∗ ∈�,
• for any chosen points ζ1, . . . , ζz ∈�, the sequence {ζl} described in (1.2) converges to ζ ∗.

In 2014, a new contribution to the extension of the BCP was highlighted by Jleli and
Samet [15]. They presented a new type of contraction, called η-contraction, and obtained
generalized results under appropriate conditions.

Definition 1.5 ([15]) Let η : (0,∞) → (1,∞) be a mapping such that:
(η1) η is nondecreasing;
(η2) for each {rl} ⊆R+, liml→∞ η(rl) = 1 iff liml→∞ rl = 0;
(η3) there are � ∈ (0, 1) and u ∈ (0,∞) so that limr→0+ ( η(r)–1

r� ) = u.
A mapping � : �→� is called an η-contraction if ∃γ ∈ (0, 1) and a function η satisfying

(η1)–(η3) so that

�ζ 	= �ϑ �⇒ η
(
� (�ζ ,�ϑ)

)≤ [η(� (ζ ,ϑ)
)]γ , for all ζ ,ϑ ∈�.

The set of all mappings η : (0,∞) → (1,∞) will be denoted by ∇ .

Theorem 1.6 ([15]) An operator � : � → � has a unique FP provided that � is an η-
contraction.

Numerous academics have discussed the concept of η-contraction, and important theo-
retical and practical findings have been documented that justify the use of FPs in nonlinear
analysis under different spatial constraints. We advise the reader to view [16, 17] for fur-
ther details.

In [18], two classes of matrix equations have been investigated by Ran and Reurings as
follows:

ξ = �±
m∑

j=1

℘∗
j ξ℘j, (1.5)

where� is an n×n positive definite matrix and ℘j are arbitrary n×n matrices. Under some
hypotheses, they established the existence and uniqueness of positive definite solutions to
(1.5). Duan et al. [19] generalized system (1.5) by making a small change as follows:

ξ = �±
m∑

j=1

℘∗
j ξρj℘j,

where 0 < |ρj| < 1. They investigated the existence and uniqueness of a positive definite
solution to such an equation on the basis of a fixed point theorem for mixed monotone
mappings. This form of matrix equation frequently occurs in a variety of fields, including
ladder networks [20, 21], dynamic programming [22, 23], control theory [24, 25], etc.

In the setting of η-contraction and matrix equations, our paper is organized as follows.
Section 1 is devoted to providing previous contributions to our studied problem in terms
of definitions and theory useful in understanding our manuscript. In Sect. 2, the conver-
gence of iterative sequences of the Presšíc-type rational η-contraction mappings in com-
plete metric spaces is discussed. Also, nontrivial examples are obtained to support the
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theoretical results. Ultimately, in Sect. 3, the obtained results are applied to obtain con-
vergence results for a class of matrix difference equations as a kind of application.

2 Main results
We start this part with the following definition:

Definition 2.1 We say that a mapping � : �z →� is a Prešić-type rational η-contraction
(PTR η-C, for short) if there is some γ ∈ (0, 1) so that

η
(
�
(
�(ζ1, . . . , ζz),�(ζ2, . . . , ζz+1)

))≤
{
η

(
max

{
� (ζj, ζj+1)

1 + � (ζj, ζj+1)
: 1 ≤ j ≤ z

})}γ

(2.1)

for each (ζ1, . . . , ζz+1) ∈�z+1 with �(ζ1, . . . , ζz) 	= �(ζ2, . . . , ζz+1).

It should be noted that if η(r) = e
√

r , then PTR η-C reduces to

�
(
�(ζ1, . . . , ζz),�(ζ2, . . . , ζz+1)

)≤ γ 2
(

max

{
� (ζj, ζj+1)

1 + � (ζj, ζj+1)
: 1 ≤ j ≤ z

})
, (2.2)

for each (ζ1, . . . , ζz+1) ∈�z+1, �(ζ1, . . . , ζz) 	= �(ζ2, . . . , ζz+1).
In addition, if (ζ1, . . . , ζz+1) ∈ �z+1 is such that �(ζ1, . . . , ζz) = �(ζ2, . . . , ζz+1), then con-

dition (2.2) is more general than (1.3), so the mapping � in (2.2) extends and unifies
Cirić–Prešić contraction.

Remark 2.2 Every PTR η-C � is a Prešić mapping by (η1) and (1.4), that is,

�
(
�(ζ1, . . . , ζz),�(ζ2, . . . , ζz+1)

)≤ γ max

{
� (ζj, ζj+1)

1 + � (ζj, ζj+1)
: 1 ≤ j ≤ z

}

< max
{
� (ζj, ζj+1) : 1 ≤ j ≤ z

}
.

for each (ζ1, . . . , ζz+1) ∈ �z+1 with �(ζ1, . . . , ζz) 	= �(ζ2, . . . , ζz+1). Thus, each PTR η-C � is a
continuous function.

Now, our first result is as follows:

Theorem 2.3 Suppose that � : �z → � is a PTR η-C. Then for any chosen points
ζ1, . . . , ζz ∈ �, the sequence {ζl} described in (1.2) is convergent to ζ ∗ ∈ � and ζ ∗ is an
FP of �. In addition, if �(ζ ∗, . . . , ζ ∗) 	= �(ζ ′, . . . , ζ ′) with

η
(
�
(
�
(
ζ ∗, . . . , ζ ∗),�

(
ζ ′, . . . , ζ ′)))≤ [η(� (ζ ∗, ζ ′))]γ

for ζ ∗, ζ ′ ∈� such that ζ ∗ 	= ζ ′, then the point ζ ∗ is unique.

Proof Let ζ1, . . . , ζz be arbitrary z elements in � and for l ∈ N the sequence {ζl} is defined
in (1.2). If for some l0 = {1, 2, . . . , z} one has ζl0 = ζl0+1, then

ζl0+z = �(ζl0 , ζl0+1, . . . , ζl0+z–1) = �(ζl0+z, ζl0+z, . . . , ζl0+z),
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which means that ζl0+z is an FP of � and there is no further proof needed. So, we consider
ζl+z 	= ζl+z+1 for all l ∈N. Put l+zג = � (ζl+z, ζl+z+1) and

φ = max

{
� (ζ1, ζ2)

1 + � (ζ1, ζ2)
,

� (ζ2, ζ3)
1 + � (ζ2, ζ3)

, . . . ,
� (ζz, ζz+1)

1 + � (ζz, ζz+1)

}
.

Then for all l ∈N and φ > 0, we have l+zג > 0. Thus, for l ≤ z, we obtain

1 < η(גz+1)

= η
(
� (ζz+1, ζz+2)

)

= η
(
�
(
�(ζ1, ζ2, . . . , ζz),�(ζ2, ζ3, . . . , ζz+1)

))

≤
[
η

(
max

{
� (ζj, ζj+1)

1 + � (ζj, ζj+1)
: 1 ≤ j ≤ z

})]γ

=
[
η(φ)
]γ .

Also,

1 < η(גz+2)

= η
(
� (ζz+2, ζz+3)

)

= η
(
�
(
�(ζ2, ζ3, . . . , ζz+1),�(ζ3, ζ4, . . . , ζz+2)

))

≤
[
η

(
max

{
� (ζj, ζj+1)

1 + � (ζj, ζj+1)
: 2 ≤ j ≤ z + 1

})]γ

=
[
η(φ)
]γ 2

.

Continuing in the same pattern, for l ≥ 1, we get

1 < η(גz+l)

= η
(
� (ζl+z, ζl+z+1)

)

= η
(
�
(
�(ζl, ζl+1, . . . , ζl+z–1),�(ζl+1, ζl+2, . . . , ζl+z)

))

≤ [η(φ)
]γ l

.

(2.3)

Taking l → ∞ in (2.3) and using (η2), we have

lim
l→∞

η(גz+l) = 1 ⇐⇒ lim
l→∞

z+lג = 0.

Based on (η3), there are � ∈ (0, 1) and u ∈ (0,∞) so that

lim
l→∞

(
η(גz+l) – 1

�ג
z+l

)
= u.

Assume that u < ∞ and v = u
2 > 0. By the definition of the limit, there is l1 ∈N such that

∣
∣∣
∣
η(גz+l) – 1

�ג
z+l

– u
∣
∣∣
∣≤ v, ∀l > l1.
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It follows that

η(גz+l) – 1
�ג

z+l
≥ u – v =

u
2

= v, ∀l > l1.

Set 1
v = q, then

lג�
z+l ≤ lq

(
η(גz+l) – 1

)
, ∀l > l1.

Suppose that u = ∞ and v > 0. By the definition of the limit, there is l1 ∈N such that

v ≤ η(גz+l) – 1
�ג

z+l
, ∀l > l1.

This implies after taking 1
v = q that

lג�
z+l ≤ lq

(
η(גz+l) – 1

)
, ∀l > l1.

Thus, in both cases, there are l1 ∈N and q > 0 so that

lג�
z+l ≤ lq

(
η(גz+l) – 1

)
, ∀l > l1.

Applying (2.3), we get

lג�
z+l ≤ lq

([
η(φ)
]γ l

– 1
)
, ∀l > l1,

and, when l → ∞, have

lim
l→∞

lג�
z+l = 0.

Thus, there is l2 ∈N and q > 0 such that

lג�
z+l ≤ 1, ∀l > l2.

Hence we can write

z+lג ≤ 1

l
1
�

, ∀l > l2.

Now, we clarify that {ζl} is a Cauchy sequence. For b > l > l2, one can write

� (ζz+l, ζz+b) = �
(
�(ζl, . . . , ζz+l–1),�(ζb, . . . , ζz+b–1)

)

≤ �
(
�(ζl, . . . , ζz+l–1),�(ζl+1, . . . , ζz+l)

)

+ �
(
�(ζl+1, . . . , ζz+l),�(ζl+2, . . . , ζz+l+1)

)

+ · · · + �
(
�(ζb–1, . . . , ζz+b–2),�(ζb, . . . , ζz+b–1)

)

= � (ζz+l, ζz+l+1) + � (ζz+l+1, ζz+l+2) + · · · + � (ζz+b–1, ζz+b)
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= l+zג + l+z+1ג + · · · + z+b–1ג

=
b–1∑

s=l

s+zג <
∞∑

s=l

s+zג ≤
∞∑

s=l

1

s
1
�

< ∞,

hence it follows that {ζl} is a Cauchy sequence in (�,� ). The completeness of � yields
that there is ζ ∗ ∈� such that

lim
l,b→∞

� (ζl, ζb) = lim
l→∞

�
(
ζl, ζ ∗) = 0.

Because � is continuous, we have

� = lim
l→∞

ζl+z

= lim
l→∞

�(ζl, ζl+1, . . . , ζz+l–1)

= �

(
lim

l→∞
ζl, lim

l→∞
ζl+1, . . . , lim

l→∞
ζz+l–1

)

= �
(
ζ ∗, ζ ∗, . . . , ζ ∗).

For uniqueness, assume that ζ ∗ and ζ ′ are two distinct FP of the mapping �, i.e., ζ ∗ =
�(ζ ∗, ζ ∗, . . . , ζ ∗) and ζ ′ = �(ζ ′, ζ ′, . . . , ζ ′) with ζ ∗ 	= ζ ′. Hence, by hypothesis (2.1), we can
write

η
(
�
(
ζ ∗, ζ ′)) = η

(
�
(
�
(
ζ ∗, ζ ∗, . . . , ζ ∗),�

(
ζ ′, ζ ′, . . . , ζ ′)))

≤
[
η

(
� (ζ ∗, ζ ′)

1 + � (ζ ∗, ζ ′)

)]γ

≤ [η(� (ζ ∗, ζ ′))]γ ,

a contradiction, as γ ∈ (0, 1). Therefore, ζ ∗ = ζ ′. This ends the proof. �

The following examples support Theorem 2.3.

Example 2.4 Let {ζl} be a sequence defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ζ1 = 3,

ζ2 = 3 + 7,
...

ζl = 3 + 7 + 11 + · · · + (4l – 1) = l(2l + 1).

Assume that � = {ζl : l ∈ N} and � (̃ζ , ζ̂ ) = |̃ζ – ζ̂ |. Clearly, (�,� ) is a complete metric
space. Define a mapping � : �3 →� by

�(ζl, ζ̃l, ζ̂l) =

⎧
⎨

⎩

ζl–1+̃ζl–1+̂ζl–1
3 , when l > 1,

ζ1+̃ζ1+̂ζ1
3 , otherwise.
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For l > 5, we have

�
(
�(ζl–4, ζl–3, ζl–2),�(ζl–2, ζl–1, ζl)

)

= �

(
ζl–5 + ζl–4 + ζl–3

3
,
ζl–3 + ζl–2 + ζl–1

3

)

=
1
3
∣
∣((l – 5)(2l – 9) + (l – 4)(2l – 7) + (l – 3)(2l – 5)

)

–
(
(l – 3)(2l – 5) + (l – 2)(2l – 3) + (l – 1)(2l – 1)

)∣∣

=
1
3
∣
∣(6l2 – 45l + 88

)
–
(
6l2 – 21l + 22

)∣∣

=
1
3
|24l – 66| = 8l – 22,

and

max
{
�
(
(ζl–4, ζl–3, ζl–2), (ζl–2, ζl–1, ζl)

)}

= max

⎧
⎪⎨

⎪⎩

∣
∣(l – 4)(2l – 7) – (l – 2)(2l – 3)

∣
∣,∣∣(l – 3)(2l – 5) – (l – 1)(2l – 1)
∣∣,∣∣(l – 2)(2l – 3) – l(2l + 1)
∣∣

⎫
⎪⎬

⎪⎭

= max
{

(8l – 22), (8l – 14), (6l – 6)
}

= (8l – 14).

Now,

lim
l→∞

� (�(ζl–4, ζl–3, ζl–2),�(ζl–2, ζl–1, ζl))
max{� ((ζl–4, ζl–3, ζl–2), (ζl–2, ζl–1, ζl))} = lim

l→∞
8l – 22
8l – 14

= 1.

Thus,

�
(
�(ζl–4, ζl–3, ζl–2),�(ζl–2, ζl–1, ζl)

)≤ γ max
{
�
(
(ζl–4, ζl–3, ζl–2), (ζl–2, ζl–1, ζl)

)}

does not hold for γ ∈ (0, 1), which implies that assumption (1.1) of Theorem 1.1 is not
fulfilled. Now, define the mapping η : (0,∞) → (1,∞) by η(s) = e ses

1+s . We can easily verify
that η ∈ ∇ and � is PTR η-C. Indeed, the inequality

e

√

� (�(ζi ,ζi+1,ζi+2),�(ζi+2,ζi+3,ζi+4)) e� (�(ζi ,ζi+1,ζi+2),�(ζi+2,ζi+3,ζi+4))
1+� (�(ζi ,ζi+1,ζi+2),�(ζi+2,ζi+3,ζi+4))

≤ e
γ

√

� ((ζi ,ζi+1,ζi+2),(ζi+2,ζi+3,ζi+4)) e� ((ζi ,ζi+1,ζi+2),(ζi+2,ζi+3,ζi+4))
1+� ((ζi ,ζi+1,ζi+2),(ζi+2,ζi+3,ζi+4)) ,

(2.4)

holds for �(ζi, ζi+1, ζi+2) 	= �(ζi+2, ζi+3, ζi+4), i = 1, 2, . . . , and for some γ ∈ (0, 1). Inequality
(1.1) is equivalent to

�
(
�(ζi, ζi+1, ζi+2),�(ζi+2, ζi+3, ζi+4)

)
e

� (�(ζi ,ζi+1,ζi+2),�(ζi+2,ζi+3,ζi+4))
1+� (�(ζi ,ζi+1,ζi+2),�(ζi+2,ζi+3,ζi+4))

≤ γ 2 max
{
�
(
(ζi, ζi+1, ζi+2), (ζi+2, ζi+3, ζi+4)

)}
e

max{� ((ζi ,ζi+1,ζi+2),(ζi+2,ζi+3,ζi+4))}
1+max{� ((ζi ,ζi+1,ζi+2),(ζi+2,ζi+3,ζi+4))} .
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So, for some γ ∈ (0, 1), we can write

� (�(ζi, ζi+1, ζi+2),�(ζi+2, ζi+3, ζi+4))e
� (�(ζi ,ζi+1,ζi+2),�(ζi+2,ζi+3,ζi+4))

1+� (�(ζi ,ζi+1,ζi+2),�(ζi+2,ζi+3,ζi+4))

max{� ((ζi, ζi+1, ζi+2), (ζi+2, ζi+3, ζi+4))}e
max{� ((ζi ,ζi+1,ζi+2),(ζi+2,ζi+3,ζi+4))}

1+max{� ((ζi ,ζi+1,ζi+2),(ζi+2,ζi+3,ζi+4))}
≤ γ 2.

Now, we will discuss the following cases:
(i) If i = l = 1, we get

� (�(ζ1, ζ2, ζ3),�(ζ3, ζ4, ζ5))e
� (�(ζ1,ζ2,ζ3),�(ζ3,ζ4,ζ5))

1+� (�(ζ1,ζ2,ζ3),�(ζ3,ζ4,ζ5))

max{� ((ζ1, ζ2, ζ3), (ζ3, ζ4, ζ5))}e
max{� ((ζ1,ζ2,ζ3),(ζ3,ζ4,ζ5))}

1+max{� ((ζ1,ζ2,ζ3),(ζ3,ζ4,ζ5))}

=
� ( ζ1+ζ2+ζ3

3 , ζ3+ζ4+ζ5
3 )e

� ( ζ1+ζ2+ζ3
3 , ζ3+ζ4+ζ5

3 )

1+� ( ζ1+ζ2+ζ3
3 , ζ3+ζ4+ζ5

3 )

max{� ((ζ1, ζ2, ζ3), (ζ3, ζ4, ζ5))}e
max{� ((ζ1,ζ2,ζ3),(ζ3,ζ4,ζ5))}

1+max{� ((ζ1,ζ2,ζ3),(ζ3,ζ4,ζ5))}

=
� ( 34

3 , 112
3 )e

� ( 34
3 , 112

3 )

1+� ( 34
3 , 112

3 )

max{� ((3, 10, 21), (21, 36, 55))}e max{� ((3,10,21),(21,36,55))}
1+max{� ((3,10,21),(21,36,55))}

≤ 26e26

34e34 =
13
17

e–8 < e–2.

(ii) If i = l > 1, we obtain

� (�(ζl, ζl+1, ζl+2),�(ζl+2, ζl+3, ζl+4))e
� (�(ζl ,ζl+1,ζl+2),�(ζl+2,ζl+3,ζl+4))

1+� (�(ζl ,ζl+1,ζl+2),�(ζl+2,ζl+3,ζl+4))

max{� ((ζl, ζl+1, ζl+2), (ζl+2, ζl+3, ζl+4))}e
max{(ζl ,ζl+1,ζl+2),(ζl+2,ζl+3,ζl+4)}

1+max{(ζl ,ζl+1,ζl+2),(ζl+2,ζl+3,ζl+4)}

=
� ( ζl–1+ζl+ζl+1

3 , ζl+1+ζl+2+ζl+3
3 )e

� ( ζl–1+ζl+ζl+1
3 , ζl+1+ζl+2+ζl+3

3 )

1+� ( ζl–1+ζl+ζl+1
3 , ζl+1+ζl+2+ζl+3

3 )

max{� ((ζl, ζl+1, ζl+2), (ζl+2, ζl+3, ζl+4))}e
max{� ((ζl ,ζl+1,ζl+2),(ζl+2,ζl+3,ζl+4))}

1+max{� ((ζl ,ζl+1,ζl+2),(ζl+2,ζl+3,ζl+4))}

=
| 6l2+3l+4

3 – 6l2+27l+34
3 |e

| 6l2+3l+4
3 – 6l2+27l+34

3 |
1+| 6l2+3l+4

3 – 6l2+27l+34
3 |

max{|8l + 10|, |8l + 18|, |8l + 26|}e max{|8l+10|,|8l+18|,|8l+26|}
1+max{|8l+10|,|8l+18|,|8l+26|}

=
(8l + 10)e

(8l+10)
1+(8l+10)

(8l + 26)e
(8l+26)

1+(8l+26)
≤ (8l + 10)e(8l+10)

(8l + 26)e(8l+26) e–16 < e–2,

with γ = 1
e . Hence all requirements of Theorem 2.3 are fulfilled and the point (1, 1, 1) is

the unique FP of �.

Example 2.5 Assume that � = [0, 1], � (̃ζ , ζ̂ ) = |̃ζ – ζ̂ |, and � : �z →� is described by

�(ζ1, . . . , ζl) =
ζ1 + ζl

8l
, ∀ζ1, . . . , ζl ∈�.
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Let η : (0,∞) → (1,∞) be a mapping defined by η(s) = e
√

s
1+s . Since e

√
s

1+s ≤ e
√

s, we can see
from [15] that η ∈ ∇ . Now, for ζ1, ζ2, . . . , ζl+1 ∈�, one can write

�
(
�(ζ1, . . . , ζl),�(ζ2, . . . , ζl+1)

)
> 0,

and

η
(
�
(
�(ζ1, . . . , ζl),�(ζ2, . . . , ζl+1)

))

= e

√
� (�(ζ1,...,ζl ),�(ζ2,...,ζl+1))

1+� (�(ζ1,...,ζl ),�(ζ2,...,ζl+1))

= e

√
( 1

8l )|(ζ1–ζ2)+(ζl–ζl+1)|
1+|(ζ1–ζ2)+(ζl–ζl+1)|

= e
( 1

2
√

2l
)
√

|(ζ1–ζ2)+(ζl–ζl+1)|
1+|(ζ1–ζ2)+(ζl–ζl+1)|

≤ e
( 1√

2
)
√

max{� (ζ1,ζ2),� (ζl ,ζl+1)}
1+max{� (ζ1,ζ2),� (ζl ,ζl+1)}

≤ e
( 1√

2
)
√

max{ � (ζj ,ζj+1)
1+� (ζj ,ζj+1) :1≤j≤z}

=
[
η

(
max

{
� (ζj, ζj+1)

1 + � (ζj, ζj+1)
: 1 ≤ j ≤ z

})]γ

,

with γ = 1√
2 . In addition, for all ζ ∗, ζ ′ ∈� with ζ ∗ 	= ζ ′, we obtain

�
(
�
(
ζ ∗, ζ ∗, . . . , ζ ∗),�

(
ζ ′, ζ ′, . . . , ζ ′)) =

|ζ ∗ – ζ ′|
8l

> 0,

and

η
(
�
(
�
(
ζ ∗, ζ ∗, . . . , ζ ∗),�

(
ζ ′, ζ ′, . . . , ζ ′))) = η

( |ζ ∗ – ζ ′|
8l

)

= e

√√
√√(

|ζ∗–ζ ′ |
8l

1+ |ζ∗–ζ ′ |
8l

)

≤ e
( 1

2
√

2l
)
√

( |ζ∗–ζ ′ |
1+|ζ∗–ζ ′ | )

≤ e
1√
2

√
( |ζ∗–ζ ′ |

1+|ζ∗–ζ ′ | )

=
[
η
(
�
(
ζ ∗, ζ ′))]γ ,

with γ = 1√
2 . Hence, all assumptions of Theorem 2.3 are fulfilled. In addition, for some

chosen ζ1, . . . , ζl ∈ �, the sequence {ζl} defined in (2.3) converges to ζ ∗ = 0, which is the
unique FP of �.

If we put η(s) = e
√

s in Theorem 2.3, we get the result below.
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Corollary 2.6 Consider � : �z →� is a given mapping and suppose there is γ ∈ (0, 1) such
that

�
(
�(ζ1, . . . , ζz),�(ζ2, . . . , ζz+1)

)≤ γ 2
(

max

{
� (ζj, ζj+1)

1 + � (ζj, ζj+1)
: 1 ≤ j ≤ z

})
. (2.5)

Then for any chosen points ζ1, . . . , ζz ∈ �, the sequence {ζl} described in (1.2) converges to
ζ ∗ ∈� and ζ ∗ = �(ζ ∗, . . . , ζ ∗). Moreover, if

�
(
�
(
ζ ∗, . . . , ζ ∗),�

(
ζ ′, . . . , ζ ′))≤ γ 2�

(
ζ ∗, ζ ′)

holds for all ζ ∗, ζ ′ ∈� with ζ ∗ 	= ζ ′, Then the point ζ ∗ is a unique FP of the mapping �.

Corollary 2.7 Assume that � : �z → � is a given mapping and there are nonnegative con-
stants γ1,γ2, . . . ,γz with γ1 + γ2 + · · · + γz < 1 such that

�
(
�(ζ1, . . . , ζz),�(ζ2, . . . , ζz+1)

)≤ γ1
� (ζ1, ζ2)

1 + � (ζ1, ζ2)
+ γ2

� (ζ2, ζ3)
1 + � (ζ2, ζ3)

+ · · · + γz
� (ζz, ζz+1)

1 + � (ζz, ζz+1)
,

(2.6)

for each (ζ1, . . . , ζz+1) ∈ �z+1 with �(ζ1, . . . , ζz) 	= �(ζ2, . . . , ζz+1). Then for any chosen points
ζ1, . . . , ζz ∈�, the sequence {ζl}, given by (1.2) converges to ζ ∗ ∈ �, where ζ ∗ is a unique FP
of �.

Proof It is clear that (2.6) implies (2.5) with γ 2 = γ1 + γ2 + · · · + γz .
Now, suppose that ζ ∗, ζ ′ ∈� with ζ ∗ 	= ζ , Based on (2.6), one can obtain

�
(
�
(
ζ ∗, ζ ∗, . . . , ζ ∗),�

(
ζ ′, ζ ′, . . . , ζ ′))

= �
(
�
(
ζ ∗, . . . , ζ ∗),�

(
ζ ∗, . . . , ζ ∗, ζ ′))

+ �
(
�
(
ζ ∗, . . . , ζ ∗, ζ ′),�

(
ζ ∗, . . . , ζ ∗, ζ ′, ζ ′))

+ · · · + �
(
�
(
ζ ∗, . . . , ζ ′, ζ ′),�

(
ζ ′, . . . , ζ ′, ζ ′))

≤ (γz + γz–1 + · · · + γz)
� (ζ ∗, ζ ′)

1 + � (ζ ∗, ζ ′)

≤ γ 2�
(
ζ ∗, ζ ′).

Thus, the conditions of Corollary 2.6 hold. �

If we take a large class of functions ∇ , for example,

η(s) = 2 –
2
π

arctan

(
1
sθ

)
,

where θ ∈ (0, 1) and s > 0, we obtain the following theorem from Theorem 2.3.
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Theorem 2.8 Suppose that � : �z → � is a given mapping. If there are a mapping η ∈ ∇
and constants γ , θ ∈ (0, 1) such that

2 –
2
π

arctan

(
1

[� (�(ζ1, . . . , ζz),�(ζ2, . . . , ζz+1))]θ

)

≤
[

2 –
2
π

arctan

(
1

[max{ � (ζj ,ζj+1)
1+� (ζj ,ζj+1) : 1 ≤ j ≤ z}]θ

)]γ

,

for each (ζ1, . . . , ζz+1) ∈ �z+1 with �(ζ1, . . . , ζz) 	= �(ζ2, . . . , ζz+1), then for any chosen points
ζ1, . . . , ζz ∈ �, the sequence {ζl}, given by (1.2) converges to ζ ∗ ∈ �. Then ζ ∗ is a unique FP
of �. Moreover, if

2 –
2
π

arctan

(
1

[� (�(ζ ∗, . . . , ζ ∗),�(ζ ′, . . . , ζ ′))]θ

)

≤
[

2 –
2
π

arctan

(
1

(� (ζ ∗, ζ ′))θ

)]γ

,

holds for ζ ∗, ζ ′ ∈� with ζ ∗ 	= ζ ′, then the point ζ ∗ is a unique FP of the mapping �.

Remark 2.9 It should be noted that:
• Our Theorem 2.3 unifies and extends Theorem 1.3 in [10] and Theorem 1.2 in [9].
• Corollary 1 in [15] can be obtained directly from Theorem 2.3 putting γ = 1 and

neglecting the denominator of the contractive condition (2.1).
• If we take γ = 1 and neglect the denominators of the contractivity conditions of

Corollaries 2.6 and 2.7, we obtain the BCP [1].

3 Application to matrix difference equations
In this part, the symbols ℵ(N) for (N ≥ 2), �, ℘ , ℘∗, and ϕ refer to the family of N × N
Hermitian positive definite matrices, an N × N Hermitian positive semidefinite matrix,
an N × N nonsingular matrix, the conjugate transpose of ℘ , and the function from ℵ(N)
to ℵ(N), respectively.

Now, the definition of the equilibrium point is stated as follows:

Definition 3.1 Consider � : �z → � as a given mapping. For any ζ1, . . . , ζz ∈ �, define a
recursive sequence {ζl} by

ζl+z = �(ζl, ζl+1, . . . , ζl+z–1), (3.1)

for each l ∈ N. We say that a point ζ ∈ � is an equilibrium point of (3.1) if the hypothesis
below holds:

ζ = �(ζ , ζ , . . . , ζ ). (3.2)

Definition 3.2 If for all ζ1, ζ2, . . . , ζz ∈ � one has � (ζl, ζ ) → 0 as l → ∞, then an equilib-
rium point is called a global attractor.
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Here, we explore the global attractivity for the following recursive sequence:

ζl+z = � +
1
z

z–1∑

j=0

℘∗ϕ
(

ζl+j

1 + ζl+j

)
℘, ∀l ≥ 1. (3.3)

Before applying the theoretical results, we analyze the Thompson metric � on ℵ(N),
which is described as

� (℘1,℘2) = max

{
log W

(
℘1

℘2

)
, log W

(
℘2

℘1

)}
,

for ℘1,℘2 ∈ ℵ(N), where W ( ℘1
℘2

) = inf{� > 0 : ℘1 ≤ �℘2} = �+(℘– 1
2

2 ℘
–1
2

1 ℘2), that is, W

is the maximal eigenvalue of ℘
– 1

2
2 ℘

–1
2

1 ℘2. Here ℘1 ≤ ℘2 means that ℘2 – ℘1 is positive
semidefinite and ℘1 < ℘2 means that ℘2 – ℘1 is positive definite.

Based on � , which defined as

� (℘1,℘2) =
∥
∥ln
(
℘

– 1
2

1 ℘2℘
–1
2

1
)∥∥,

ℵ(N) is a complete metric space [26], where ‖ · ‖ is a spectral norm [27].
Now, let us start with the exciting characteristics of � , i.e., for any nonsingular matrix

W ,

� (℘1,℘2) = �
(
℘–1

1 ,℘–1
2
)

= �
(
W ∗℘1W , W ∗℘2W

)
. (3.4)

The second important result is the nonpositive curvature property of � in the form of

�
(
℘r

1,℘r
2
)≤ h� (℘1,℘2), h ∈ [0, 1]. (3.5)

Based on (3.4) and (3.5), we can write

�
(
W ∗℘r

1W , W ∗℘r
2W
)≤ |h|� (℘r

1,℘r
2
)
, h ∈ [–1, 1],

for all ℘1,℘2 ∈ ℵ(N).

Lemma 3.3 ([28]) For each ℘1,℘2,℘3,℘4 ∈ ℵ(N), we get

� (℘1 + ℘2,℘3 + ℘4) ≤ max
{
� (℘1,℘3),� (℘2,℘4)

}
.

Moreover, for all positive semidefinite ℘1,℘2,℘3 ∈ ℵ(N), we have

� (℘1 + ℘2,℘1 + ℘3) ≤ � (℘2,℘3).

Consider that ϕ : ℵ(N) → ℵ(N) is an η-contraction related with � . For W1, W2, . . . , Wz ∈
ℵ(N), let {Wl} ⊂ ℵ(N) be a sequence defined by (3.3).

Now, we can state and prove our main theorem for this part.
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Theorem 3.4 Equation (3.3) has a global attractor ζ ∈ ℵ(N), which is a unique equilib-
rium point.

Proof Define an operator � : ℵ(N)z → ℵ(N) by

�(W1, W2, . . . , Wz)

= � +
1
z

[
℘∗ϕ
(

W1

1 + W1

)
℘ + ℘∗ϕ

(
W2

1 + W2

)
℘ + · · · + ℘∗ϕ

(
Wz

1 + Wz

)
℘

]
,

for all W1, W2, . . . , Wz ∈ ℵ(N).
Let W1, W2, . . . , Wz+1 ∈ ℵ(N). According to Lemma 3.3, we obtain

�
(
�(W1, W2, . . . , Wz),�(W2, W3, . . . , Wz+1)

)

= �

(

� +
1
z

z∑

j=1

℘∗ϕ
(

Wi

1 + Wi

)
℘,� +

1
z

z+1∑

k=2

℘∗ϕ
(

Wk

1 + Wk

)
℘

)

≤ �

(
1
z

z∑

j=1

℘∗ϕ
(

Wi

1 + Wi

)
℘,

1
z

z+1∑

k=2

℘∗ϕ
(

Wk

1 + Wk

)
℘

)

= �

( z∑

j=1

(
1√
z
℘

)∗
ϕ

(
Wi

1 + Wi

)(
1√
z
℘

)
,

z+1∑

k=2

(
1√
z
℘

)∗
ϕ

(
Wk

1 + Wk

)(
1√
z
℘

))

.

Set � = 1√
z ℘ . Then by Lemma 3.3, we have

�
(
�(W1, W2, . . . , Wz),�(W2, W3, . . . , Wz+1)

)

≤ �

( z∑

j=1

�∗ϕ
(

Wi

1 + Wi

)
�,

z+1∑

k=2

�∗ϕ
(

Wk

1 + Wk

)
�

)

= �

(
�∗ϕ( W1

1+W1
)� + �∗ϕ( W2

1+W2
)� + · · · + �∗ϕ( Wz

1+Wz
)�,

�∗ϕ( W2
1+W2

) + �∗ϕ( W3
1+W32

)� + · · · + �∗ϕ( Wk+1
1+Wk+1

)�

)

≤ max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�

(
�∗ϕ
(

W1
1+W1

)
�,�∗ϕ

(
W2

1+W2

)
�

)
,

�

(
�∗ϕ
(

W3
1+W3

)
�,�∗ϕ

(
W4

1+W4

)
�

)
,

�

(
�∗ϕ
(

Wz
1+Wz

)
�,�∗ϕ

(
Wk+1

1+Wk+1

)
�

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= max

{
�

(
�∗ϕ
(

Wk

1 + Wk

)
�,�∗ϕ

(
Wk+1

1 + Wk+1

)
�

)}
,

(3.6)

for k = 1, 2, . . . , z. Because ℘ is nonsingular, � is also nonsingular. Using (3.6) for all k =
1, 2, . . . , z, we can write

�

(
�∗ϕ
(

Wk

1 + Wk

)
�,�∗ϕ

(
Wk+1

1 + Wk+1

)
�

)
= �

(
ϕ

(
Wk

1 + Wk

)
,ϕ
(

Wk+1

1 + Wk+1

))
.
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Since ϕ is an η-contraction, for all k = 1, 2, . . . , z, we have

η

(
�

(
�∗ϕ
(

Wk

1 + Wk

)
�,�∗ϕ

(
Wk+1

1 + Wk+1

)
�

))
≤
[
η

(
� (Wk , Wk+1)

1 + � (Wk , Wk+1)

)]λ

,

for some γ ∈ (0, 1). Thus, we get

η
(
�
(
�(W1, W2, . . . , Wz),�(W2, W3, . . . , Wz+1)

))

≤
[
η

(
max

{
� (Wk , Wk+1)

1 + � (Wk , Wk+1)

}
: 1 ≤ j ≤ z

)]γ

,

for W1, W2, . . . , Wz+1 ∈ ℵ(N). Hence, by Theorem 2.3, there exists an FP of the mapping
�, which is a global attractor equilibrium point ζ ∈ ℵ(N). Moreover, for W1, W2 ∈ ℵ(N),
such that �(W1, W1, . . . , W1) 	= �(W2, W2, . . . , W2), one can write

η
(
�
(
�(W1, W1, . . . , W1),�(W2, W2, . . . , W2)

))

= η

(
�

(
� + ℘∗ϕ

(
W1

1 + W1

)
℘,� + ℘∗ϕ

(
W2

1 + W2

)
℘

))

≤ η

(
�

(
℘∗ϕ
(

W1

1 + W1

)
℘,℘∗ϕ

(
W2

1 + W2

)
℘

))

= η

(
�

(
ϕ

(
W1

1 + W1

)
,ϕ
(

W2

1 + W2

)))

≤
[
η

(
�

(
W1

1 + W1
,

W2

1 + W2

))]γ

≤ [η(� (W1, W2)
)]

.

Again, based on Theorem 2.3, the equilibrium point is unique. �

4 Conclusion and future work
In this study, a new concept of Prešić-type rational η-contraction mappings has been in-
troduced and the convergence of iterative sequences of such contractions has been dis-
cussed in the setting of complete metric spaces. The new theory improves and extends
many results existing in the literature. Some nontrivial examples have been provided to
support the results obtained herein. Moreover, some convergence results for a class of
matrix difference equations have been derived. As future works, the authors are looking
for generalizations of these results to multivalued Prešić-type rational η-contraction map-
pings and studying the convergence of the matrix difference equations numerically.
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10. Ćirić, L.B., Prešić, S.B.: On Prešić type generalization of the Banach contraction mapping principle. Acta Math. Univ.

Comen. 76, 143–147 (2007)
11. Pâcurar, M.: A multi-step iterative method for approximating fixed points of Prešić–Kannan operators. Acta Math.
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