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Abstract
This paper proposes a local meshless radial basis function (RBF) method to obtain the
solution of the two-dimensional time-fractional Sobolev equation. The model is
formulated with the Caputo fractional derivative. The method uses the RBF to
approximate the spatial operator, and a finite-difference algorithm as the
time-stepping approach for the solution in time. The stability of the technique is
examined by using the matrix method. Finally, two numerical examples are given to
verify the numerical performance and efficiency of the method.
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1 Introduction
Extending integer derivatives to fractional orders in differential equations led to an area in
mathematics called fractional calculus (FC) [1–4]. This field, dealing with the calculus of
derivatives and integrals of arbitrary order, became popular in the last thirty years, since
numerous significant phenomena in signal processing and optics [5–7], biological sys-
tems [8], quantum mechanics [9], electrochemistry [10], fluid mechanics [11], viscoelas-
ticity [12], and electromagnetics [13] can be described via fractional differential equations
(FDEs). Moreover, FC is presently a key tool in the modeling of particle transport occur-
ring in porous heterogeneous media in addition to complex phenomena [1, 2]. There-
fore, researchers need an effective tool to solve FDEs; however, obtaining exact solutions
for such equations is difficult. Hence, it is becoming increasingly important to develop
efficient numerical techniques to tackle these problems [14]. Nevertheless, numerical
schemes for FDEs lead to mathematical difficulties not faced in integer-order model anal-
ysis. The main reasons for this are that the fractional difference operators have a nonlocal
nature and their adjoints are not the negatives of themselves [15].

From the perspective of the numerical analysis, there are some fundamental difficulties
in numerically solving the fractional derivatives, because some of the good properties of
classical approximating operators are lost. During the last decades, the difference method
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has made some developments for approximating FDEs, [16, 17]. The Riemann–Liouville
fractional derivative can be discretized by the standard Grünwald–Letnikov formula [18]
with only first-order accuracy, but the difference scheme based on the Grünwal–Letnikov
formula for time-dependent problems is unstable [16]. To tackle this problem, Meer-
schaert and Tadjeran [16] presented the shifted Grünwald–Letnikov formula to simulate
fractional advection–dispersion flow equations. Sousaa and Li [19] adopted a second-
order discretization for the Riemann–Liouville fractional derivative and established an
unconditionally stable weighted average difference method. Ortigueira [20] advanced the
fractional centred derivative to solve the Riesz fractional derivative with second-order ac-
curacy. It is worth mentioning that the singularity of the exact solution for time FDEs often
occurs near the starting time t = 0 [21]. Therefore, one needs to establish some proper reg-
ularity assumptions to develop the numerical schemes [21]. As a result, constructing fast
and high-order numerical techniques to solve FDEs is a challenging task.

Hereafter, we study a numerical approach to solve the time-fractional Sobolev equation
(TFSE) as

∂αu(x, t)
∂tα

– γ
∂∇2u(x, t)

∂t
– σ∇2u(x, t) = f (x, t), 0 < t ≤ T , x = (x, y) ∈ � ⊂R

2, (1)

with the initial condition (IC)

u(x, 0) = g(x), x ∈ �, (2)

and the boundary condition (BC)

u(x, t) = h(x, t), x ∈ ∂�, 0 ≤ t ≤ T , (3)

where γ and σ denote two positive constants, � expresses a continuous domain in R
2

with boundary ∂�, ∇2 represents a Laplacian operator in the variable space, T stands for
the total time, and u(x, t) is the unknown solution to be determined. The time-fractional
derivative in the TFSE denotes the Caputo fractional derivative of order α expressed by

∂αu(x, t)
∂tα =

⎧
⎨

⎩

1
�(1–α)

∫ t
0

∂u(x,η)
∂η

1
(t–η)α dη, 0 < α < 1,

∂u(x,t)
∂t , α = 1.

(4)

Here, the process of modeling fluids is developed using the fractional derivative operator.
This generalization includes by means of the Caputo fractional derivative instead of the
standard temporal derivative. When α = 1, the TFSE yields the classical pseudoparabolic
or Sobolev equation that describes various fluid-mechanics and engineering problems,
e.g., quasistationary phenomena in semiconductors, thermal conduction with conductive
or thermodynamic temperature, and the flow of fluid through fissured rocks [22]. Indeed,
the Sobolev equation is the mathematical model of the vertical nonstationary groundwater
flow with dynamic capillary-pressure effect in a porous medium (see [23] and references
therein). A noteworthy characteristic of these models consists of their capability of ex-
pressing the conservation of some quantities, such as mass, heat, and momentum [22].
The Sobolev model is a special class of the Benjamin–Bona–Mahony–Burgers (BBMB)
equation, where the coefficients of the nonlinear term and first-order derivatives equal
zero [24].
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Some numerical techniques have been advanced to approximate the TFSE. Liu et al. [25]
applied a modified reduced-order finite-element (FE) technique. Haq and Hussain [26,
27] developed a meshless scheme based on radial basis functions (RBFs). Beshtokov [28]
proposed a finite-difference algorithm, while Qin et al. [29] employed a Newton linearized
scheme based on the Crank–Nicolson technique and Zhao et al. [30] used a finite-volume
element (FVE) approach.

We find in the technical literature three standard numerical approaches, namely the fi-
nite element, the finite difference, and the finite volume (abbreviated, FE, FD, and FV)
schemes. These approaches have been successfully used to approximate a variety of par-
tial differential equations (PDEs) in diverse subject areas, such as electromagnetism, fluid
dynamics, material science, financial markets, and astrophysics. In fact, the behavior of
some materials in nature may be modeled via PDEs and solved by traditional numeri-
cal methods. Examples include climate and weather modeling performed in geophysics,
Navier–Stokes equations arising in fluid dynamics, biphasic modeling in engineering, and
Maxwell’s equations used in electrodynamics. The FD is common in science and engi-
neering for its simplicity. However, the main shortcoming of the FD is its inability to han-
dle higher-dimensional geometries since the PDE discretization depends on a topological
line grid. On the other hand, the FE is the most flexible traditional method with respect
to geometry. An alternative strategy is the so-called spectral method. This is an accurate
method, but it suffers from geometric restrictions and has predetermined periodic bound-
ary conditions in the Fourier case. The computational domain in the FE is partitioned
into smaller subdomains and the solution is constructed in each element using the basis
functions. Consequently, the number of dimensions or variables may reach hundreds or
thousands in a real-world problem. Hence, the question arises as to whether it is possi-
ble to generate grid points in problems with irregular domains and complex geometries
in higher dimensions. This problem led to the development of meshless (or mesh-free)
methods that are meshless in the sense that they do not require point connectivity in the
mesh/grid. Determining the nearest neighbors involves a smaller computational cost than
mesh generation in traditional methods.

The RBFs are gaining popularity in the interpolation of functions and the solution of
partial differential equations (PDEs) owing to their simplicity and accuracy [31–33]. In ad-
dition, RBF techniques reveal almost spectral accuracy [34, 35] and are easy to implement
since they are independent of the node location and the problem dimension. Nonethe-
less, global RBF (GRBF) approximations result in ill-conditioned and full matrices, which
makes them unsuitable for large problems. Consequently, local strategies, such as the RBF
partition of unity (RBF-PU) [23, 36–41] and the RBF-generated finite-difference (RBF-FD)
approaches [42–45], are currently under development.

The main idea behind the RBF-PU is to decompose the original domain into several
covering subdomains (patches) and to construct a local RBF approximant over each sub-
domain. The localized method overcomes the large computational cost posed by the ill-
conditioned and dense matrices of the GRBF method, while maintaining the accuracy
resulting from the sparsity of such matrices. Moreover, the RBF-PU also achieves good
accuracy with significantly less computational burden than the GRBF.

This paper is outlined as follows. Section 2 provides a time-discrete scheme using the
finite-difference (FD) formula through the θ -weighted rule. Section 3 discusses the spa-
tial discretization using the RBF-PU. In addition, the stability of the RBF-PU collocation
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through the matrix method is also analyzed. Section 4 presents two numerical problems
that exemplify the accuracy and efficiency of the RBF-PU. Finally, Sect. 5 highlights the
main conclusions.

2 Discretization of the time derivative
This section constructs the semitime-discrete algorithm using a FD formula with a θ -
weighted scheme. For this purpose, let 0 = t0 < t1 < · · · < tL = T denote the time instants for
the interval [0, T] so that L and δt = T/L are the positive integer the time step, respectively.
The terms ∂u(x,t)

∂t and ∂�u(x,t)
∂t can be approximated at the nodal point tn+1 as

∂u(x, tn+1)
∂t

=
u(x, tn+1) – u(x, tn)

δt
+ O(δt), (5)

∂�u(x, tn+1)
∂t

=
�u(x, tn+1) – �u(x, tn)

δt
+ O(δt). (6)

Moreover, the Caputo-time-fractional derivative of u(x, t) appearing in Eq. (1) can be ap-
proximated as

∂αu(x, tn+1)
∂tα

=
1

�(1 – α)

∫ tn+1

0

∂u(x,η)
∂η

1
(tn+1 – η)α

dη

=
1

�(1 – α)

n∑

k=0

∫ (k+1)δt

kδt

∂u(x,ηk+1)
∂η

1
(tn+1 – η)α

dη

≈ 1
�(1 – α)

n∑

k=0

∫ (k+1)δt

kδt

∂u(x,ηk+1)
∂η

1
(tn+1 – η)α

dη

=
1

�(1 – α)

n∑

k=0

(
u(x, tk+1) – u(x, tk)

δt
+ O(δt)

)∫ (k+1)δt

kδt

1
(t – η)α

dη

=
1

�(1 – α)

n∑

k=0

(
u(x, tk+1) – u(x, tk)

δt
+ O(δt)

)∫ (k+1)δt

kδt

dr
rα

=

⎧
⎨

⎩

δt–α

�(2–α) (un+1 – un) + δt–α

�(2–α)
∑n

k=1[(k + 1)1–α – k1–α](un+1–k – un–k), n ≥ 1,
δt–α

�(2–α) (u1 – u0), n = 0

=

⎧
⎨

⎩

a0[(un+1 – un) +
∑n

k=1 bk(un+1–k – un–k)], n ≥ 1,
a0(u1 – u0), n = 0

+ O
(
δt2–α

)
, (7)

where u(x, tn+1) = un+1, a0 = δt–α

�(2–α) and bk = (k + 1)1–α – k1–α .
Inserting Eqs. (6) and (7) into Eq. (1) together with the θ -weighted formula gives the

semitime-discrete approach between successive two temporal levels n and n + 1:

aαun+1 – rθ∇2un+1

=

⎧
⎨

⎩

aαun – sθ∇2un – aα

∑n
j=1 bj(un+1–j – un–j) + δtf n+1

θ , n ≥ 1,
aαu0 – sθ∇2u0 + δtf 1

θ , n = 0,
(8)

where aα = a0δt, rθ = σθδt + γ , sθ = σ (1 – θ )δt + γ and f n+1
θ = (1 – θ )f n + θ f n+1.
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3 Spatial derivative discretization
This section describes the LRBF-PU collocation scheme. The PU technique determines
the numerical solution via a weighted sum of the local approximants created on overlap-
ping subdomains. The RBFs are applied as local approximants and Wendland’s compactly
supported RBFs [46] are adopted as weight functions. This strategy is based on construct-
ing differentiation matrices that convert a given PDE into an algebraic system. The benefit
of RBF-PU comes from its low computational cost owing to its relatively sparse matrices.

Let � = {x1, . . . , xN } ⊆ R
d , be a set of scattered data sites, the RBF interpolant S(x) of

u(x) to the data points uj = u(xj), j = 1, . . . , N , takes the following form:

u(x) 	 S(x) =
N∑

j=1

ajφj(x, ε), (9)

in which aj represent the coefficients to be determined from the data, φj(x, ε) = φ(‖x –
xj‖2, ε), j = 1, . . . , N , are the RBFs, r = ‖x – xj‖2 stands for the Euclidean norm and xj are
centers coinciding with the collocation points. The constant ε denotes the shape param-
eter, which is responsible for the flatness of the functions. To compute the unknown co-
efficients λj, we can impose the interpolation conditions S(xi) = ui, i = 1, . . . , N ) and as a
result we obtain a N × N linear system

Aλ = u, (10)

in which λ = [a1, . . . , aN ]T, u = [u(x1), . . . , u(xN )]T, and the entries of A are Aij = φ(‖xi –
xj‖2, ε) (the symbol T means transpose).

We can construct the Lagrange basis ψ1(x), . . . , ψN (x) of the span of the functions φj as

S(x) =
N∑

j=1

ψj(x)u(x). (11)

Thus, the alternative expression for the interpolant (9) can be illustrated as:

S(x) = �(x)u, (12)

in which �(x) = [ψ1(x), . . . ,ψN (x)]T.
In view of Eqs. (12), (10), and (9), we deduce the relation between the original basis and

the Lagrange radial basis as

�(x) = �A–1, (13)

in which � = [φ(‖x – x1‖2, ε), . . . ,φ(‖x – xN‖2, ε)]T.
The nonsingularity of matrix A guarantees that the transformation (13) is valid.
Let � ⊂ R

2 be an open and bounded domain, and � = {x1, . . . , xN } ⊆ R
d a set of collo-

cation nodes. We partition � ⊂ R
2 into M patches or subdomains {�j}M

j=1 of the domain
� so that � ⊂ ⋃M

j=1 �j. Figure 1 represents a schematic diagram of the square domain �

along with the related circular subdomains. Also, we define

I(x) = {j : x ∈ �j}, card(I)(x) ≤ C,
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Figure 1 Illustration diagram of computational domain with circular subdomains

in which the constant C is independent of the number of subdomains [46]. The PU weight
functions wj can be established based on Shepard’s method [47] as follows:

wj(x) =
ϕj(x)

∑
k∈I(x) ϕk(x)

, (14)

in which ϕj(x) is a compactly supported function on each subdomain �j. It follows that
wj(x) = 0 ∀j /∈ I(x). To ensure the nonnegativity and compact support in subdomain �j, we
consider in (14)

ϕj(x) = ϕj

(‖x – x̃j‖
ρj

)

, j = 1, 2, . . . , M. (15)

Here, ρj denotes the radius of the subdomain �j and x̃j represents its center node. The
function ϕj denotes one of the compact functions with minimal degree [48]. Hereafter, we
adopt the Wendland function ϕ(r) = (1 + 4r)+(1 – r)4, where r = ‖x–x̃j‖

ρj
[46].

The global approximant is thus constructed in the computational domain � as follows

Pu(x) =
∑

j∈I(x)

wj(x)Sj(x) =
∑

j∈I(x)

∑

i∈J(�j)

wj(x)ψi(x)u(x), (16)

where {Sj}k
j=1 defines a local RBF interpolant on each subdomain �j.

We approximate a spatial differential operator ∂ |σ |
∂xσ at the interior nodes in order to use

the LRBF-PU for the spatial discretization of the PDE as

∂ |σ |

∂xσ
Pu(x) =

∑

j∈I(x)

∑

i∈J(�j)

∂ |σ |

∂xσ

(
wj(x)ψi(x)

)
u(xi)

=
∑

j∈I(x)

∑

i∈J(�j)

[
∑

ϑ≤σ

(
σ

ϑ

)
∂ |σ–ϑ |wj

∂xσ–ϑ
(x)

∂ |ϑ |ψi

∂xϑ
(x)

]

u(xi),

(17)
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where σ and ϑ ∈N
d
0 . The evaluation of the Laplace operator can be represented as

∇2v(x) =
∑

j∈I(x)

∑

i∈J(�j)

[
ψj(x)∇2wj(x) + 2∇2wj(x)∇2ψj(x) + ∇2ψj(x)wj(x)

]
v(xi). (18)

From (16), we express the approximation solution V k by the following expression:

Uk ≈Pu(x) =
∑

j∈I(x)

∑

i∈J(�j)

wj(x)ψi(x)Uk . (19)

We divide the collocation points into two sets, J and I , considered to be sets of boundary
and internal points, respectively. Moreover, the overall number of points is equal to N
with N = NJ + NI , so that N = NI and N = NJ denote the total numbers of internal and
boundary points, respectively. We split matrix A into 2 matrices, AI and AJ , as follows

A = AI + AJ , (20)

in which

A =
[
wj(xi)ψi(xi) : j ∈ I(xi) and 0 o. w

]

N×N ,

AI = [Aij : i ∈ I , 1 ≤ j ≤ N and 0 o. w]N×N ,

AJ = [Aij : i ∈ J , 1 ≤ j ≤ N and 0 o. w]N×N .

Inserting Eq. (19) into Eq. (8) gives a system of N linear equations in the matrix form

ÃU1 = B̃g + H̃, (21)

Ã = aαA – rθ∇2AI ,

B̃ = aαAI – sθ AI ,

H̃ =
[
δtf 1

θ : i ∈ I and hj : j ∈ J
]T,

U1 =
[
U1

1 , . . . , U1
N
]T.

When k ≥ 1, we obtain

AUn+1 = BUn + H, (22)

where

A = aαA – rθ∇2AI ,

B = aαAI – sθ AI ,

H =

[

δtf n+1
θ – aα

n∑

j=1

bj
(
Un+1–j – Un–j) : i ∈ I and hj : j ∈ J

]T

,

Un+1 =
[
Un+1

1 , . . . , Un+1
N

]T.

Using system (22), we can calculate the numerical solution at any temporal step n.
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3.1 Stability analysis
Here, we investigate the stability of the RBF collocation approximation (22) based on the
matrix method. Let us define the error en at the nth time level as

en = un – Un, (23)

where un and Un are the analytic and approximate solutions at the nth time level, respec-
tively. Then, the error equation of (22) can be written as

en+1 = AA–1BA–1en, (24)

where P = AA–1BA–1 is called the amplification matrix.
Due to the Lax–Richtmyer definition of stability, Eq. (24) is said to be stable if ‖P‖ ≤ 1,

which is equivalent to ρ(P) ≤ 1, where ρ(P), represents the spectral radius of the matrix P.

4 Numerical examples
This section illustrates the effectiveness of the RBF-PU by means of two numerical exam-
ples on the TFSE. To assess the accuracy, we calculate the error norms L∞, L2 and Lrms

defined as:

L∞ = max
1≤j≤N–1

∣
∣u(xj, T) – U(xj, T)

∣
∣,

L2 =

( N∑

j=1

(
u(xj, T) – U(xj, T)

)2
) 1

2

,

Lrms =

(
1
N

N∑

j=1

(
u(xj, T) – U(xj, T)

)2
) 1

2

,

in which un and Un are the analytic and approximated solutions, respectively.
In what follows, Ea,b =

∑∞
k=0

zk

�(ak+b) is the Mittag–Leffler function of two parameters
a, b ∈ R

+.

Example 1 We consider the 2-dim TFSE as

∂αu(x, t)
∂tα

–
∂�u(x, t)

∂t
– �u(x, t) = –t1–αE1,2–α sin(πx) sin(πy), � = [0, 1]2.

The IC and BC can be determined from the exact solution u(x, y, t) = exp(–t) sin(πx) ×
sin(πy).

Table 1 presents the numerical errors L∞, L2, and Lrms and the associated condition
number κ(A) when N = 225, M = 25 and T = 1 at various time steps. Table 2 compares
the error norms of the LRBF-PU versus the technique described in [26] at different total
times when α = 0.5. We can see that the computational accuracy of the RBF-PU is close to
[26]. Table 3 presents the values of L∞, κ(A) and the CPU running time (in seconds) for a
time-step size δt = 1/200 at T = 1. Figure 2 depicts the sparsity structure of the matrix A
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Table 1 Error norms and associated condition number κ (A) of Example 1 when N = 225, M = 25 and
T = 1 at various time steps

δt L∞ L2 Lrms κ (A)

1/5 1.2615e–03 2.2800e–03 5.8869e–04 8.2114e+04
1/10 3.1440e–04 5.6825e–04 1.4672e–04 7.8243e+04
1/20 7.8540e–05 1.4195e–04 3.6652e–05 7.6307e+04
1/40 1.9631e–05 3.5481e–05 9.1613e–06 7.5340e+04
1/80 4.9076e–06 8.8699e–06 2.2902e–06 7.4856e+04
1/160 1.2269e–06 2.2175e–06 5.7254e–07 7.4614e+04
1/320 3.0672e–07 5.5436e–07 1.4314e–07 7.4493e+04
1/640 7.6680e–08 1.3859e–07 3.5784e–08 7.4433e+04
1/1280 1.9170e–08 3.4647e–08 8.9457e–09 7.4402e+04
1/2560 4.7868e–09 8.6517e–09 2.2339e–09 7.4387e+04
1/5120 1.2030e–09 2.1718e–09 5.6076e–10 7.4380e+04

Table 2 The error norms of LRBF-PU with the technique presented in [26] for Example 1 at various
final times when α = 0.5

T Ref. [26] RBF-PU

L∞ L2 Lrms L∞ L2 Lrms

0.1 7.547e–07 3.774e–07 3.659e–07 7.5392e–07 2.0711e–06 3.6612e–07
0.5 2.529e–06 1.265e–06 1.226e–06 1.7717e–06 4.8668e–06 8.6034e–07
1.0 3.068e–06 1.534e–06 1.488e–06 2.1754e–06 5.9760e–06 1.0564e–06
2.0 2.258e–06 1.129e–06 1.095e–06 1.6402e–06 4.5056e–06 7.9649e–07
2.5 1.712e–06 8.559e–07 8.299e–07 1.2589e–06 3.4582e–06 6.1133e–07
3.0 1.246e–06 6.229e–07 6.041e–07 9.2761e–07 2.5482e–06 4.5046e–07
3.5 8.815e–07 4.408e–07 4.274e–07 6.6456e–07 1.8256e–06 3.2272e–07
4.0 6.111e–07 3.055e–07 2.963e–07 4.6642e–07 1.2813e–06 2.2650e–07
4.5 4.170e–07 2.085e–07 2.022e–07 3.2225e–07 8.8524e–07 1.5649e–07
5.0 2.810e–07 1.405e–07 1.362e–07 2.1991e–07 6.0410e–07 1.0679e–07

Table 3 The absolute errors L∞ , associated condition number κ (A), and CPU running time of
Example 1 when δt = 1/200

N M L∞ CN CPU

169 36 8.0906e–07 1.9479e+04 0.673644
324 64 7.7800e–07 9.0369e+04 0.939799
676 81 7.8157e–07 1.6171e+05 1.993186
900 121 7.8455e–07 9.1217e+05 3.179997

for two subdomains, namely M = 81 and M = 49 with N = 400. Figure 3 shows the absolute
errors L∞ at various final times T ∈ {0.1, .5, 1, 2} when α = 0.5.

Example 2 We consider the 2-dim TFSE

∂αu(x, t)
∂tα

–
∂�u(x, t)

∂t
– �u(x, t) = –t1–αE1,2–α exp(x – y) sin(πx) sin(πy), � = [0, 1]2.

The IC and BC can be computed from the exact solution u(x, y, t) = exp(x – y – t) sin(πx) ×
sin(πy).

Table 4 reports the error norms L∞, L2, and Lrms and the associated condition number
κ(A) when N = 225, M = 25 and T = 1 at various time steps. Table 5 compares the error
norms of the LRBF-PU with the technique described in [26] at different total times when
α = 0.9. We can conclude from Table 5 that the accuracy of the proposed method is slightly
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Figure 2 Sparsity structure of the matrix A for two subdomains when N = 400

Table 4 Error norms and associated condition number κ (A) of Example 2 when N = 225, M = 25 and
T = 1 at various time steps

δt L∞ L2 Lrms κ (A)

1/5 1.3814e–03 2.4306e–03 6.2759e–04 9.2470e+04
1/10 3.4428e–04 6.0579e–04 1.5641e–04 8.8109e+04
1/20 8.6003e–05 1.5133e–04 2.1317e–06 8.5929e+04
1/40 2.1497e–05 3.7826e–05 9.7665e–06 8.4839e+04
1/80 5.3739e–06 9.4559e–06 2.4415e–06 8.4294e+04
1/160 1.3435e–06 2.3640e–06 6.1037e–07 8.4022e+04
1/320 3.3586e–07 5.9099e–07 1.5259e–07 8.3885e+04
1/640 8.3968e–08 1.4775e–07 3.8149e–08 8.3817e+04
1/1280 2.0991e–08 3.6936e–08 9.5369e–09 8.3783e+04
1/2560 5.2518e–09 9.2389e–09 2.3855e–09 8.3766e+04
1/5120 1.3134e–09 2.3077e–09 5.9584e–10 8.3758e+04

Table 5 The error norms of LRBF-PU with the technique presented in [26] for Example 2 at various
final times when α = 0.9

T Ref. [26] RBF-PU

L∞ L2 Lrms L∞ L2 Lrms

0.1 8.335e–07 4.026e–07 3.904e–07 8.2002e–07 1.1491e–06 3.6336e–07
0.2 1.508e–06 7.286e–07 7.066e–07 1.0500e–06 2.7868e–06 4.9265e–07
0.5 2.794e–06 1.349e–06 1.309e–06 1.9564e–06 5.1939e–06 9.1816e–07
1.0 3.389e–06 1.637e–06 1.587e–06 2.3989e–06 6.3731e–06 1.1266e–06
2.0 2.493e–06 1.204e–06 1.168e–06 1.8057e–06 4.8001e–06 8.4854e–07
3.0 1.376e–06 6.646e–07 6.445e–07 1.0196e–06 2.7123e–06 4.7947e–07
4.0 6.749e–07 3.260e–07 3.161e–07 5.1191e–07 1.3626e–06 2.4087e–07
5.0 3.103e–07 1.499e–07 1.454e–07 2.4099e–07 6.4189e–07 1.1347e–07

superior to that of [26]. Table 6 illustrates the values of L∞, κ(A) and the CPU running time
over �1 with a time-step size δt = 1/200 at T = 1. Figure 4 displays the absolute errors L∞
at various final times T ∈ {0.1, 1, 2, 3, 4, 5} when α = 0.5.

5 Conclusions
This work adopted an efficient numerical technique following the RBF-PU collocation
technique for finding the solution of the TFSE. A major shortcoming of GRBF colloca-
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Figure 3 Contour plots of the absolute errors L∞ for Example 1 at various final times when α = 0.7

Table 6 The absolute errors L∞ , associated condition number κ (A), and CPU running time of
Example 2 when δt = 1/200

N M L∞ CN CPU

144 36 8.5808e–07 1.4715e+04 1.205888
324 49 8.6467e–07 1.0882e+05 1.868528
529 64 8.6540e–07 3.7662e+05 1.898207
784 81 8.6558e–07 6.6256e+05 2.735166

tion methods is the computational burden resulting in dense algebraic systems. The local
method deals with the ill-conditioning in GRBF schemes and decreases the associated
computational time. The proposed strategy consisted of two stages. First, a FD of order
O(δt2–α), with the θ -rule, 0 ≤ θ ≤ 1, was implemented to approximate the time dimen-
sion. Then, the RBF-PU was provided to discretize the spatial dimension. Numerical ex-
periments illustrated the effectiveness and high accuracy of the RBF-PU.
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Figure 4 Contour plots of the absolute errors L∞ for Example 2 at various final times when α = 0.5
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