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Abstract
In this work, we study the dynamical behavior of a modified SIR epidemiological
model by introducing negative feedback and a nonpharmaceutical intervention. The
first model to be defined is the Susceptible–Isolated–Infected–Recovered–Dead
(SAIRD) epidemics model and then the S-A-I-R-D-Information Index (SAIRDM) model
that corresponds to coupling the SAIRD model with the negative feedback.
Controlling the information about nonpharmaceutical interventions is considered by
the addition of a new variable that measures how the behavioral changes about
isolation influence pandemics. An analytic expression of a replacement ratio that
depends on the absence of the negative feedback is determined. The results
obtained show that the global stability of the disease-free equilibrium is determined
by the value of a certain threshold parameter called the basic reproductive number
R0 and the local stability of the free disease equilibrium depends on the replacement
ratios. A Hopf bifurcation is analytically verified for the delay parameter. The
qualitative analysis shows that the feedback information index promotes more
changes to the propagation of the disease than other parameters. Finally, the
sensitivity analysis and simulations show the efficiency of the infection rate of the
information index on an epidemics model with nonpharmaceutical interventions.

Keywords: SAIRDMmodel; Epidemics; Negative feedback; Information index;
Stability

1 Introduction
Epidemics, due to their dynamic nature, have their basic mathematical modeling that be-
comes more complex depending on how more factors that characterize each disease are
considered. However, there are factors external to the disease that influence its incidence,
and they are generated, for example, by prejudices about vaccination campaigns with prior
information (negative feedback), as in the case of the negative concept in the population
regarding the vaccine against the human papillomavirus (HPV) [1, 2] or the SARS-CoV-2
vaccine [3], sometimes caused by misinformation. In this work, we propose and analyze
an epidemic model in ordinary differential equations including an information index func-
tion and the effect of negative feedback on the nonpharmaceutical treatment parameter
(e.g., quarantine).

The Peruvian Health Office periodically launches pharmaceutical campaigns against
diseases of high incidence, for example, HPV [4]. These activities are developed with the
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aim of reducing the incidence of these epidemics. However, there are myths [5] among
the population about some of these interventions, especially when they are more effective
if they are given at an early age, for prevention of sexually transmitted disease, and par-
ents do not believe it necessary to opt for this intervention. This happens with the HPV
vaccine.

One of the current concerns in Perú is the coronavirus disease 2019 (COVID-19) pan-
demic, which has proven the low level of response of our health system [6]. However, after
12 months, these needs have already been overcome, but we continue with the infections.
The second part of the strategy against the pandemic translates into the protection of all
people who have not yet been infected, and for this, it is necessary to have an efficient
vaccine (pharmaceutical intervention) whose quality verification is taking time moreover
with the new variants. The information that is spread about the availability of the vac-
cines that are now in the approval process confirms to us how difficult it will be to have
them. This type of information can affect the credibility of people [2], leading them to
neglect precautions with regard to cleaning and isolation (nonpharmaceutical measures
or interventions), which would influence the incidence of the disease. This results in neg-
ative information (feedback). The mathematical and simulation results provide us with
various scenarios of the dynamics of the disease, which will help us show the importance,
for example, of good information regarding isolation.

There are some publications that analyze how negative feedback affects the incidence of
diseases [7–11]. D’Onofrio et al. [9] analyzed an SIR-type model, and Vargas-De-Leon and
d’Onofrio [11] treated an SEIR-type model, both with negative feedback processes. The
first proposes three types of information indices, but all they analyze their models with
ordinary differential equations with a linear incidence rate with respect to the information
index. In this work, we use a type of nonlinear information index that gives rise to an
epidemic model considering the isolation rate with negative feedback.

On the other hand, we have very difficult times in the world, with the occurrence of
COVID-19, an emerging communicable disease. Unlike other diseases, COVID-19 has
become a pandemic with terrible results and, consequently, has reached almost worldwide
and has been severely affected by the collapse of the health system. In this case the negative
feedback should be represented by the reaction of the population to the necessary strict
quarantine, which would affect the incidence of the disease [12].

Buonomo [13] studied the influence of information about vaccination into a SIRI model
taking into account the behavioral changes of individuals. Owolabi et al. [14] explained
the adverse effects associated with antiviral treatment using a quantity termed the total
control reproduction number in HIV-related cancer-immune system dynamics; also see
Naik et al. [15]. Nuugulu et al. [16] analyzed a fractional SEIR model that studies the worst
case characterized by ineffective COVID-19 control mechanisms satisfying the chaotic
nature observed in the spread of COVID-19.

Finally, in the paper a modified SIR epidemic model with negative feedback and non-
pharmaceutical intervention has been developed. The SAIRDM model has five subpopu-
lations: susceptible (non isolated), population (S), isolated population (A), infected popu-
lation (I), recovered population (R), and dead population (D) together with the informa-
tion index (on aspects of the corresponding disease) variable (M). A detailed discussion
about the basic properties and existence–stability has been presented, and moreover the
Hopf bifurcation on the endemic equilibrium depending on the information index has
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been studied. Thus the model shows a more complex and rich dynamics. We consider
nonpharmaceutical control to reduce the spread of the disease and the influence of the in-
formation index on the susceptible population’s decision to be isolated. This is essential to
understand the dynamics of any epidemic disease transmission and to identify the param-
eters of greater interest, which will help policy-makers in targeting prevention resources
for maximum effectiveness.

2 The SAIRD model
In this section, we describe the SAIRD model, which is a perturbation of a basic SIR model
taking into account isolated population (A) and dead population (D).

2.1 SAIRD model
The basic SAIRD model is formulated by the following ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = αN(t) – βI(t) S(t)
N(t) + ηA(t) – (ρ + α)S(t),

A′(t) = ρS(t) – (η + α)A(t),

I ′(t) = βI(t) S(t)
N(t) – (γ + ω + α)I(t),

R′(t) = γ I(t) – αR(t),

D′(t) = ωI(t),

(1)

where S, A, I, R, D are the epidemiological state variables, and β ,α,η,γ ,ω,ρ are the pa-
rameters that influence population dynamics. Here we introduce into the SIR model the
dynamics of deaths from the disease and the nonpharmaceutical intervention.

We normalize the subpopulations as

s(t) =
S(t)
N(t)

, a(t) =
A(t)
N(t)

, i(t) =
I(t)
N(t)

, r(t) =
R(t)
N(t)

and d(t) =
D(t)
N(t)

.

Then equation (1) is equivalent to the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = α(1 – S(t)) – βI(t)S(t) + ηA(t) – ρS(t),

A′(t) = ρS(t) – (η + α)A(t),

I ′(t) = βI(t)S(t) – (γ + ω + α)I(t),

R′(t) = γ I(t) – αR(t),

D′(t) = ωI(t).

(2)

3 SAIRD model with negative feedback
We add a feedback variable caused by the information to the SAIRD model; this variable
called the information index identifies how misinformation can influence nonpharmaceu-
tical (isolation, quarantine, etc.) or pharmaceutical measures (vaccines, etc.) that we take
into account for dynamics of epidemics or pandemics caused by communicable diseases.

An epidemic model SAIRD with a period of temporary isolation and negative feedback
(see Fig. 1) is given by
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Figure 1 SAIRD model. Diagram of SAIRD model with negative feedback

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = α(1 – S(t)) – βI(t)S(t) + ηA(t) – p(M)S(t),

A′(t) = p(M)S(t) – (η + α)A(t),

I ′(t) = βI(t)S(t) – (γ + ω + α)I(t),

R′(t) = γ I(t) – αR(t),

D′(t) = ωI(t),

M(t) =
∫ t

–∞ g(S(τ ), I(τ ))Ka(t – τ ) dτ ,

(3)

where S, A, I, R, and D are the population densities of susceptible, isolated, infected, re-
covered, and dead individuals, respectively, M is the information index (on aspects of the
corresponding disease), g(S, I) is the influence of the number of susceptible and infected
in the information dynamics, p(M)S is the effect of information feedback on the disease
isolation rate, α is the rate of birth and/or natural death of every individual, γ is the re-
covery rate, ω is the death rate due to infection, τ is the delay of the effect of the feedback
of the information in the isolation policy of the susceptible to avoid the contagion of the
disease, and Ka(t – τ ) is the selected kernel of the delay. In this work, we use the weak ex-
ponential delay kernel Ka(t – τ ) = aeat , where a is the constant that represents the inverse
of the average delay of the information collected about the illness. With this choice, the
infinite-dimensional system (3) is equivalent to the following finite-dimensional system of
nonlinear ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = α(1 – S(t)) – βI(t)S(t) + ηA(t) – p(M)S(t),

A′(t) = p(M)S(t) – (η + α)A(t),

I ′(t) = βI(t)S(t) – (γ + ω + α)I(t),

R′(t) = γ I(t) – αR(t),

D′(t) = ωI(t),

M′(t) = ag(I) – aM(t).

(4)

We consider the following assumptions on the coverage function of the nonpharmaceuti-
cal intervention p(M):

• p(0) > 0, p(M) > 0 for all M > 0, and p′(M) > 0 for all M > 0;
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• for the function g , which characterizes the influence of the infected population on the
information, we suppose that g(0) = 0, g(I) > 0 for all I > 0, and g ′(I) > 0 for all I > 0.

3.1 Equilibrium points and basic replacements ratios
The system has a unique disease-free equilibrium (DFE)

P0 =
(
S∗, 1 – S∗, 0, 0, 0, 0

)
,

where S∗ = η+α

η+α+p(0) .
Now we define the basic reproduction number (epidemic threshold) of the system

R0 =
β

γ + ω + α

and the replacement ratio

R1 =
η + α

η + α + p(0)
,

which guarantees that there is always nonpharmaceutical intervention.

Theorem 3.1 The SAIRDM model admits two equilibrium points:
(a) the disease-free equilibrium P0, which always exists, and
(b) the endemic equilibrium P1, which exists if R0R1 > 1.

Proof The endemic equilibrium point is given by

P1 =
(

1
R0

,
p(g(I1))

(η + α)R0
, I1,

γ

α
I1, D∗, g(I1)

)

,

where D∗ = 1 – (S∗ + A∗ + I∗ + R∗). With S∗ = 1
R0

and S′ = 0 in the first equation of system
(3), we get a solution I1 of

(

1 –
1
R0

)

–
(

γ + ω + α

α

)

I1 =
p(g(I1))

(η + α)R0
.

Define

f1(I) =
(

1 –
1
R0

)

–
(

γ + ω + α

α

)

I, f2(I) =
p(g(I))

(η + α)R0
.

Therefore I1 is the solution of f1(I1) = f2(I1). Since f1(I) is decreasing and f2(I) is increasing,
there is only one solution; moreover,

f1(0) = 1 –
1
R0

>
p(0)

(η + α)R0
= f2(0) if R0R1 > 1,

and

f1(1) = –
1
R0

–
ω + α

α
<

p(g(1))
(η + α)R0

= f2(1).

Then there exists a unique solution I1 ∈< 0, 1 > if R0R1 > 1. �
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4 Local and global stability, Hopf bifurcation
In this section, we analyze the local and global stability of the disease-free equilibrium and
the global stability of the endemic equilibrium. We can check that the variables R and D
do not appear in the first three equations of the system.

Therefore, we can omit the last two equations of dynamical system (4) and focus on the
system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S′(t) = α(1 – S) – βI(t)S(t) + ηA(t) – p(M)S(t),

A′(t) = p(M)S(t) – (η + α)A(t),

I ′(t) = βI(t)S(t) – (γ + ω + α)I(t),

M′(t) = ag(I) – aM(t).

(5)

4.1 Local stability of the disease-free equilibrium
Let P0 be the disease-free equilibrium (DFE),

P0 =
(

α + η

α + η + p(0)
,

p(0)
α + η + p(0)

, 0, 0
)

.

Theorem 4.1 If R0R1 < 1, then the disease-free equilibrium P0 is locally stable.

Proof Linearizing the system at DFE for these infectious variables and substituting the
solution of the form X(t) = eλtv, v ∈ R4, into the matrix equation corresponding to the
system, we get the characteristic polynomial

p(λ) = det |λI – A|,

where A = J|P0 . This polynomial has the roots

λ1 = (ω + γ + α)(R0R1 – 1),

λ2 = –a,

and the other two are roots of the quadratic polynomial

λ2 + θλ + ω = 0,

where θ = p(0) + η + 2α and ω = α(p(0) + η + α). The root λ1 = (ω + γ + α)(R0R1 – 1) is
negative if R0R1 < 1, the root λ2 = –a < 0, and the roots of the polynomial λ2 + θλ + ω = 0
are always negative. �

4.2 Local stability and Hopf bifurcation of the endemic equilibrium
We have proved that the endemic equilibrium

P1 =
(

1
R0

,
p(g(I1))

(α + η)R0
, I1,

γ

α
I1, D∗, g(I1)

)

exists if R0R1 > 1.
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Theorem 4.2 If R0R1 > 1 and the coefficients Bi > 0, i = 2, 1, 0 (independent of the param-
eter a), then the endemic equilibrium P1 is locally and asymptotically stable.

Proof The characteristic equation corresponding to this equilibrium point is of the form

λ4 + b3λ
3 + b2λ

2 + b1λ + b0 = 0

with coefficients

b3 = a + α + � > 0,

b2 = (1 + a)(α + �) + βI1(η + ω + γ + α) > 0,

b1 = a(α� + βηI1 + �) + β(η + α)I1(ω + γ + α) > 0,

b0 = α
(
β(η + α)I1(ω + γ + α) + α�

)
> 0,

(6)

where � = η + α + βI1 + p(g(I1)) > 0 and � = (ω + γ + α)I1g ′(I1)p′(g(I1)) > 0. The positivity
of the bi rules out the possibility of positive real eigenvalues (Descartes’ theorem). Conse-
quently, the loss of stability can only occur via a Hopf bifurcation.

Since the value of the parameter a, which represents the inverse of the average delay of
the information collected about the disease, only affects the stability of the endemic point,
we will use this a as the bifurcation parameter. Define

C1 = α + � > 0,

C2 = c1 + βI1(η + ω + γ + α) > 0,

C3 = α� + βηI1 + � > 0,

C4 = β(η + α)I1(ω + γ + α) > 0.

By the Routh–Hurwitz theorem, if b3b2b1 – b2
1 – b0 > 0, then the endemic point is locally

and asymptotically stable. When observing the coefficients bi defined in (6), this last con-
dition is equivalent to the positivity of the cubic polynomial

f (a) = B3a3 + B2a2 + B1a + B0, (7)

where

B3 = C1C2 > 0,

B2 = C1C4 + C2
1C2 – C2

2 – 1,

B1 = C2C4 + C2
1C4 + C1C2

2 – 2C2C4 – 2C1b0,

B0 = C – 1C2C4 – C2
4 – C2

1b0.

Only the first coefficient is guaranteed to be positive, and the others are variable. There-
fore, if we require that the remaining Bi, i = 2, 1, 0, are positive, then the endemic point is
locally and asymptotically stable regardless of the delay, whereas if any of them is negative,
then we obtain the possible instability of the endemic point. �



López-Cruz Advances in Continuous and Discrete Models         (2022) 2022:41 Page 8 of 13

Theorem 4.3 If R0R1 > 1 and the coefficients Bi > 0, i = 2, 1, 0, then there exist two values
0 < a1 < a2 of the delay parameter a such that the endemic equilibrium P1 is unstable for
a ∈ (a1, a2), whereas it is locally asymptotically stable if a ∈ (0.a1) or a ∈ (a2,∞). At the
values a1 and a2, Hopf bifurcations occur.

Proof As B3 > 0, the cubic polynomial (7) has one negative real root, and if B0 > 0, then
the other two roots can be

• two real positive distinct roots, or
• one real positive root of multiplicity 2, or
• two complex roots.

In the last two cases, the endemic point is always locally asymptotically stable indepen-
dently of a. In the first case, since f (0) > 0, we have f (∞) > 0; the endemic equilibrium is
always locally asymptotically stable for both small and large values of information delay
parameter (this means large or small values of parameter a). Then there exist two positive
values a1 and a2 (a1 < a2) of the delay parameter a for the equation f (a) = 0, which deter-
mines two bifurcating values of the delay parameter a. In consequence, f (a) is positive for
0 < a < a1 and a > a2, which means that the endemic point is locally asymptotically stable,
whereas the endemic point is unstable for a ∈ [a1, a2].

Finally, the following transversality condition for a Hopf bifurcation is satisfied:

[
d(b3b2b1 – b2

1 – b0)
da

]

a=ai

=
[

df (a)
da

]

a=ai

�= 0. �

4.3 Global stability of the disease-free equilibrium
Theorem 4.4 If R0 < 1, then the disease-free equilibrium is globally and asymptotically
stable.

Proof The disease-free equilibrium P0 always exists. In the reduced system, defining φ(t) =
S(t) + A(t) + I(t) with derivative φ′(t) = S′(t) + A′(t) + I ′(t), we get

φ′(t) ≤ α – αφ(t).

By a comparison theorem for ODEs (Hale, 1969) we get that S + A + I ≤ 1. In consequence,
if we replace it in the infected population dynamics, then we obtain

I ′ ≤ I
[
β – (ω + γ + α)

]
.

As

R0 =
β

γ + ω + α
< 1,

this implies I(t) → 0 and S(t)+A(t) → 1. Therefore the disease-free equilibrium is globally
and asymptotically stable. �

5 Sensitivity analysis
Most of the parameters of the models can have uncertain values; this is known as the
uncertainty of the parameters [17, 18]. The best-known technique to detect uncertainty
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Figure 2 Sensitivity Analysis with (a)R0 and (b)R1 as the outputs. The input parameters [a] β ,γ ,ω,α and
[b] η,α,p(0) were chosen from a uniform distribution using Latin hypercube sampling and transforming both
class of parameters by partial rank correlation coefficient

is the Latin hypercube sampling (LHS). On the other hand, for those input parameters,
there can be output parameters. In this way the uncertainty analysis can be extended to
study the sensitivity analysis, that is, which output parameters are more sensitive to the
input parameters. To perform a sensitivity analysis, there are also many techniques; one
of them is called the partial rank correlation coefficient (PRCC).

We achieved a global analysis of sensitivity of input parameters β ,γ ,ω,α on the vari-
ation of the output parameter R0 and of η,α, p(0) on the variation of the output R1 in
accordance with [17, 18]. First, we get a sample of 5000 input parameters using LHS with
β ∼ Unif(0.5, 1), γ ∼ Unif(0.1, 0.99), ω ∼ Unif(0.1, 0.4), and α ∼ Unif(0.0000108, 0.123).
Figure 2 shows the PRCC obtained from the sensitivity analysis of the output parameter
R0. Increasing γ ,α, and ω leads to a decrease in R0, and with 93%, increasing the trans-
mission rate β promotes an increase in R0. With η ∼ Unif(0.000001, 1). Figure 2 shows the
PRCC of the output R1. Increasing p leads to a decrease in R1, and with 96.1%, increasing
the nonpharmaceutical intervention rate η promotes an increase in R1. In the same way,
increasing the transmission rate α promotes an increase of R1 with less percentage.

6 Simulations
In this section, we consider some approximations of the parameters according to Peru.
Suppose a constant population, the birth and natural death rates are equal, remain con-
stant in time with numerical value equal to the inverse of life expectancy at birth [19].
Here we consider the Peruvian life expectancy of 75 years [20]; in consequence,

α =
1

76 × 365
= 0.000036

(
days–1),

and the recovery rate is the inverse of the number of days that the infection lasts. In this
case, we will take measles as an example (it has seven days of infectivity), and therefore

γ =
1
7

= 0.143.

We consider the following assumptions
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Table 1 Description, values, and range of parameters of the SAIRDMmodel

Parameters Meaning Value Range Reference

α Birth and natural death rate 0.000036 0 Varying
β Transmission rate 0.95 (0.5, 1) Guessed
η Desertion of a nonpharmaceutical

intervention rate
0.00001, 0.3 – Varying

γ Recovery rate 1/7 (0.1, 0.99) Estimated
ω Death rate due to infection 0.028 – Varying
a Inverse of the average delay of the

information
0.00833, 0.9 (0.008, ∞) [13]

p Information-dependent
nonpharmaceutical intervention rate

0.75 (0.2, 1) Guessed

k Information coverage 0.8 (0.2, 1) [13]

Figure 3 Phase plane: Isolated (A)–Infected (I) with two different values of the delay parameter a:
(a) a = 0.00833, (b) a = 0.9

• the birth, death, isolation, desertion, infection, recovery, and death from infection
rates remain constant over time;

• the average number of days of information delay starts from the hypothetical case of
immediate information (τ = 0) to a delay of 120 days;

• the parameter values are taken in such a way that they show different scenarios.
For the following simulations, the values of the other parameters were mentioned in Ta-
ble 1.

For η = 0.00001 (low isolated desertion), the simulations in Fig. 3 correspond to the
dynamics of the evolution of a disease considering the nonpharmaceutical intervention
and the information index. We consider a total population of susceptible and only one in-
fected. According to the SAIRDM model, we can say that the infected and isolated human
population oscillates over time and tends to an equilibrium when the delay parameter a
is close to one. On the other hand, if the average delay of information is τ = 120 d, then
the infected population increases when the isolated population is lower, but when the iso-
lated population begins to increase, the infected population tends to decrease and seems
to tend to zero as the isolated population decreases. There exists more waves over time,
but the peaks are lower than the previous one.

In Fig. (4), for η = 0.3 (high isolated desertion) and a = 0.9 regarding the isolated hu-
man population that started with zero individuals, we observe that the isolated population
starts to increase reaching its maximum value approximately on day 12, with more than
14% of individuals to later descend until it seems to disappear. As the days go by (due to
the isolation process and the influence of index of information), the symptoms develop,
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Figure 4 Comparison of evolution of fraction of epidemic populations and information index with two
different values of the delay parameter a. Populations: (a) susceptible, (b) isolated, (c) infected, (d) recovered,
(e) dead, and (f) information index

becoming an infected population, which reaches the highest level approximately on day
12 with 50% of people infected, and then begins to decline until it is close to zero. Finally,
the number of recovered individuals increases progressively until day 38, after which it
starts to stabilize in approximately 78% of individuals.

The simulations in Fig. 4 of model (4) show the dynamics of evolution of the disease con-
sidering two different values of the delay parameter a, which shows the negative feedback
of information index into the isolation process (nonpharmaceutical intervention).

Finally, the simulations in Fig. 5 show the dynamics of evolution of all the epidemiolog-
ical populations and the information index when the value of the delay parameter varies.
We can check that the infected population tends to zero in different scenarios and also
that its maximum peak value reaches 50% of the total population in case a = 0.00833 and
39% in case a = 0.9. It means that if the information delay parameter a has a higher value,
then the percentage of infected population is lower (negative feedback).
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Figure 5 Evolution of fraction of epidemic populations (S – A – I – R – D) and information index (M). Cases:
(a) a = 0.00833, (b) a = 0.9

7 Conclusions
In this work, we consider the coupling SAIRD epidemic model with the information index
(negative feedback) to investigate the influence of the information in a nonpharmaceuti-
cal intervention. The delay, represented by the parameter a, identifies the inverse of the
time (in days) of delay of the information. We conclude that the fluctuating behavior of the
population with respect to the delay in the information affects the nonpharmaceutical in-
tervention and determines the decrease of the incidence rate; in consequence, the health
system is prepared to face the epidemic. The SAIRDM model considering the negative
feedback of the information identifies the influence of the nonpharmaceutical interven-
tion and desertion strategy in the spread of an infectious disease. There are some param-
eters in the model that determine the sensibility in the dynamics of the SAIRDM model.
Theoretically, we found a Hopf bifurcation for the endemic equilibrium determined by the
parameter a, which allows us to appreciate the switching on stability and instability of the
equilibrium. Finally, the perturbations of the basic SIR mathematical model responded to
multidisciplinary research questions.

Our future research would also devise a delay in the isolation rate, and the delay param-
eter would determine the chaotic nature of the disease propagation.
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