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Abstract
This paper is concerned with the Cauchy problem for semilinear wave equation with
space-dependent scattering damping and combined nonlinearities. The blowup
results of solution are established by introducing proper test functions. Moreover,
upper bound lifespan estimates of a solution to the Cauchy problem with small initial
values are derived. To the best of our knowledge, the results in Theorems 1.1–1.2 are
new.

MSC: 35L70; 58J45

Keywords: Space-dependent damping; Semilinear wave equation; Combined
nonlinearities; Blowup; Lifespan estimates

1 Introduction and main results
In this work, we consider the following Cauchy problem of wave equation with space-
dependent damping and combined nonlinearities:

⎧
⎨

⎩

utt – �u + μ

(1+|x|)β ut = |ut|p + |u|q, (t, x) ∈ [0, T) ×R
n,

u(0, x) = εf (x), ut(0, x) = εg(x), x ∈R
n,

(1.1)

where μ > 0, β > 1, p > 1, q > 1, n ≥ 2. The compactly supported nonnegative initial values
satisfy (f , g) ∈ H1(Rn) × L2(Rn) (n ≥ 2) and

f (x) ≥ 0, g(x) ≥ 0 a.e., f (x) = g(x) = 0 for |x| > 1. (1.2)

In addition, f (x), g(x) �≡ 0.
The study of formation of singularity for semilinear wave equation has a long history

(see detailed illustrations in [3, 5, 9, 11, 22–25, 27–30, 33, 34, 39–42] and the references
therein). In fact, problem (1.1) originates from the following three problems:

⎧
⎨

⎩

utt – �u = |u|p, (t, x) ∈ [0, T) ×R
n, n ≥ 1,

u(0, x) = εf (x), ut(0, x) = εg(x), x ∈R
n,

(1.3)
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⎧
⎨

⎩

utt – �u = |ut|p, (t, x) ∈ [0, T) ×R
n, n ≥ 1,

u(0, x) = εf (x), ut(0, x) = εg(x), x ∈R
n,

(1.4)

and
⎧
⎨

⎩

ut – �u = |u|p, (t, x) ∈ [0, T) ×R
n, n ≥ 1,

u(0, x) = εf (x), x ∈R
n.

(1.5)

Problem (1.3) is known as the Strauss conjecture (see [35]), which shows that the solution
blows up in finite time when 1 < p ≤ pS(n) (n ≥ 2) and pS(1) = +∞ for n = 1, whereas the
solution exists globally in time when p > pS(n). Here pS(n) is the Strauss critical exponent,
which is the positive root of the quadratic equation

γ (p, n) = –(n – 1)p2 + (n + 1)p + 2 = 0.

Problem (1.4) is known as the Glassey conjecture (see [6]), where the Glassey critical ex-
ponent is pG(n) = n+1

n–1 . It is shown in [4] that the Cauchy problem of heat equation (1.5)
possesses the Fujita critical exponent pF (n) = 1 + 2

n .
Scholars investigated the blowup dynamics of a semilinear wave equation with damping

term

utt – �u + h(ut) = f (u, ut), (1.6)

where h(ut) = μ

(1+t)β ut , μ

(1+|x|)β ut (μ > 0, β ∈ R) and f (u, ut) = |u|p, |ut|p, |ut|p + |u|q (p > 1,
q > 1). When the critical exponent of the damped wave equation (1.6) is related to the
Srauss exponent pS(n) or the Glassey exponent pG(n), we say that the equation behaves
like that of the wave equation. This means that the damping term in the equation makes
no effect. When the critical exponent is related to the Fujita exponent pF (n), we say that
the damping term makes an effect. According to the range of β , we use the following table
to show the effect of damping terms (we can see it in [18, 21]).

Blowup and global existence results in connection with the semilinear wave equation
with time-dependent damping μ

(1+t)β ut are established in [1, 13, 16, 20, 31, 37, 38]. Energy
estimates of solution to semilinear wave equation with space-dependent damping are de-
rived in [14, 15, 36]. Nishihara et al. [32] investigated the blowup and global existence for
a semilinear wave equation with space- and time-dependent damping. In the present pa-
per, we mainly concentrate on the problem with space-dependent scattering damping case

μ

(1+|x|)β ut (β > 1). Namely, the behavior of a solution is similar to that of the wave equation
in this case. Lai and Tu [17] considered upper bound lifespan estimates of a solution to the

Table 1 The effect of the damping terms

Range of β Damping term
μ

(1+t)β
ut

μ

(1+|x|)β ut

(–∞, –1) Overdamping Effective
[–1, 1) Effective
1 Scaling invariant Scaling invariant
(1, +∞) Scattering Scattering
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wave equation with space-dependent damping μ

(1+|x|)β ut (β > 2, n ≥ 2) and f (u, ut) = |u|p,
|ut|p for both subcritical and critical exponents. Especially, for the power nonlinearity |u|p
( n

n–1 < p ≤ pS(n)) and derivative-type nonlinearity |ut|p (1 < p ≤ pG(n)), they obtained the
same critical exponents and upper bound lifespan estimates of solutions as in the situ-
ation without damping by using the test function method. Lai et al. [17] obtained upper
bound lifespan estimate of solution when f (u, ut) = |u|p and β > 1. Meanwhile, the lifespan
estimate for the case 1 < p < n

n–1 was also improved.
We are in the position to present some known results related to the semilinear wave

equation (1.6) with combined nonlinearities f (u, ut) = |ut|p + |u|q. Han and Zhou [10] ob-
tained an upper bound lifespan estimate of solution to the Cauchy problem without damp-
ing term by constructing a proper test function and solving ordinary differential inequal-
ities. Hidano et al. [12] established the sharp lower bound lifespan estimate of a solution
to the problem. Dai et al. [2] derived the sharp lifespan estimate of a solution to the non-
linear wave equation when p ≥ qS(n) and q = qS(n) (n = 2, 3), where qS(n) is the Strauss
critical exponent of the semilinear wave equation with power nonlinearity |u|q. Lai and
Takamura [19] illustrated blowup results and upper bound lifespan estimates of a solution
to the problem with time-dependent damping term μ

(1+t)β ut (β > 1) by using a multiplier
and iteration argument. Blowup of a solution to the problem with scale-invariant damp-
ing μ

1+t ut was investigated by applying test function approach (see [7, 8]). Liu and Wang
[26] consider problem (1.1) for the more general nonlinearity f (u, ut) = c1|ut|p + c2|u|q on
asymptotically Euclidean manifolds. Upper bound lifespan estimates of solution with dif-
ferent values of c1 and c2 are obtained. In addition, the existence of a solution is established.

Inspired by the works [10, 17, 19, 21], we consider blowup and upper bound lifespan
estimates of a solution to problem (1.1). To our best knowledge, the blowup for the space-
dependent damped wave equation with combined nonlinearities has not been discussed
yet. The purpose of this paper is to fill this gap. We establish upper bound lifespan esti-
mates of a solution. It is worth mentioning that in this paper, we employ the test func-
tion method different from the technique in [10, 19]. We bear in mind that lifespan esti-
mates of solutions to the problems with space-dependent damping μ

(1+|x|)β ut (β > 2) and
f (u, ut) = |u|p, |ut|p are investigated in [21]. Thanks to the work [17], we obtain upper
bound lifespan estimates of a solution to problem (1.1) with μ

(1+|x|)β ut (β > 1) and com-
bined nonlinearities |ut|p + |u|q (see the new results in Theorems 1.1–1.2 in this paper).

The main results in this paper are described as follows.

Theorem 1.1 Let n ≥ 2, μ > 0, and β > 1, and let f and g satisfy (1.2). Suppose that
problem (1.1) has an energy solution u such that

supp(u, ut) ⊂ {
(t, x) ∈ [0, T) ×R

n||x| ≤ t + 1
}

.

Then we have the following lifespan estimates of solution:

T(ε) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cε
– 2p(q–1)

–(n–1)pq+(n–1)p+2q+2 , max{1, 2
n–1 } < p < 4n–2

n–1 ,
n

n–1 < q < 1 + 4
(n–1)p–2 ,

Cε
– 2(p–1)

n+1–(n–1)p , 1 < p < n+1
n–1 , 1 < q,

(1.7)

where C is a positive constant.
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Theorem 1.2 Let n ≥ 2, μ > 0, and β > 1, and let f and g satisfy (1.2). Suppose that
problem (1.1) has an energy solution u such that

supp(u, ut) ⊂ {
(t, x) ∈ [0, T) ×R

n||x| ≤ t + 1
}

.

Then the lifespan estimates of solution satisfy

T(ε) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cε
– 2q(p–1)

–(n–1)qp+(n–1)q+2p , 1 < p, n = 2, 3 or 1 < p < n–1
n–3 , n > 3,

1 < q < 2p
(n–1)(p–1) ,

Cε
– 2(q–1)

(n+1)–(n–1)q , 1 < p, 1 < q < n+1
n–1 .

(1.8)

Remark 1.1 In Theorem 1.1, for max{1 + 1
2(n–1) , 2

n–1 } < p < n+1
n–1 and n

n–1 < q < 2p – 1, we have

2p(q – 1)
–(n – 1)pq + (n – 1)p + 2q + 2

<
2(p – 1)

n + 1 – (n – 1)p
,

where we have used the fact 2p – 1 < 1 + 4
(n–1)p–2 for p < n+1

n–1 . When max{1, 2
n–1 } < p < n+1

n–1
and max{2p – 1, n

n–1 } < q < 1 + 4
(n–1)p–2 , we obtain

2p(q – 1)
–(n – 1)pq + (n – 1)p + 2q + 2

>
2(p – 1)

n + 1 – (n – 1)p
.

We use Fig. 1 to make a simple description for n = 2.
For p, q ∈ B ∪ C ∪ E, we have the first lifespan estimate in (1.7). For p, q ∈ A ∪ B ∪ C ∪ D,

we obtain the second lifespan estimate in (1.7), whereas for p, q ∈ B, the second lifespan
estimate in (1.7) is better than the first one. For p, q ∈ C, the first lifespan estimate in (1.7)
is better than the second one.

Figure 1 The case n = 2 in Theorem 1.1
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Figure 2 The case n = 2 in Theorem 1.2

Remark 1.2 In Theorem 1.2, for 1 < q < p < n+1
n–1 or n+1

n–1 < p (n = 2, 3), n+1
n–1 < p < n–1

n–3 (n > 3),
1 < q < 2p

(n–1)(p–1) , we have

2(q – 1)
(n + 1) – (n – 1)q

<
2q(p – 1)

–(n – 1)qp + (n – 1)q + 2p
.

When 1 < p < q < n+1
n–1 , we have

2(q – 1)
(n + 1) – (n – 1)q

>
2q(p – 1)

–(n – 1)qp + (n – 1)q + 2p
.

Similarly, we use Fig. 2 to illustrate the specific comparison for n = 2.
For p, q ∈ F ∪G∪H , we obtain the first lifespan estimate in (1.8). For p, q ∈ G∪H ∪ I , we

have the second lifespan estimate in (1.8). For p, q ∈ G, the first lifespan estimate in (1.8) is
better than the second one, and for p, q ∈ H , the second lifespan estimate in (1.8) is better
than the first one.

Remark 1.3 Let n ≥ 2, μ > 0, and β > 1. The assumptions in Theorems 1.1 and 1.2 hold.
Combining the results in [17, 21] with (1.7) and (1.8), we derive

T(ε) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(Cε–(p–1)), p = pG(n), q > n+3
n–1 ,

Cε–�G(n,p)–1 , q > 2p – 1, 1 < p < n+1
n–1 ,

Cε–�1(p,q,n)–1 , n
n–1 < q, p ≤ q < 2p – 1,�1(p, q, n) > 0,

Cε–�S(n,q)–1 , p > q, n
n–1 < q < pS(n),

Cε–�2(p,q,n)–1 , p < q < n
n–1 ,

Cε
– 2(q–1)

(n+1)–(n–1)q , p > q, q < n
n–1 ,

exp(Cε–q(q–1)), p ≥ q = pS(n),

(1.9)

where

�1(n, p, q) =
–(n – 1)pq + (n – 1)p + 2q + 2

2p(q – 1)
,

�2(n, p, q) =
–(n – 1)pq + (n – 1)q + 2p

2q(p – 1)
,
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�G(n, p) =
n + 1 – (n – 1)p

2(p – 1)
,

�S(n, q) =
γ (q, n)

2q(q – 1)
,

pS(n) denotes the Strauss critical exponent, and pG(n) represents the Glassey critical ex-
ponent.

Throughout this paper, C denotes a positive constant independent of ε, which may vary
from line to line.

2 Preliminaries
In this section, we present several basic definitions and lemmas.

Definition 2.1 A function u is called an energy solution of problem (1.1) on [0, T) if

u ∈
1⋂

i=0

Ci([0, T
)
; H1–i(

R
n)) ∩ C1([0, T

)
; Lp(

R
n)) ∩ Lq

loc
(
[0, T

) ×R
n)

satisfies u(0, x) = εf (x) and ut(0, x) = εg(x). Moreover, we have

ε

∫

Rn
g(x)ϕ(0, x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)ϕ(t, x) dx dt

+
∫

Rn

μ

(1 + |x|)β εf (x)ϕ(0, x) dx

=
∫ T

0

∫

Rn

(
–∂tu(t, x)∂tϕ(t, x) + ∇u(t, x)∇ϕ(t, x)

)
dx dt

–
∫ T

0

∫

Rn

μ

(1 + |x|)β u(t, x)∂tϕ(t, x) dx dt,

(2.1)

where ϕ(t, x) ∈ C∞
0 ([0, T) ×R

n) and T ∈ (1, T(ε)). Here T(ε) represents the upper bound
lifespan estimate of a solution to problem (1.1), which satisfies

T(ε) = sup{T > 0, there exists an energy solution to problem (1.1)}.

Definition 2.2 The cutoff function η(t) ∈ C∞([0,∞)) is defined by

η(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, t ≤ 1
2 ,

decreasing, t ∈ ( 1
2 , 1),

0, t ≥ 1,

which satisfies |η′(t)|, |η′′(t)| < C. Let ηT (t) = η(t/T) and γ > 1. We have that

∂tη
2γ

T =
2γ

T
η

2γ –1
T η′,

∂2
t η

2γ

T =
2γ (2γ – 1)

T2 η
2γ –2
T

∣
∣η′∣∣2 +

2γ

T2 η
2γ –1
T η′′.
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Lemma 2.3 (Lemma 3.1 in [21]) If β > 0, then for all α ∈ R and a fixed constant R, there
exists a positive constant C such that

∫ t+R

0
(1 + r)αe–β(t–r) dr ≤ C(t + R)α . (2.2)

Lemma 2.4 (Lemma 2.5 in [17]) Let n ≥ 2, β > 1, and μ ≥ 0. Then the equation

�φ(x) –
μ

(1 + |x|)β φ(x) = φ(x) (2.3)

admits a solution φ(x). Moreover, there exists a constant C1 ∈ (0, 1) such that

C1
(
1 + |x|)– n–1

2 e|x| < φ(x) < C–1
1

(
1 + |x|)– n–1

2 e|x|. (2.4)

Let ψ(t, x) = e–tφ(x). Then we have

∂2
t ψ(t, x) – �ψ(t, x) –

μ

(1 + |x|)β ∂tψ(t, x) = 0.

3 Proof of Theorem 1.1
In this section, we illustrate the proof of Theorem 1.1.

3.1 Case p ≥ q
First, we choose ϕ(t, x) = η

2q′
T as the test function, where q′ satisfies 1

q + 1
q′ = 1. From (2.1)

we obtain

ε

∫

Rn
g(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)η2q′
T dx dt +

∫

Rn

μ

(1 + |x|)β εf (x) dx

=
∫ T

0

∫

Rn
u∂2

t η
2q′
T dx dt –

∫ T

0

∫

Rn

μ

(1 + |x|)β u∂tη
2q′
T dx dt

= I1 + I2,

(3.1)

where we have used the fact that ∂tηT (0) = 0 and ηT (T) = 0.
Using the Hölder and Young inequalities, we have that for q > n

n–1 ,

I1 =
∫ T

0

∫

Rn
u∂2

t η
2q′
T dx dt

≤ C
T2

∫ T

0

∫

Rn

∣
∣uη

2q′–2
T

∣
∣dx dt

≤ C
T2

(∫ T

0

∫

Rn
|u|qη2q′

T dx dt
) 1

q
(∫ T

0

∫

{r≤t+1}
1 dx dt

) 1
q′

≤ CTn+1–2q′ +
1
3

∫ T

0

∫

Rn
|u|qη2q′

T dx dt,

(3.2)
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I2 = –
∫ T

0

∫

Rn

μ

(1 + |x|)β u∂tη
2q′
T dx dt

≤ C
T

∫ T

0

∫

Rn

μ

(1 + |x|)β
∣
∣uη

2q′–2
T

∣
∣dx dt

≤ C
T

(∫ T

0

∫

Rn
|u|qη2q′

T dx dt
) 1

q
(∫ T

0

∫ t+1

0

rn–1–q′

(1 + r)q′(β–1) dr dt
) 1

q′

≤ CTn+1–2q′
+

1
3

∫ T

0

∫

Rn
|u|qη2q′

T dx dt.

(3.3)

Combining (3.1)–(3.3), we deduce

C1(f , g)ε +
∫ T

0

∫

Rn

(|ut|p + |u|q)η2q′
T dx dt ≤ CTn+1–2q′

, (3.4)

where C1(f , g) = C(
∫

Rn g(x) dx +
∫

Rn
μ

(1+|x|)β f (x) dx).

Let ϕ(t, x) = ∂t
1(t, x), where 
1(t, x) = –η
2q′
T ψ(t, x) = –η

2q′
T e–tφ(x), and ψ(t, x) is defined

in Lemma 2.4. Applying (2.1), we have

ε

∫

Rn
g(x)φ(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)∂t
1 dx dt

+
∫

Rn

μ

(1 + |x|)β εf (x)φ(x) dx

=
∫ T

0

∫

Rn
–∂tu∂2

t 
1 dx dt +
∫ T

0

∫

Rn
∇u∇∂t
1 dx dt

–
∫ T

0

∫

Rn

μ

(1 + |x|)β u∂2
t 
1 dx dt,

where we have employed the fact ∂t
1(0, x) = φ(x). Since

∫ T

0

∫

Rn
–∂tu∂2

t 
1 dx dt =
∫ T

0

∫

Rn
∂tu

(
∂2

t η
2q′
T ψ + η

2q′
T ψ – 2∂tη

2q′
T ψ

)
dx dt,

∫ T

0

∫

Rn
∇u∇∂t
1 dx dt

=
∫ T

0

∫

Rn
∂t(∇u∇
1) dx dt –

∫ T

0

∫

Rn
∇ut∇
1 dx dt

=
∫

Rn
ε∇f (x)∇φ(x) dx –

∫ T

0

∫

Rn
∇ut∇
1 dx dt

= –ε

∫

Rn
�φf (x) dx –

∫ T

0

∫

Rn
∇ut∇
1 dx dt

= –ε

∫

Rn
�φf (x) dx –

∫ T

0

∫

Rn
utη

2q′
T �ψ dx dt,
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and

∫ T

0

∫

Rn

μ

(1 + |x|)β u∂2
t 
1 dx dt

=
∫ T

0

∫

Rn
∂t

(
μ

(1 + |x|)β u∂t
1

)

–
μ

(1 + |x|)β ut∂t
1 dx dt

= –
∫

Rn

μ

(1 + |x|)β εf (x)φ(x) dx –
∫ T

0

∫

Rn

μ

(1 + |x|)β ut
(
η

2q′
T ψ – ∂tη

2q′
T ψ

)
dx dt,

we have

ε

∫

Rn
g(x)φ(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)∂t
1 dx dt

+ ε

∫

Rn

μ

(1 + |x|)β f (x)φ(x) dx

=
∫ T

0

∫

Rn
ut

(
∂2

t η
2q′
T ψ + η

2q′
T ψ – 2∂tη

2q′
T ψ

)
dx dt –

∫ T

0

∫

Rn
utη

2q′
T �ψ dx dt

– ε

∫

Rn

(

1 +
μ

(1 + |x|)β
)

f (x)φ(x) dx +
∫

Rn

μ

(1 + |x|)β εf (x)φ(x) dx

+
∫ T

0

∫

Rn

μ

(1 + |x|)β ut
[
η

2q′
T ψ – ∂tη

2q′
T ψ

]
dx dt.

It follows that

ε

∫

Rn
g(x)φ(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)∂t
1 dx dt

+ ε

∫

Rn

(

1 +
μ

(1 + |x|)β
)

f (x)φ(x) dx

=
∫ T

0

∫

Rn
ut

(

∂2
t η

2q′
T ψ + 2∂tη

2q′
T ∂tψ –

μ

(1 + |x|)β ∂tη
2q′
T ψ

)

dx dt

+
∫ T

0

∫

Rn
utη

2q′
T

[

–�ψ + ψ –
μ

(1 + |x|)β ∂tψ

]

dx dt

=
∫ T

0

∫

Rn
ut

(

∂2
t η

2q′
T ψ + 2∂tη

2q′
T ∂tψ –

μ

(1 + |x|)β ∂tη
2q′
T ψ

)

dx dt

= I3 + I4 + I5,

(3.5)

where we have applied Lemma 2.4.
We are in the position to derive the estimates for I3, I4, and I5.
Employing Lemma 2.3 leads to

I3 =
∫ T

0

∫

Rn
ut∂

2
t η

2q′
T ψ dx dt

≤ C
T2

∫ T

0

∫

Rn

∣
∣utη

2q′–2
T ψ

∣
∣dx dt

≤ C
T2

(∫ T

0

∫

Rn
|ut|pη(2q′–2)p

T dx dt
) 1

p
(∫ T

0

∫

Rn
|ψ |p′

dx dt
) 1

p′
(3.6)
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≤ C
T2

(∫ T

0

∫

Rn
|ut|pη2q′

T dx dt
) 1

p
(∫ T

0

∫

Rn
|ψ |p′

dx dt
) 1

p′

≤ CT–2+(n– n–1
2 p′) 1

p′
(∫ T

0

∫

Rn
|ut|pη2q′

T dx dt
) 1

p
,

I4 = 2
∫ T

0

∫

Rn
ut∂tη

2q′
T ∂tψ dx dt

≤ C
T

∫ T

0

∫

Rn

∣
∣utη

2q′–1
T ψ

∣
∣dx dt

≤ C
T

(∫ T

0

∫

Rn
|ut|pη2q′

T dx dt
) 1

p
(∫ T

0

∫

Rn
|ψ |p′

dx dt
) 1

p′

≤ CT–1+(n– n–1
2 p′) 1

p′
(∫ T

0

∫

Rn
|ut|pη2q′

T dx dt
) 1

p
,

(3.7)

|I5| ≤ CI4 ≤ CT–1+(n– n–1
2 p′) 1

p′
(∫ T

0

∫

Rn
|ut|pη2q′

T dx dt
) 1

p
. (3.8)

A direct calculation gives rise to

∂t
1 = η
2q′
T ψ – 2q′η2q′–1

T ∂tηTψ ≥ η
2q′
T ψ > 0.

Using (3.5)–(3.8), we have

εC2(f , g) ≤ CT–1+(n– n–1
2 p′) 1

p′
(∫ T

0

∫

Rn
|ut|pη2q′

T dx dt
) 1

p
,

which implies

CεpTn– n–1
2 p ≤

∫ T

0

∫

Rn
|ut|pη2q′

T dx dt, (3.9)

where C2(f , g) = C(
∫

Rn g(x)φ(x) dx +
∫

Rn (1 + μ

(1+|x|)β )f (x)φ(x) dx).
Combining (3.4) and (3.9) and using the assumptions max{1, 2

n–1 } < p < 4n–2
n–1 , n

n–1 < q <
1 + 4

(n–1)p–2 , and q ≤ p, we obtain

T(ε) ≤ Cε
– 2p(q–1)

–(n–1)pq+(n–1)p+2q+2 .

On the other hand, according to (3.5), we derive

I3 =
∫ T

0

∫

Rn
ut∂

2
t η

2q′
T ψ dx dt

≤ C
T2

∫ T

0

∫

Rn

∣
∣utη

2q′–2
T ψ

∣
∣dx dt

≤ C
T2

(∫ T

0

∫

Rn
|ut|pη(2q′–2)p

T ψ dx dt
) 1

p
(∫ T

0

∫

Rn
ψ dx dt

) 1
p′

≤ CT–2+ n+1
2p′

(∫ T

0

∫

Rn
|ut|pη2q′

T ψ dx dt
) 1

p
,

(3.10)
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I4 = 2
∫ T

0

∫

Rn
ut∂tη

2q′
T ∂tψ dx dt

≤ C
T

∫ T

0

∫

Rn

∣
∣utη

2q′–1
T ψ

∣
∣dx dt

≤ C
T

(∫ T

0

∫

Rn
|ut|pη2q′

T ψ dx dt
) 1

p
(∫ T

0

∫

Rn
ψ dx dt

) 1
p′

≤ CT–1+ n+1
2p′

(∫ T

0

∫

Rn
|ut|pη2q′

T ψ dx dt
) 1

p
,

(3.11)

|I5| ≤ CI4 ≤ CT–1+ n+1
2p′

(∫ T

0

∫

Rn
|ut|pη2q′

T ψ dx dt
) 1

p
. (3.12)

Taking into account (3.5) and (3.10)–(3.12) and using the Young inequality, we have

εC2(f , g) ≤ CT–p′+ n+1
2 .

Therefore, for 1 < p < n+1
n–1 and 1 < q ≤ p, we have that

T(ε) ≤ Cε
– 2(p–1)

n+1–(n–1)p . (3.13)

3.2 Case p < q
Taking ϕ(t, x) = η

2p′
T in (2.1) yields

ε

∫

Rn
g(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)η2p′
T dx dt +

∫

Rn

μ

(1 + |x|)β εf (x) dx

=
∫ T

0

∫

Rn
u∂2

t η
2p′
T dx dt –

∫ T

0

∫

Rn

μ

(1 + |x|)β u∂tη
2p′
T dx dt

= I6 + I7.

(3.14)

Applying the fact that p < q and q > n
n–1 , we deduce

I6 =
∫ T

0

∫

Rn
u∂2

t η
2p′
T dx dt

≤ C
T2

∫ T

0

∫

Rn

∣
∣uη

2p′–2
T

∣
∣dx dt

≤ C
T2

(∫ T

0

∫

Rn
|u|qη2p′

T dx dt
) 1

q
(∫ T

0

∫

{r≤t+1}
1 dx dt

) 1
q′

≤ CTn+1–2q′
+

1
3

∫ T

0

∫

Rn
|u|qη2p′

T dx dt,

(3.15)

I7 = –
∫ T

0

∫

Rn

μ

(1 + |x|)β u∂tη
2p′
T dx dt

≤ C
T

∫ T

0

∫

Rn

μ

(1 + |x|)β
∣
∣uη

2p′–2
T

∣
∣dx dt

≤ C
T

(∫ T

0

∫

Rn
|u|qη2p′

T dx dt
) 1

q
(∫ T

0

∫ t+1

0

rn–1–q′

(1 + r)q′(β–1) dr dt
) 1

q′
(3.16)
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≤ CTn+1–2q′
+

1
3

∫ T

0

∫

Rn
|u|qη2p′

T dx dt.

Combining (3.14)–(3.16), we get

C1(f , g)ε +
∫ T

0

∫

Rn

(|ut|p + |u|q)η2p′
T dx dt ≤ CTn+1–2q′

. (3.17)

We set ϕ(t, x) = ∂t
2(x, t) in (2.1), where 
2(x, t) = –η
2p′
T ψ(x, t) = –η

2p′
T e–tφ(x). Therefore

we have

ε

∫

Rn
g(x)φ(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)∂t
2 dx dt

+ ε

∫

Rn

(

1 +
μ

(1 + |x|)β
)

f (x)φ(x) dx

=
∫ T

0

∫

Rn
ut

(

∂2
t η

2p′
T ψ + 2∂tη

2p′
T ∂tψ –

μ

(1 + |x|)β ∂tη
2p′
T ψ

)

dx dt

= I8 + I9 + I10.

(3.18)

Similarly to the deduction in (3.9), we obtain

CεpTn– n–1
2 p ≤

∫ T

0

∫

Rn
|ut|pη2p′

T dx dt. (3.19)

From (3.17) and (3.19) the conditions max{1, 2
n–1 } < p < 4n–2

n–1 and max{p, n
n–1 } < q < 1 +

4
(n–1)p+2 lead to

T(ε) ≤ Cε
– 2p(q–1)

–(n–1)pq+(n–1)p+2q+2 .

By (3.18) we have

I8 =
∫ T

0

∫

Rn
ut∂

2
t η

2p′
T ψ dx dt

≤ C
T2

∫ T

0

∫

Rn

∣
∣utη

2p′–2
T ψ

∣
∣dx dt

≤ C
T2

(∫ T

0

∫

Rn
|ut|pη(2p′–2)p

T ψ dx dt
) 1

p
(∫ T

0

∫

Rn
ψ dx dt

) 1
p′

≤ CT–2+ n+1
2p′

(∫ T

0

∫

Rn
|ut|pη2p′

T ψ dx dt
) 1

p
,

(3.20)

I9 = 2
∫ T

0

∫

Rn
ut∂tη

2p′
T ∂tψ dx dt

≤ C
T

∫ T

0

∫

Rn

∣
∣utη

2p′–1
T ψ

∣
∣dx dt

≤ C
T

(∫ T

0

∫

Rn
|ut|pη2p′

T ψ dx dt
) 1

p
(∫ T

0

∫

Rn
ψ dx dt

) 1
p′

(3.21)
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≤ CT–1+ n+1
2p′

(∫ T

0

∫

Rn
|ut|pη2p′

T ψ dx dt
) 1

p
,

|I10| ≤ CI9 ≤ CT–1+ n+1
2p′

(∫ T

0

∫

Rn
|ut|pη2p′

T ψ dx dt
) 1

p
. (3.22)

Combining (3.18) and (3.20)–(3.22), for 1 < p < min{q, n+1
n–1 } and q > 1, we have

T(ε) ≤ Cε
– 2(p–1)

n+1–(n–1)p . (3.23)

This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2
Taking ϕ(t, x) = η2k

T ψ(t, x) in (2.1), where k = max{p′, q′} and ψ(t, x) = e–tφ(x), we obtain

ε

∫

Rn
g(x)φ(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)η2k
T ψ dx dt

+
∫

Rn

μ

(1 + |x|)β εf (x)φ(x) dx

=
∫ T

0

∫

Rn
–∂tu∂t

[
η2k

T ψ
]

dx dt +
∫ T

0

∫

Rn
∇u∇[

η2k
T ψ

]
dx dt

–
∫ T

0

∫

Rn

μ

(1 + |x|)β u∂t
[
η2k

T ψ
]

dx dt.

A direct calculation shows that

∫ T

0

∫

Rn
–∂tu∂t

[
η2k

T ψ
]

dx dt

= –
∫ T

0

∫

Rn
∂t

(
u∂t

[
η2k

T ψ
])

– u∂2
t
[
η2k

T ψ
]

dx dt

= –
∫

Rn
εf (x)φ(x) dx +

∫ T

0

∫

Rn
u
[
∂2

t η2k
T ψ + 2∂tη

2k
T ∂tψ + η2k

T ∂2
t ψ

]
dx dt,

∫ T

0

∫

Rn
∇u∇(

η2k
T ψ

)
dx dt = –

∫ T

0

∫

Rn
uη2k

T �ψ dx dt,

and

–
∫ T

0

∫

Rn

μ

(1 + |x|)β u∂t
(
η2k

T ψ
)

dx dt

= –
∫ T

0

∫

Rn

μ

(1 + |x|)β u
[
∂tη

2k
T ψ + η2k

T ∂tψ
]

dx dt.

It follows that

ε

∫

Rn
g(x)φ(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)η2k
T ψ dx dt

+
∫

Rn

(

1 +
μ

(1 + |x|)β
)

εf (x)φ(x) dx
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=
∫ T

0

∫

Rn
u
[

∂2
t η2k

T ψ + 2∂tη
2k
T ∂tψ –

μ

(1 + |x|)β ∂tη
2k
T ψ

]

dx dt

+
∫ T

0

∫

Rn
uη2k

T

[

∂2
t ψ – �ψ –

μ

(1 + |x|)β ∂tψ

]

dx dt
(4.1)

=
∫ T

0

∫

Rn
u
[

∂2
t η2k

T ψ + 2∂tη
2k
T ∂tψ –

μ

(1 + |x|)β ∂tη
2k
T ψ

]

dx dt

= I11 + I12 + I13.

Employing (2.2), we have

I11 =
∫ T

0

∫

Rn
u∂2

t η2k
T ψ dx dt

≤ C
T2

∫ T

0

∫

Rn

∣
∣uη2k–2

T ψ
∣
∣dx dt

≤ C
T2

(∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt
) 1

q
(∫ T

0

∫

Rn
ψ dx dt

) 1
q′

≤ CT–2+ n+1
2q′

(∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt
) 1

q
,

(4.2)

I12 =
∫ T

0

∫

Rn
2∂tη

2k
T ∂tψ dx dt

≤ C
T

∫ T

0

∫

Rn

∣
∣uη2k–1

T ψ
∣
∣dx dt

≤ CT–1+ n+1
2q′

(∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt
) 1

q
,

(4.3)

|I13| ≤ CI12

≤ CT–1+ n+1
2q′

(∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt
) 1

q
.

(4.4)

Combining (4.1)–(4.4), we deduce

CεqTq– n+1
2 (q–1) ≤

∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt. (4.5)

On the other hand, we take ϕ(t, x) = ∂t
(t, x) in (2.1), where 
(t, x) = –η2k
T ψ(t, x) =

–η2k
T e–tφ(x). Similarly to the derivation in (3.5) and (3.18), we acquire

ε

∫

Rn
g(x)φ(x) dx +

∫ T

0

∫

Rn

(|ut|p + |u|q)∂t
dx dt

+ ε

∫

Rn

(

1 +
μ

(1 + |x|)β
)

f (x)φ(x) dx

=
∫ T

0

∫

Rn
ut

(

∂2
t η2k

T ψ + 2∂tη
2k
T ∂tψ –

μ

(1 + |x|)β ∂tη
2k
T ψ

)

dx dt

= I14 + I15 + I16.

(4.6)
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It follows that

I14 =
∫ T

0

∫

Rn
ut∂

2
t η2k

T ψ dx dt

≤ C
T2

∫ T

0

∫

Rn

∣
∣utη

2k–2
T ψ

∣
∣dx dt

≤ C
T2

(∫ T

0

∫

Rn
|ut|pη2k

T ψ dx dt
) 1

p
(∫ T

0

∫

Rn
ψ dx dt

) 1
p′

(4.7)

≤ CT–2+ n+1
2p′

(∫ T

0

∫

Rn
|ut|pη2k

T ψ dx dt
) 1

p

≤ CT–2p′+ n+1
2 +

1
3

∫ T

0

∫

Rn
|ut|pη2k

T ψ dx dt.

Similarly, we conclude that

I15 =
∫ T

0

∫

Rn
2ut∂tη

2k
T ∂tψ dx dt

≤ C
T

∫ T

0

∫

Rn

∣
∣utη

2k–2
T ψ

∣
∣dx dt

≤ C
T

(∫ T

0

∫

Rn
|ut|pη2k

T ψ dx dt
) 1

p
(∫ T

0

∫

Rn
ψ dx dt

) 1
p′

≤ CT–1+ n+1
2p′

(∫ T

0

∫

Rn
|ut|pη2k

T ψ dx dt
) 1

p

≤ CT–p′+ n+1
2 +

1
3

∫ T

0

∫

Rn
|ut|pη2k

T ψ dx dt,

(4.8)

|I16| ≤ CI15

≤ CT–p′+ n+1
2 +

1
3

∫ T

0

∫

Rn
|ut|pη2k

T ψ dx dt.
(4.9)

Employing the fact ∂t
 = η2k
T ψ – 2kη2k–1

T ∂tηTψ ≥ η2k
T ψ > 0 and (4.5)–(4.9), we have

CεqTq– (n+1)(q–1)
2 ≤

∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt ≤ CT–p′+ n+1
2 ,

which implies

T(ε) ≤ Cε
– 2q(p–1)

–(n–1)qp+(n–1)q+2p (4.10)

for p > 1 (n = 2, 3), 1 < p < n–1
n–3 (n > 3), and 1 < q < 2p

(n–1)(p–1) .
On the other hand, (4.2)–(4.4) yield

I11 ≤ CT–2+ n+1
2q′

(∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt
) 1

q

≤ CT–2q′+ n+1
2 +

1
3

∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt,

(4.11)
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I12 ≤ CT–1+ n+1
2q′

(∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt
) 1

q

≤ CT–q′+ n+1
2 +

1
3

∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt,

(4.12)

|I13| ≤ CI12

≤ CT–q′+ n+1
2 +

1
3

∫ T

0

∫

Rn
|u|qη2k

T ψ dx dt.
(4.13)

From (4.1) and (4.11)–(4.13) we obtain

εC2(f , g) ≤ CT–q′+ n+1
2 ,

which implies

T(ε) ≤ Cε
– 2(q–1)

(n+1)–(n–1)q

for p > 1 and 1 < q < n+1
n–1 . The proof of Theorem 1.2 is finished.
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