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Abstract
The aim of the manuscript is to present the concept of a graphical double controlled
metric-like space (for short, GDCML-space). The structure of an open ball of the
proposed space is also discussed, and the newly presented ideas are explained with a
new technique by depicting appropriately directed graphs. Moreover, we present
some examples in a graph structure to prove that our results are sharp compared to
those in the previous papers. Further, the existence of a solution to the boundary
value problem originating from the transverse oscillations of a homogeneous bar
(TOHB) is obtained theoretically.
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1 Introduction
To resolve many problems in mathematics, we require to use fixed point theory. This the-
ory is also considered a remarkable tool in applied sciences and several other disciplines.
The Banach fixed point theorem [1] is known as the essential theorem in the metric fixed
point theory. This theorem has been generalized and extended in several directions using
different topologies and/or variant contractions. Among these generalizations and exten-
sions, we cite [2–10].

On the other hand, graph theory is a branch of mathematics that deals with networks
of elements connected by lines. A graph is considered a structure amounting to a set of
objects in which some pairs of objects are related in some sense. The beginning of the
graph theory field originated in number games. It has a significant contribution to mathe-
matical research, with applications in social sciences, operations research, chemistry, and
computer science. For more details, we refer to [11–14].

In 2005, Echenique [15] initiated the combination of graph theory and fixed point the-
ory by presenting a proof of the fixed point result of Tarski via graphs (using ordinal num-
bers). A year later, Espinola and Kirk [16] gave some fixed point theorems via graph theory.
Precisely, they established some fixed point results for nonexpansive mappings defined
on R-trees and used the obtained theorems to give some results in graph theory. Note
that metric graphs correspond to spaces followed by considering a connected graph and
metrizing the nontrivial edges of the graph as bounded intervals of R. Going in the same
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direction, a fruitful contribution was made by Jachymski [17] in 2008 and Beg et al. [18]
in 2010. Namely, variant generalizations of the Banach contraction principle to mappings
on a metric space equipped with a graph have been provided. For further investigations
of fixed point results using a graph, see [19–23].

Among the generalizations of a metric space, there is the concept of a double controlled
metric-like space introduced by Mlaiki [24]. In this setting, double controlled control func-
tions are considered on the right-hand-side of the modified triangular inequality. Also,
self-distance may not be equal to zero. In this paper, we construct a suitable double con-
trolled metric-like metric space equipped with a graph and some suitable graphical con-
traction mappings. We prove some related fixed point theorems. We also present some
concrete examples and an application by ensuring the existence of a solution to a bound-
ary value problem originating from TOHB.

2 Basic facts and primary definitions
This part is intended to review primary definitions of a controlled metric-type space, a
double controlled metric-type space, and a double controlled metric-like space and some
facts about the graph theory, which are very important for most of the statements of our
paper.

Definition 2.1 ([25]) Consider β �= ∅ and a function ρ : β2 → [1,∞). Assume that a func-
tion ξ : β2 → [0,∞) satisfies the assumptions below for all k, l, m ∈ β :

(ξ1) ξ (k, l) = 0 ⇔ k = l;
(ξ2) ξ (k, l) = ξ (l, k);
(ξ3) ξ (k, l) ≤ ρ(k, m)ξ (k, m) + ρ(m, l)ξ (m, l).
Then (β , ξ ) is called a controlled metric-type space.

Abdeljawad et al. [26] extended the above definition to double controlled metric-type
spaces as follows:

Definition 2.2 ([26]) Consider β �= ∅ and noncomparable functions ρ, ζ : β2 → [1,∞).
Let the function σ : β2 → [0,∞) satisfy the assumptions below for all k, l, m ∈ β :

(σ1) σ (k, l) = 0 ⇔ k = l;
(σ2) σ (k, l) = σ (l, k);
(σ3) σ (k, l) ≤ ρ(k, m)σ (k, m) + ζ (m, l)σ (m, l).
Then (β ,σ ) is called a double controlled metric-type space (DCMT-space).

In 2020, Mlaiki [24] introduced the concept of a double controlled metric-like space
(DCML-space) and showed that any DCMT-space is a DCML-space, but the opposite is
not true. He also obtained the related Banach contraction principle under mild conditions
and presented his definition as follows:

Definition 2.3 ([24]) Consider a set β �= ∅ and noncomparable functions ρ, ζ : β2 →
[1,∞). Let the function θ : β2 → [0,∞) satisfy the hypotheses below for all k, l, m ∈ β :

(θ1) θ (k, l) = 0 ⇔ k = l;
(θ2) θ (k, l) = θ (l, k);
(θ3) θ (k, l) ≤ ρ(k, m)θ (k, m) + ζ (m, l)θ (m, l).
Then (β , θ ) is called a DCML-space.
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Based on the results of Jachymski [17], let a set J �= ∅ and � be the diagonal of the Carte-
sian product J × J . Also, assume that � = (ν(�),ϑ(�)) is a directed graph without parallel
edges, where ν(�) is the vertex set of � so that it coincides with the set J , and the set of
edges will be denoted by ϑ(�) so that it contains all the loops of �, i.e., � ⊆ ϑ(�).

The undirected graph is obtained from � by ignoring the direction of edges denoted by
the letter ˜�. Actually, it will be more convenient for us to treat ˜� as a directed graph for
which the set of its edges is symmetric. Under this convention,

ϑ(˜�) = ϑ(�) ∪ ϑ
(

�
–1),

where �
–1 is the graph obtained by reversing the direction of ϑ(�).

Assume that k and l are vertices of the directed graph �, a path in � described as a
sequence {ki}m

i=0 containing (m + 1) vertices so that k◦ = k, km = l with (ki–1, ki) ∈ ϑ(�) for
i = 1, 2, . . . , m. Further, if there is a path between any two vertices, then a graph � is called
connected, and � is weakly connected if˜� is connected. A graph ϒ = (ν(ϒ),ϑ(ϒ)) is called
a subgraph of � = (ν(�),ϑ(�)) if ν(ϒ) ⊆ ν(�) and ϑ(ϒ) ⊆ ϑ(�).

The symbols below are due to Shukla et al. [27]:
A relation � on J is defined by: (k�l)� if there is a directed path from k to l in �, and

we write t ∈ (k�l)� if t contained in some directed path from k to l in �. Moreover, they
denote [k]n

�
= {l ∈ J : there is a direct path from k to l in � with the length n}.

Recall that a sequence {ki} ⊂ J is called �-termwise connected (�-TWC) if (ki�ki+1)�,
for all i ∈ N. Henceforward, we shall consider all graphs are directed unless otherwise
stated.

Chuensupantharat et al. [28] applied a directed graph in metric fixed point theory by
introducing a graphical b-metric space to generalize a b-metric space. They were able to
study the topological properties of this space and get examples and results about the fixed
points that contribute significantly to the development of graph theory. For more examples
and explanations, see [29].

3 Graphical double controlled metric-like spaces
Most of the results in metric fixed point theory depend on the fact that if the contractive
condition holds for comparable elements p and q, and for q and r, it necessarily holds for
p and r. Transitivity can be avoided while working in the structure of the graph.

Because of the importance of graphs in the metric fixed point, we commence the graph-
ical version of double-controlled metric-like spaces as the following:

Definition 3.1 Assume that J �= ∅ endowed with a graph � and noncomparable functions
σ , ξ : J × J → [1,∞). Let the function d�σξ

: J × J → [0,∞) verify the following assertions
∀k, l, m ∈ J :

(d�1) d�σξ
(k, l) = 0 ⇒ k = l;

(d�2) d�σξ
(k, l) = d�σξ

(l, k);
(d�3) (k�l)�, m ∈ (k�l)� ⇒ d�σξ

(k, l) ≤ σ (k, m)d�σξ
(k, m) + ξ (m, l)d�σξ

(m, l).
Then (J , d�σξ

) is called a graphical double-controlled metric-like space (GDCML-space).

Remark 3.2
(i) If we take σ = ξ , then we have a new space called a graphical controlled metric-like

space.
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(ii) It is clear that a GDCML-space is more general than a DCML-space.
(iii) Every DCML-space is a GDCML-space.

To illustrate the above remark (iii), we give the following examples:

Example 3.3 Let J = {1, 3, 5, 7, 11}. Define σ , ξ : J × J → [1,∞) by

σ (k, l) =

⎧

⎨

⎩

k, if k, l ≥ 1,

1, otherwise,
and ξ (k, l) =

⎧

⎨

⎩

max{k, l}, if k, l ≥ 1,

1, otherwise.

Assume the set J is equipped with

d�σξ
(k, l) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if k = l,
1
2 , if k = 0 and l = 0,
1
k , if k ≥ 1 and 0 ≤ l < 1,
1
l , if l ≥ 1 and 0 ≤ k < 1,

1, otherwise.

The proof that the pair (J , d�σξ
) is a DCML-space comes directly from paper [24].

Now, let the set of vertices be J = ν(�) and the set of edges be described as

ϑ(�) = � +
{

(1, 3), (1, 5), (3, 5), (3, 11), (5, 7), (5, 11), (7, 1), (7, 3), (11, 1), (11, 7)
}

,

then (J , d�σξ
) is a GDCML-space. The sketch of the graph � is illustrated in Fig. 1.

Example 3.4 A GDCML-space is not necessarily metric space. Assume that J = � ∪ ,
where � = { 1

ϕ
: ϕ = 1, 2, 3, 4} and  = {2, 3}. Define the GDCML d� : J × J → [0,∞) as

follows:

d�(k, l) =

⎧

⎨

⎩

0, if k = l,

(k + l)2, otherwise,

Figure 1 Graph describing DCML-space
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Figure 2 Graph associated with Example 3.4

equipped with the graph � = (ν(�),ϑ(�)) so that J = ν(�) with ϑ(�) as illustrated in Fig. 2.
Explicitly, we can find that (J , d�σξ

) is a DCML-space endowed with a graph � by setting
σ (k, l) = kl + 26 and ξ (k, l) = 13 + kl.

It should be noted that (J , d�σξ
) is not a graphical metric space and hence not a metric

space because

d�σξ
(2, 4) = 36 > d�σξ

(2, 1) + d�σξ
(1, 4) = 34.

Remark 3.5 A GDCML-space can be obtained from its ordered version.

Let d�σξ
be an ordered double-controlled metric-like and �dσξ

= (ν(�dσξ
),ϑ(�dσξ

)) be
a graph so that ν(�dσξ

) = J and ϑ(�dσξ
) = {(k, l) ∈ J × J : k � l}. It is clear that (J , d�σξ

) is
a GDCML-space. Hence, we conclude that every ordered double-controlled metric-like
space (ODCML-space) is a GDCML-space.

The following example confirms Remark 3.5.

Example 3.6 Consider J = {2, 4, 6, 8, 10} equipped with the partial order � described as

�:= � ∪ {

(k, l) ∈ J × J : k, l ∈ J , l ≥ k
}

.

Define d�σξ
: J × J → [0,∞) as follows:

d�σξ
(k, l) =

⎧

⎨

⎩

0, if k = l,

(k + l)2, k �= l.

Surely, (J , d�σξ
) is an ODCML-space with the functions σ , ξ : J × J → [1,∞) given as

σ (k, l) =
√

k + l and ξ (k, l) =
√

1 + k + l.
Now, assume the graph �dσξ

is endowed with the partial order � as illustrated in Fig. 3.
Then (J , d�σξ

) is a GDCML-space with the same functions σ and ξ .

It should be noted that a GDCML-space is not necessarily a DCML-space. In order to
confirm this statement, we will explain the following example.
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Figure 3 Graph associated with Example 3.6

Figure 4 Graph Describing GDCML-space

Example 3.7 Assume that J = {0, 1, 2, 3} is furnished with the GDCML d�σξ
: J × J →

[0,∞) described as

d�σξ
(k, l) =

⎧

⎨

⎩

0, if k = l,

(k + l)2, k �= l,

including the graph� = (ν(�),ϑ(�)) so that J = ν(�) with ϑ(�) as spanned in Fig. 4. Clearly,
(J , d�σξ

) is a GDCML-space endowed with a graph � by taking σ (k, l) =
√

k + l and ξ (k, l) =√
1 + k + l.
Note that

d�σξ
(2, 3) = 25

≥ 4
√

2 + 2(9)

= σ (2, 0)d�σξ
(2, 0) + ξ (0, 3)d�σξ

(0, 3).

Hence, a GDCML-space is not necessarily a DCML-space.

To summarize the above results together with the remarkable work that has been com-
pleted in lead manuscripts [24, 27, 30, 31], we present the next flow diagram (Fig. 5) in
order to gain a better understanding of the corresponding concepts.

Definition 3.8 Suppose that (J , d�σξ
) is a GDCML-space. Then for k ∈ J and σ > 0, the

d�σξ
-open ball with radius σ and center m is

Od�σξ
(k, δ) =

{

m ∈ J : (k�m)�, δ > d�σξ
(k, m)

}

.
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Figure 5 Flow digram stand for the inclusions. The reverse is not true

Because ϑ(�) ⊇ �, then m ∈ Od�σξ
(m, δ), so this proves that for k ∈ J , Od�σξ

(m, δ) �= ∅
and δ > 0.

Encompassed by a GDCML, the set � = {Od�σξ
(k, δ) | k ∈ J , δ > 0} forms a neighborhood

system for the topology τ� on J .
Furthermore, if for every k ∈ Q, there is δ > 0 so that Q ⊃ Od�σξ

(k, δ), then the subset Q
of J is open. Certainly, a subset Q of J is closed if its complement is open.

Proposition 3.9 Let (J , d�σξ
) be a GDCML-space with σ (k, m) = ρ ∈ [1,∞) and ξ (k, m) =

� ∈ [1,∞) so that ρ �= � for k, m ∈ J . If m ∈ Od�σξ
(k, δ) for δ > 0, then there is � > 0 so that

Od�σξ
(k, δ) ⊇ Od�σξ

(m,� ).

Proof Assume that m ∈ Od�σξ
(k, δ

ρ
). If m = k, then we select � = δ

ρ
. Now, suppose that

m �= k, then we get d�σξ
(m, k) �= 0. Selecting 0 < � = 1

ρ
(δ – �d�σξ

(m, k)) and consider l ∈
Od�σξ

(m,� ), then based on the given assertions, we have (k�m)�σξ
and (m�l)�σξ

and
hence (k�l)�σξ

. According to the property of the GDCML-space, we get

d�σξ
(l, k) ≤ σ (l, m)d�σξ

(l, m) + ξ (m, k)d�σξ
(m, k)

< ρ� + �d�σξ
(m, k)

= ρ

(

δ

ρ
–

�

ρ
d�σξ

(m, k)
)

+ �d�σξ
(m, k)

= δ.

That is, d�σξ
(l, k) < δ, i.e., l ∈ Od�σξ

(k, δ). Hence, Od�σξ
(k, δ) ⊇ Od�σξ

(m,� ). This com-
pletes the proof. �

Definition 3.10 Let (J , d�σξ
) be a GDCML-space. The sequence {ki} ∈ J is called:

(a) convergent to k ∈ J if limi→∞ d�σξ
(ki, k) = d�σξ

(k, k);
(b) �-Cauchy sequence if limi,j→∞ d�σξ

(ki, kj) exists and is finite.

Definition 3.11 A GDCML-space (J , d�σξ
) is called �-complete if for every �-Cauchy

sequence {ki}, there is k ∈ J so that

lim
i,j→∞ d�σξ

(ki, k) = d�σξ
(k, k) = lim

i,j→∞ d�σξ
(ki, kj).
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4 Recent fixed point theorems
Assume that � = (ν(�),ϑ(�)) is a weighted graph containing all the loops. We say that
a sequence {ki} ∈ J with the initial value k0 ∈ J is an -Picard sequence (-PS) for an
operator  : J → J if ki = ki–1 = ik0, ∀i ∈N.

Furthermore, � = (ν(�),ϑ(�)) is said to justify the property (P) [27] if a �-termwise con-
nected -PS {ki} converging in J guarantees that there are a limit k ∈ J of {ki} and k0 ∈ N

so that (ki, k) ∈ ϑ(�) or (k, ki) ∈ ϑ(�), for all i > i0.
Now, we demonstrate our first main results by defining a graphical �σξ -contraction as

follows:

Definition 4.1 Let (J , d�σξ
) be a GDCML-space endowed with a graph � containing all

the loops. A mapping  : J → J is called a graphical �σξ -contraction on a GDCML-space
(J , d�σξ

) if the stipulations below hold:
(�σξ S1) J preserves edges of �, i.e., ∀k, l ∈ J , If (k, l) ∈ ϑ(�), then (k,l) ∈ ϑ(�);
(�σξ S2) there are η ∈ [0, 1) and σ (k, l), ξ (k, l) ∈ [1,∞) for all k, l ∈ J with (k, l) ∈ ϑ(�), we

get

d�σξ
(k,l) ≤ ηd�σξ

(k, l). (4.1)

Theorem 4.2 Let (J , d�σξ
) be a �-complete GDCML-space and  : J → J be a graphical

�σξ -contraction. Assume that the hypotheses below hold:
(1) the graph � verifies the property (p);
(2) for some n ∈N, there is k0 ∈ J so that k0 ∈ [k0]n

�
and

lim
i,m→∞

σ (ki+1, ki+2)
σ (ki, ki+1)

ξ (ki+1, km) <
1
η

, (4.2)

where {ki} is -PS with initial value k0;
(3) for every k ∈ J , we have that limi→∞ σ (k, ki) and limi→∞ ξ (ki, k) exist and are finite.

Then there is k∗ ∈ J so that the -PS {ki} is �-TWC and converges to both k∗ and k∗.

Proof Assume that k0 ∈ J so that for some n ∈ N, k0 ∈ [k0]n
�

. Because {ki} is a -PS
with initial value k0, there is a path {lj}n

j=0 with k0 = l0, k0 = ln and (lj–1, lj) ∈ ϑ(�) for
j = 1, 2, . . . , n. Based on (�σξ S1), for j = 1, 2, . . . , n we have (lj–1,lj) ∈ ϑ(�). This implies
that {lj}n

j=0 is a path from l0 = k0 = k1 to ln = 2k0 = k2 having length n, and thus k2 ∈
[k1]n

�
. By repeating the same approach, we find that {ilj}n

j=0 is a path from il0 = ik0 = ki

to iln = ik0 = ki+1 of length n, and thus ki+1 ∈ [ki]n
�

, for all i ∈ N. This proves that {ki}
is a �-TWC sequence.

Now, (ilj–1,ilj) ∈ ϑ(�) for j = 1, 2, . . . , n and i ∈ N. By (�σξ S2), we get

d�σξ

(

ilj–1,ilj
) ≤ ηd�σξ

(

i–1lj–1,i–1lj
)

.

By continuing with the same scenario, we have

d�σξ

(

ilj–1,ilj
) ≤ ηd�σξ

(

i–1lj–1,i–1lj
)

≤ η2d�σξ

(

i–2lj–1,i–2lj
)
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...

≤ ηid�σξ
(lj–1, lj). (4.3)

Since {ki} is a �-TWC sequence, by (4.3), we can write

d�σξ
(ki, ki+1)

= d�σξ

(

ik0,i+1k0
)

= d�σξ

(

il0,iln
)

≤ σ
(

il0,il1
)

d�σξ

(

il0,il1
)

+ ξ
(

il1,iln
)

d�σξ

(

il1,iln
)

≤ σ
(

il0,il1
)

d�σξ

(

il0,il1
)

+ ξ
(

il1,iln
)

σ
(

il1,il2
)

d�σξ

(

il1,il2
)

+ ξ
(

il1,iln
)

ξ
(

il2,iln
)

d�σξ

(

il2,iln
)

≤ σ
(

il0,il1
)

d�σξ

(

il0,il1
)

+ ξ
(

il1,iln
)

σ
(

il1,il2
)

d�σξ

(

il1,il2
)

+ ξ
(

il1,iln
)

ξ
(

il2,iln
)

σ
(

il2,il3
)

d�σξ

(

il2,il3
)

+ ξ
(

il1,iln
)

ξ
(

il2,iln
)

ξ
(

il3,iln
)

d�σξ

(

il3,iln
)

≤ . . .

≤ σ
(

il0,il1
)

d�σξ

(

il0,il1
)

+
n–2
∑

r=1

( r
∏

j=1

ξ
(

ilj,iln
)

)

σ
(

ilr ,ilr+1
)

d�σξ

(

ilr ,ilr+1
)

+
n–1
∏

s=1

ξ
(

ils,iln
)

d�σξ

(

iln–1,iln
)

≤ ηi

⎧

⎪

⎨

⎪

⎩

σ (il0,il1)d�σξ
(l0, l1)

+
∑n–2

r=1 (
∏r

j=1 ξ (ilj,iln))σ (ilr ,ilr+1)d�σξ
(lr , lr+1)

+
∏n–1

r=1 ξ (ilr ,iln)ηid�σξ
(ln–1, ln)

⎫

⎪

⎬

⎪

⎭

.

Since r is finite, letting

Q�σξ
=

⎧

⎪

⎨

⎪

⎩

σ (il0,il1)d�σξ
(l0, l1)

+
∑n–2

r=1 (
∏r

j=1 ξ (ilj,iln))σ (ilr ,ilr+1)ηrd�σξ
(l0, l1)

+
∏n–1

r=1 ξ (ilr ,iln)ηn–1d�σξ
(l0, l1)

⎫

⎪

⎬

⎪

⎭

,

a finite quantity, we have

d�σξ
(ki, ki+1) ≤ ηiQ�σξ

. (4.4)

Again, since {ki} is a �-TWC sequence for i, m ∈N, i < m and using (4.4), we obtain

d�σξ
(ki, km) ≤ σ (ki, ki+1)d�σξ

(ki, ki+1) + ξ (ki+1, km)d�σξ
(ki+1, km)

≤ σ (ki, ki+1)d�σξ
(ki, ki+1) + ξ (ki+1, km)σ (ki+1, ki+2)d�σξ

(ki+1, ki+2)

+ ξ (ki+1, km)ξ (ki+2, km)d�σξ
(ki+2, km)
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≤ σ (ki, ki+1)d�σξ
(ki, ki+1) + ξ (ki+1, km)σ (ki+1, ki+2)d�σξ

(ki+1, ki+2)

+ ξ (ki+1, km)ξ (ki+2, km)σ (ki+2, ki+3)d�σξ
(ki+2, ki+3)

+ ξ (ki+1, km)ξ (ki+2, km)ξ (ki+3, km)d�σξ
(ki+3, km)

≤ · · ·

≤ σ (ki, ki+1)d�σξ
(ki, ki+1) +

m–2
∑

q=i+1

( q
∏

s=1

ξ (ks, km)

)

σ (kq, kq+1)d�σξ
(kq, kq+1)

+
m–1
∏

p=i+1

ξ (kp, km)d�σξ
(km–1, km)

≤ σ (ki, ki+1)ηiQ�σξ
+

m–2
∑

q=i+1

( q
∏

s=1

ξ (ks, km)

)

σ (kq, kq+1)ηqQ�σξ

+
i–1
∏

p=m+1

ξ (kp, ki)ηi–1Q�σξ

≤ σ (km, km+1)ηmQ�σξ
+

i–2
∑

q=m+1

( q
∏

s=1

ξ (ks, ki)

)

σ (kq, kq+1)ηqQ�σξ

+

( m–1
∏

p=i+1

ξ (kp, km)

)

ηm–1σ (km–1, km)Q�σξ

= σ (ki, ki+1)ηiQ�σξ
+

m–1
∑

q=i+1

( q
∏

s=1

ξ (ks, km)

)

σ (kq, kq+1)ηqQ�σξ

≤ σ (ki, ki+1)ηiQ�σξ
+

m–1
∑

q=i+1

( q
∏

s=0

ξ (ks, km)

)

σ (kq, kq+1)ηqQ�σξ
.

Note that, we used the fact σ (k, l), ξ (k, l) ≥ 1. Assume that

�h =
h

∑

q=0

( q
∏

s=0

ξ (ks, km)

)

σ (kq, kq+1)ηq.

Then, we get

d�σξ
(ki, km) ≤ Q�σξ

(

ηiσ (ki, ki+1) + (�m–1 – �i)
)

. (4.5)

From condition (4.2) and using the ratio test, we find that limi→∞ �i exists, and hence and
the real sequence {�i} is a �-Cauchy.

At the last, letting m, i → ∞ in (4.5), we have

lim
i,m→∞ d�σξ

(ki, km) = 0.

This proves that the sequence {ki} is a �-Cauchy in (J , d�σξ
). The completeness of (J , d�σξ

)
implies that there is a sequence {ki} converges in J and from stipulation (1), there is k∗ ∈ J ,
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i0 ∈N so that (ki, k∗) ∈ ϑ(�) or (k∗, ki) ∈ ϑ(�), ∀i > i0 and

lim
i→∞ d�σξ

(

ki, k∗) = d�σξ

(

k, k∗) = lim
m,i→∞ d�σξ

(ki, km) = 0.

This assures that {ki} converges to k∗.
If (ki, k∗) ∈ ϑ(�), then by stipulation (�σξ S2), we get

d�σξ

(

ki+1,k∗) = d�σξ

(

ki,k∗) ≤ Ld�σξ

(

ki, k∗), for i > i0.

This implies that

lim
i→∞ d�σξ

(

ki+1,k∗) = 0.

Also, if (k∗, ki) ∈ ϑ(�), then with the same arguments as above, we find that

lim
i→∞ d�σξ

(

k∗, ki+1
)

= 0.

Therefore, {ki} converges to both k∗ and k∗, and this finishes the proof. �

In order to achieve the existence of the fixed point, we introduce the following results:

Definition 4.3 Let (J , d�σξ
) be a GDCML-space and  : J → J be self-mapping. A trio

(J , d�σξ
,) is said to satisfy the property (H) if: corresponding to two limits k∗ ∈ J and

l∗ ∈ (J) of a �-TWC -PS {ki}, we get k∗ = l∗.

Theorem 4.4 Assume that all hypotheses of Theorem 4.2 hold and suppose that a trio
(J , d�σξ

,) verifies the property (H). Then,  possesses a fixed point.

Proof In Theorem 4.2, we were able to prove that the -PS {ki} with initial value k0 con-
verges to both k∗ and k∗. As k∗ ∈ J and k∗ ∈ (J), therefore by our assumption, we
have k∗ = k∗. Hence,  has a fixed point. �

The below example supports Theorem 4.2.

Example 4.5 Let J = {0} ∪ { 1
3i : i ∈N} be endowed with a GDCML d�σξ

described as

d�σξ
(k, l) =

⎧

⎨

⎩

0, if k = l,

(k + l)2, k �= l,

including the graph � so that J = ν(�) and ϑ(�) = � ∪ {(k, l) ∈ J2 : (k�l)�, k – l ≥ 0}. It
is obvious that (J , d�σξ

) is a GDCML-space with σ (k, l) = 2 + k + l and ξ (k, l) = 3 + k + l.
Define a self mapping  : J → J by (k) = k

3 , for all k ∈ J . It is obvious to see that there is
k0 = 1

3 so that ( 1
3 ) = 1

9 ∈ [ 1
3 ]1

�
, i.e., ( 1

3� 1
9 )� and the contraction (4.1) is fulfilled with η = 1

9 .
Hence,  is a graphical�σξ -contraction on a GDCML-space (J , d�σξ

) with σ (k, l) = 2+k + l,
ξ (k, l) = 1 + k + l and η = 1

9 .
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Figure 6 Weighted graph for Example 4.5

Since {ki} is a -PS, for each k ∈ J , i(k) = k
3i , such that, we get

lim
i,m→∞

σ (ki+1, ki+2)
σ (ki, ki+1)

ξ (ki+1, km) = lim
i,m→∞

σ (i+1k0,i+2k0)
σ (ik0,i+1k0)

ξ
(

i+1k0,mk0
)

= lim
i,m→∞

σ ( k0
3i+1 , k0

3i+2 )

σ ( k0
3i , k0

3i+1 )
ξ

(

k0

3i+1 ,
k0

3m

)

=
σ (0, 0)
σ (0, 0)

ξ (0, 0) = 3 < 9 =
1
η

.

Moreover, since k0 = 1
3 and i(k) = k

3i , we see that limi→∞ σ (k, ki) and limi→∞ ξ (ki, k)
exist and are finite. Therefore, all hypotheses of Theorem 4.2 are fulfilled, and 0 is
the unique fixed point of  on J . Figure 6 presents the weighted graph for ν∗(�) =
{0, 1

3 , 1
32 , 1

33 , 1
34 , 1

35 , 1
36 } ⊆ ν∗(�), where the wight of edge (k, l) is equal to the value of

d�σξ
(k, l).

5 The existence of a solution for transverse oscillations
In this section, we apply the obtained theoretical results to discuss the existence of a so-
lution to the boundary value problem originating from transverse oscillations of a homo-
geneous bar (TOHB).

The TOHB is a problem of paramount importance. Suppose that we have a homoge-
neous bar that is fixed at one end and free at the other one so that the axis of the homoge-
neous bar corresponds to the segment (0, 1) of the x-axis and the deviation parallel to the
z-axis at the point c. The differential equation that describes the TOHB is written as:

⎧

⎨

⎩

d4k(c)
dc4 = ℵ4

�(c, k(c)), c ∈ I = [0, 1],

k(0) = k′(0) = k′′(1) = k′′′(1) = 0,
(5.1)

where � : [0, 1] ×R→R is a continuous function and ℵ > 0 is a constant.
Problem (5.1) is written as an integral equation as follows:

k(c) = ℵ4
∫ 1

0
�(c, u)�

(

u, k(u)
)

du, (5.2)
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where �(c, u) is the Green function described by

�(c, u) =
1
6

⎧

⎨

⎩

3u2c – u3, 0 ≤ u ≤ c ≤ 1,

3uc2 – c3, 0 ≤ c ≤ u ≤ 1.

Assume that J = C(I,R) is the set of real continuous functions on I . Let

� =
{

k ∈ J : inf
c∈I

k(c) > 0 & k(c) ≤ 1, c ∈ I
}

.

Let � be a graph defined by J = ν(�) and

ϑ(�) = � ∪ {(

k, k∗) ∈ J2 : k, k∗ ∈�, k(c) ≤ k∗(c),∀c ∈ I
}

.

Suppose that d�σξ
: J × J → [0,∞) is a GDCML described as

d�σξ

(

k, k∗) = sup
c∈I

∣

∣k(c) + k∗(c)
∣

∣

2,

for all k, k∗ ∈ J with σ (k, k∗) = s + k + k∗ and σ (k, k∗) = t + k + k∗, such that s, t > 2 and s �= t.
Then (J , d�σξ

) is a GDCML-space.
Now, we consider Problem (5.1) under the following hypotheses:
(H1) There is a lower solution γ ∈ J of Problem (5.2), i.e.,

γ (c) ≤ ℵ4
∫ 1

0
�(c, u)�

(

u, k(u)
)

du;

(H2) Select ℵ suitably so that

inf
c∈I

�(c, u) > 0, 0 ≤ sup
c∈I

(

�(ℵ, c)
)2 < 1 and �(c, u)�(u, 1) ≤

(

1
ℵ

)4

,

where �(ℵ, c) = ℵ4

6 ( c4–4c3+6c2

4 );
(H3) The stipulation below holds, for each c ∈ I and k, l ∈ J

∣

∣�
(

c, k(c)
)

+ �
(

c, l(c)
)∣

∣ ≤ ∣

∣k(c) + l(c)
∣

∣.

Theorem 5.1 Under assumptions (H1)–(H3), Problem (5.1) governs TOHB has a solution.

Proof Let  : J → J be an operator described by


(

k(c)
)

= ℵ4
∫ 1

0
�(c, u)�

(

u, k(u)
)

du, ∀u ∈ I.

It is clear that the operator J is well-defined. Based on the given assumption, for (k, l) ∈
ϑ(�) with k, l ∈ J , we have

∣

∣
(

k(c)
)

+ 
(

l(c)
)∣

∣ =
∣

∣

∣

∣

ℵ4
∫ 1

0
�(c, u)�

(

u, k(u)
)

du + ℵ4
∫ 1

0
�(c, u)�

(

u, l(u)
)

du
∣

∣

∣

∣
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≤ ℵ4
∫ 1

0
�(c, u)

∣

∣�
(

u, k(u)
)

+ �
(

u, l(u)
)∣

∣du

≤ ℵ4
∫ 1

0
�(c, u)

(

sup
c∈I

∣

∣�
(

c, k(c)
)

+ �
(

c, l(c)
)∣

∣

)

du

= ℵ4
(

sup
c∈I

∣

∣�
(

c, k(c)
)

+ �
(

c, l(c)
)∣

∣

)

∫ 1

0
�(c, u) du

≤ ℵ4

6

(

c4 – 4c3 + 6c2

4

)

(

sup
c∈I

∣

∣k(c) + l(c)
∣

∣

)

,

which implies that

sup
c∈I

∣

∣
(

k(c)
)

+ 
(

l(c)
)∣

∣

2 ≤ sup
c∈I

(

�(ℵ, c)
)2

sup
c∈I

∣

∣k(c) + l(c)
∣

∣

2.

Using our assumptions, we take supc∈I(�(ℵ, c))2 = η ∈ [0, 1), such that we get

d�σξ
(k,l) ≤ ηd�σξ

(k, l).

This verifies the stipulation (�σξ S2) of Theorem 4.2.
Now, for all k, l ∈  so that (k, l) ∈ ϑ(�), we find that k, l ∈� and k(c) ≤ l(c), for all c ∈ I .
By the assertion (H2), we obtain infc∈I (k) > 0,

(k)(c) = ℵ4
∫ 1

0
�(c, u)�

(

u, k(u)
)

du ≤ ℵ4
∫ 1

0
�(c, u)�(c, 1) du ≤ 1

and

(k)(c) = ℵ4
∫ 1

0
�(c, u)�

(

u, k(u)
)

du ≤ ℵ4
∫ 1

0
�(c, u)�

(

u, l(u)
)

du = (l)(c).

In other words, (k)(c) ∈� and ((k)(c),(l)(c)) ∈ ϑ(�).
Moreover, by condition (H1), the existence of a lower solution of the integral equation

(5.2) confirms that there is a solution, say κ ∈ �, so that (κ) ∈ [κ]1
�

. This implies that
the hypothesis (2) of Theorem 4.2 is fulfilled. Also, the remaining conditions of Theo-
rem 4.2 can be verified easily. So, the mapping  has a fixed point, which is a solution of
the ordinary differential equation (5.1). �

6 Some open problems
• Is it possible to expand the triangle inequality to become quadrilateral or rectangular

to obtain new spaces under the same topological properties?
• Is it possible to extend the contraction condition given in our basic theorem, such as

the equivalent results of Reich [32], Meir–Keelar [33], Kannan [34], Hardy–Rogers
[35], Ciric [36], Edelstein [37], and De la Sen [38] in a GDCML-space?

• Can we apply the theoretical results to discuss the existence solution of the following
integro-differential equation:

k(c) =
1
4

∫ r

s
�(c, u)

[

�
(

u, k(u), k′(u)
)

+ ℘
(

u, k(u)
)]

du,
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for c ∈ [s, r], where � : [s, r] × [s, r] → [1,∞], � : [s, r] × [0,∞) × [0,∞) → [0,∞) and
℘ : [s, r] × [0,∞) → [0,∞) are continuous functions?

• What happens if the graphical �σξ -contraction mapping  : J → J is a cyclic mapping,
and/or we add the notion of α-admissibility?
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