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Abstract
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1 Introduction
Many problems in physics, mechanics, and biology are described by degenerate parabolic
equations. For example, the evolutionary equation

ut – div
(
a(x)|∇u|p–2|∇u|) + f (x, t, u) = 0 (1)

may model the diffusion of a substance in water, soil, or air, heat flow in a material, or dif-
fusion of a population in a habitat. Since the media may not be homogenous, the equation
is governed by a diffusion coefficient a(x). When at some points the medium is perfectly
insulating, it is natural to assume a(x) = 0 at these points. In fact, certain composite mate-
rial can block the heat at certain points, or a diffusion of a population may degenerate in
some locations due to environmental heterogeneity and barriers [5, 7, 12]. In this paper,
we consider a more complicate evolutionary equation

vt = div
(
a(x)|v|α(x)|∇v|p(x)–2∇v

)
+

N∑

i=1

gi(x, t, v)
∂v
∂xi

+ d(x, t, v), (x, t) ∈ QT , (2)

with

v|t=0 = v0(x), x ∈ �, (3)

v(x, t) = 0, (x, t) ∈ ∂� × (0, T), (4)
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where � ⊂ R
N is a bounded domain and 0 < T < ∞, QT = � × (0, T), p(x) > 1 is a C1(�)

function, both gi(x, t, v) and d(x, t, v) are continuous on QT ×R, a(x) ∈ C(�) is a nonneg-
ative function. Since both a(x) and |v|α(x) may be degenerate, equation (2) is with double
degeneracy. Let us take a quick look at some of the progress that has been made.

If a(x) = 1, α(x) = α, and p(x) = p are positive constants, equation (2) becomes

vt = div
(|v|α|∇v|p–2∇v

)
+

N∑

i=1

gi(x, t, v)
∂v
∂xi

+ d(x, t, v), (5)

which is called a polytropic filtration equation with a convection term and a source term.
The well-posedness of this equation has been studied widely, one can refer to [6, 11, 14, 24]
and the references therein. If a(x) is a nonnegative function satisfying

a(x) > 0, x ∈ �, a(x) = 0, x ∈ ∂�, (6)

and α(x) ≡ α and p(x) = p are constants, d(x, t, u) = 0, then the stability of weak solutions
to equation (2) was studied recently in [25, 26].

Also, equation (2) is a simple version of the following equation:

vt = div
(
a(x, t, v)|∇v|p(x,t)–2∇v

)
+ f (x, t, v,∇v), (x, t) ∈ QT , (7)

which comes from many applied problems such as the electrorheological fluid theory, the
system and method for image depositing [1, 9, 13, 18, 20].

If 0 < a– ≤ a(x, t, v) ≤ a+ < ∞, f (x, t, v,∇v) = b(x, t)|u|σ (x,t)–2, the existence of local solu-
tions and the blow-up phenomena of equation (7) were studied in [3]. If a(x, t, v) = |v|α +d0,
d0 > 0, α ≥ 2, p(x) is continuous with the logarithmic modulus of continuity, f (x, t, v,∇v) =
f (x, t), then the existence and uniqueness of weak solutions were showed in [8]. However,
when a(x, t, v) ≥ 0, the uniqueness of weak solution remains open till today. Only when
a(x, t, v) = a(x)|v|α(x), some progress has been made by the author recently. Some details
are given in what follows.

If 0 ≤ α(x) ∈ C1
0(�) and p ≥ 2, the well-posedness problem to the following equation:

vt = div
(
a(x)|v|α(x)|∇v|p–2∇v

)
+ f (x, t, v,∇v), (x, t) ∈ QT , (8)

was studied in [27, 30]. Very recently, when α(x) ∈ C1
0(�) and p– = minx∈� p(x) ≥ 2, the

existence and uniqueness of weak solutions to the equation

vt = div
(
a(x)|v|α(x)|∇v|p(x)–2∇v

)
+ f

(
x, t, v, |∇v|), (x, t) ∈ QT ,

were proved in [22]. Naturally, there are some other restrictions imposed on f (x, t, v,∇v) or
f (x, t, v, |∇v|) in these papers, in particular, f (x, t, v,∇v) = f (x, t, v) > 0 when v < 0 in [28, 30],
f (x, t, v,∇v) =

∑N
i=1

∂bi(x,t,v)
∂xi

with ∂bi(x,t,·)
∂xi

≤ 0 in [27] and f (x, t, v, |∇v|) ≤ 0 in [22].
However, when α(x) = 0, p(x) = p, gi(x, t, v) = 0, i = 1, 2, . . . , N , and d(x, t, v) = |v|q–1v with

q > p + 1, the solution of equation (2) may blow up in finite time. So, there is only a local
weak solution to equation (2). In a word, compared with [22, 27, 28, 30], the main im-
provements of this paper lie in that the stability of weak solutions is proved when α(x) ≥ 0
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but without the assumption α(x) ∈ C1
0(�). Such an improvement is due to the novelty of

the classical trace of u ∈ inW 1,1
0 (�) being generalized to u ∈ W 1,1

loc (�)
⋂

L∞(�).
The contents are arranged as follows. In the first section, we have given some back-

ground. In Sect. 2, the definition of weak solution is introduced and the main results are
listed. In Sect. 3, Theorem 2 is proved. The stability theorems are proved in Sect. 4.

2 The definitions and the main results
To define the weak solution, we give a basic Banach space which can be found in [4]. For
every fixed t ∈ [0, T), define the Banach space

Vt(�) =
{

u(x, t) : u(x, t) ∈ L2(�)
⋂

W 1,1
0 (�),

∣
∣∇u(x, t)

∣
∣p(x) ∈ L1(�)

}
,

‖u‖Vt (�) = ‖u‖2,� + ‖∇u‖p(x),�,

and denote by V ′
t (�) its dual space. At the same time, define the Banach space

⎧
⎨

⎩

W(QT ) = {u : [0, T] → Vt(�)|u ∈ L2(QT ), |∇u|p(x) ∈ L1(QT ), u = 0 on � = ∂�},
‖u‖W(QT ) = ‖∇u‖p(x),QT + ‖u‖2,QT ,

and denote by W′(QT ) its dual space, and define the norm in W′(QT ) by

‖v‖W′(QT ) = sup
{〈v,φ〉 : φ ∈ W(QT ),‖φ‖W(QT ) ≤ 1

}
.

Definition 1 A function v(x, t) is said to be a weak solution of equation (2) with the initial
value (3) if

v ∈ L∞(QT ),
∂v
∂t

∈ W′(QT ), a(x)|v|α(x)|∇v|p(x) ∈ L1(QT ), (9)

∇v ∈ L∞(0, T ; Lp(x)
loc (�)

)
, (10)

and for any function ϕ ∈ C1
0(QT ),

∫∫

QT

(
∂v
∂t

ϕ + a(x)|v|α(x)|∇v|p(x)–2∇v∇ϕ

)

dx dt

=
N∑

i=1

∫∫

QT

gi(x, t, v)
∂v
∂xi

ϕ dx dt +
∫∫

QT

d(x, t, v)ϕ dx dt. (11)

The initial value (3) is satisfied in the sense

lim
t→0

∫

�

v(x, t)φ(x) dx =
∫

�

v0(x)φ(x) dx (12)

for any φ(x) ∈ C∞
0 (�).

This definition seems to have nothing to do with the boundary value condition (4) we
will specify later. We first give the existence theorem here.
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Theorem 2 Suppose that a(x) ∈ C1(�) satisfies (6), gi(x, t, s) and d(x, t, s) are C1 functions
on QT0 ×R,

∣
∣gi(x, t, s)

∣
∣≤ g(x, t)|s| α(x)

p(x) , i = 1, 2, . . . , N ,
∣
∣d(x, t, s)

∣
∣≤ d0|s|σ–1 + h(x, t), (13)

∫ T0

0

∫

�

(
g(x, t)p(x)

a(x)

) 1
p(x)–1

dx dt < ∞, (14)

where σ > 2 and d0 > 0 are constants, g(x, t) is a C1 function on QT0 and ‖h(x, t)‖L1(0,θ ;L∞(�)) ≤
c for some θ > T0. If

v0 ∈ L∞(�), a(x)|v0|α(x)|∇v0|p(x) ∈ L1(�), (15)

then equation (2) with the initial value (3) has a solution v(x, t) on � × [0, T0], where T0 is
a positive constant depending on δ, d0, ‖v0‖L∞(�), ‖h‖L1(0,θ ;L∞(�)).

Certainly, Theorem 2 only tells us the existence of the local solution. If α(x) = 0, a(x) = 1,
and p(x) = p is a constant, equation (2) becomes the well-known non-Newtonian fluid
equation, when gi(x, t, v) = 0 and |d(x, t, v)| ≤ c|v|p–1 +φ(x, t), φ ∈ Lr(QT ) with r > N+p

p , then
the existence of global solution was proved in [31], and the same conclusion was obtained
in [13] provided that p(x) > 1 is a continuous function. If gi(x, t, v) = 0, d(x, t, v) = d(x, t) ∈
L∞(QT ), the existence of global solution was proved in [4]. Moreover, if gi(x, t, v) = 0 and
d(x, t, v) is a Lipschitz function with d(x, t, v) > 0 when v < 0, the existence of global solution
was proved in [28, 30] recently. If there are not other restrictions on the growth order of
d(x, t, v), the weak solutions to equation (2) may blow up, one can refer to [3, 10] for details.

Let ϕ(x) ∈ C1(�) with

ϕ(x) = 0, x ∈ ∂�, ϕ(x) > 0, x ∈ �, (16)

and define

ϕλ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, ϕ(x) ≥ 2λ,
ϕ(x)–λ

λ
, λ ≤ ϕ(x) ≤ 2λ,

0, ϕ(x) ≤ λ,

for small enough positive constant λ. For simplicity, we call the function ϕ(x), which sat-
isfies (16), a weak characteristic function of �. Now, we can generalize the classical trace
of v ∈ W 1,1

0 (�) to that of v ∈ W 1,1
loc (�)

⋂
L∞(�) and specify the boundary value condition

(4) as follows.

Definition 3 The boundary value condition (4) is true in a general sense of trace if and
only if

lim sup
λ→0

1
λ

∫

Dλ\D2λ

|u|dx = 0, (17)

where Dλ = {x ∈ � : ϕ(x) > λ}. Moreover, for any �1 ⊂ ∂�, we define that

u = 0, x ∈ �1 ⊂ ∂�, (18)
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lim sup
λ→0

1
λ

∫

D1
λ

|u|dx = 0, (19)

where D1
λ ⊂ Dλ \ D2λ such that

lim
λ→0

D1
λ = �1.

Let

Gi(x, t, u) =
∫ u

0
gi(x, t, s) ds

and ϕ(x) ∈ C1(�) be a weak characteristic function of �. Then the partial boundary value
condition matching up with equation (2) can be imposed as

u(x, t) = 0, (x, t) ∈ �ϕ , (20)

where

�ϕ =

{

(x, t) ∈ ∂� × (0, T) :
N∑

i=1

gi(x, t, 0)ϕxi (x) > 0

}

. (21)

The main result of this paper is the following theorem.

Theorem 4 Let u(x, t) and v(x, t) be two solutions of equation (2) with the initial values
u0(x), v0(x) respectively and with the same partial boundary value condition (20). If d(x, t, v)
is a Lipschitz function, gi(x, t, ·) ∈ C1(QT ), then

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx, a.e. t ∈ [0, T). (22)

One can see that, since a(x) satisfies (6), ϕ(x) can be chosen as a(x), a(x)k , or e– 1
a(x) in

Theorem 4. Naturally, the analytical expression �ϕ in partial boundary value condition
(20) depends on the choice of ϕ. We conjecture that the best partial boundary value con-
dition matching up with equation (2) should be

u(x, t) = 0, (x, t) ∈ �1,

where �1 =
⋂

�ϕ and ϕ(x) is a weak characteristic function of �.

3 The proof of Theorem 2
Consider the initial-boundary value problem

vεt – div
((

a(x) + ε
)(|vε|α(x) + ε

)|∇vε|p(x)–2∇vε

)
–

N∑

i=1

gi(x, t, vε)
∂vε

∂xi

= d(x, t, vε), (x, t) ∈ QT , (23)

vε(x, t) = 0, (x, t) ∈ ∂� × (0, T), (24)
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vε(x, 0) = vε0(x), x ∈ �, (25)

where vε0 ∈ C∞
0 (�), ‖vε0‖L∞(�) ≤ ‖v0‖L∞(�), a(x)|∇vε0|p(x) is uniformly convergent to

a(x)|∇v0(x)|p(x) in L1(�).

Definition 5 A function v(x, t) ∈ W(QT )
⋂

L∞(0, T ; L2(�)) is said to be a weak solution
of problem (23)–(25) if

∂v
∂t

∈ W′(QT ),

and for any function ϕ ∈ C1
0(QT ),

∫∫

QT

(
∂v
∂t

ϕ +
(
a(x) + ε

)(|v|α(x) + ε
)|∇v|p(x)–2∇v∇ϕ

)

dx dt

=
∫∫

QT

[ N∑

i=1

gi(x, t, v)
∂v
∂xi

+ d(x, t, v)

]

ϕ dx dt. (26)

The initial value (24) is satisfied in the sense as (12).

Then, by a similar method as that in [3], we have the following theorem.

Theorem 6 If a(x) ∈ C1(�) satisfies (6), gi(x, t, s) and d(x, t, s) satisfy (13)–(14), there is a
weak solution vε of the initial boundary value problem (23)–(24) on � × [0, T∗), where

T∗ = sup
{
θ : ‖u‖∞,Qθ

< ∞}
. (27)

Firstly, we quote the following lemmas.

Lemma 7 If uε ∈ L∞(0, T ; L2(�))
⋂

W(QT ), ‖uεt‖W′(QT ) ≤ c, ‖∇(|uε|r–1uε)‖p,QT ≤ c, then
there is a subsequence of {uε} which is relatively compact in Ls(QT ) with s ∈ (1,∞). Here,
r ≥ 1, p > 1.

This lemma comes from [19, Sect. 8].

Lemma 8 Suppose that p(x) ∈ C(�) is local Hölder continuous, and denote that

p+ = max
x∈�

p(x), p– = min
x∈�

p(x).

Then the following facts are true.
(i) The space (Lp(x)(�),‖ · ‖Lp(x)(�)), (W 1,p(x)(�),‖ · ‖W 1,p(x)(�)) and W 1,p(x)

0 (�) are reflexive
Banach spaces.

(ii) p(x)-Hölder’s inequality. Let q(x) = p(x)
p(x)–1 . Then the conjugate space of Lp(x)(�) is

Lq(x)(�). For any u ∈ Lp(x)(�) and v ∈ Lq(x)(�), there holds

∣
∣
∣
∣

∫

�

uv dx
∣
∣
∣
∣≤ 2‖u‖Lp(x)(�)‖v‖Lq(x)(�).
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(iii)
If ‖u‖Lp(x)(�) = 1, then

∫
�

|u|p(x) dx = 1.
If ‖u‖Lp(x)(�) > 1, then ‖u‖p–

Lp(x)(�) ≤ ∫
�

|u|p(x) dx ≤ ‖u‖p+

Lp(x)(�).

If ‖u‖Lp(x)(�) < 1, then ‖u‖p+

Lp(x)(�) ≤ ∫
�

|u|p(x) dx ≤ ‖u‖p–

Lp(x)(�).

This lemma can be found in [9, 20] etc.
Secondly, we give the details of the proof of Theorem 2.

Proof of Theorem 2 According to Theorem 6, there is a weak solution vε of the initial
boundary value problem (23)–(24), and

‖vε‖∞,QT0
≤ c(T0),

where T0 < T∗ is a given positive constant, c(T0) is a constant that may depend on T0.
By multiplying (23) by vε , one has

1
2

∫

�

v2
ε dx +

∫ T0

0

∫

�

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x) dx dt

=
1
2

∫

�

v2
ε0 dx +

∫∫

QT0

d(x, t, vε)vε dx dt +
N∑

i=i

∫ T0

0

∫

�

gi(x, t, vε)vε

∂vε

∂xi
dx dt. (28)

Since

∣
∣gi(x, t, vε)

∣
∣≤ g(x, t)|vε|

α(x)
p(x) , i = 1, 2, . . . , N ,

and g(x, t) ∈ C(QT0 ) satisfies (13), then one has

∣
∣
∣
∣g

i(x, t, vε)vε

∂vε

∂xi

∣
∣
∣
∣≤

∣
∣
∣
∣g(x, t)|vε|

α(x)
p(x)

∂vε

∂xi

∣
∣
∣
∣≤ c(ε) + ε|v|α(x)|∇vε|p(x). (29)

By that |d(x, t, s)| ≤ d0|s|σ–1 + h(x, t), ‖h‖L1(0,θ ;L∞(�)) ≤ c, one has

∣
∣
∣
∣

∫∫

QT0

d(x, t, vε)vε dx dt
∣
∣
∣
∣≤

∫∫

QT0

[
d0|s|σ–1 + h(x, t)

]|vε|dx dt

≤ c(T0)
∫∫

QT0

[
d0|s|σ–1 + h(x, t)

]
dx dt

≤ c(T0). (30)

Then formulas (28),(29), and (30) imply

∫∫

QT0

a(x)|vε|α(x)|∇vε|p(x) dx dt ≤
∫∫

QT0

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x) dx dt

≤ c(T0), (31)
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accordingly, one has

∫∫

QT0

a(x)
∣
∣∇v

α(x)
p(x) +1
ε

∣
∣p(x) dx dt ≤ c

∫∫

QT0

a(x)
[∣
∣
∣
∣∇

α(x)
p(x)

∣
∣
∣
∣
∣
∣v

α(x)
p(x) +1
ε ln vε(x)

∣
∣

+
(

α(x)
p(x)

+ 1
)

v
α(x)
p(x)
ε |∇vε|

]p(x)

dx dt

≤ c + c
∫∫

QT0

a(x)|vε|α(x)|∇vε|p(x) dx dt

≤ c(T0). (32)

Now, for any u ∈ C1
0(QT0 ), ‖u‖W (QT0 ) = 1, one has

〈vεt , u〉 = –
∫∫

QT0

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε∇u dx dt

+
N∑

i=1

∫∫

QT0

gi(x, t, vε)
∂vε

∂xi
u dx dt +

∫∫

QT0

d(x, t, vε)u dx dt. (33)

Since gi(x, t, vε) and d(x, t, vε) satisfy (13)(14), by ‖vε‖∞,QT0
≤ c(T0), using the Hölder in-

equality, one obtains

∣
∣
∣
∣

∫∫

QT0

gi(x, t, vε)
∂vε

∂xi
u dx dt

∣
∣
∣
∣≤

∫∫

QT0

g(x, t)|vε|
α(x)
p(x) –1

∣
∣
∣
∣
∂vε

∂xi
u
∣
∣
∣
∣dx dt

≤ c(T0)
(∫∫

QT0

(
g(x, t)p(x)

a(x)

) 1
p(x)–1

dx dt
) 1

q1

≤ c(T0),

where q1 = maxx∈�
p(x)

p(x)–1 or minx∈�
p(x)

p(x)–1 according to (iii) of Lemma 8, and

∣
∣
∣
∣

∫∫

QT0

d(x, t, vε)u dx dt
∣
∣
∣
∣≤

∫∫

QT0

(
d0|vε|σ–1 + h(x, t)

)|u|dx dt ≤ c(T0).

By the above discussion, one has

∣
∣〈vεt , u〉∣∣≤ c(T0)

[∫∫

QT0

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x) dx dt

+
∫∫

QT0

(|u|p(x) + |∇u|p(x))dx dt + 1
]

≤ c(T0).

Since C1
0(QT0 ) is dense on W (QT0 ), one has

‖vεt‖W′(QT0 ) ≤ c(T0)
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and

∥
∥v

α(x)
p(x) +1
εt

∥
∥

W′(QT0 ) ≤ c(T0). (34)

If one denotes d(x) = dist(x, ∂�) as the distance function from the boundary ∂�, sets

�λ =
{

x ∈ � : d(x) > λ
}

for small λ > 0, and defines ϕ ∈ C1
0(�), 0 ≤ ϕ ≤ 1 such that

ϕ |�2λ
= 1, ϕ |�\�λ

= 0, (35)

then, for any ϕ ∈ C1
0(�) satisfying (35), 0 ≤ ϕ ≤ 1, one has

∥
∥
(
ϕv

α(x)
p(x) +1
ε

)
t

∥
∥

W′(QT0 ) ≤ c(λ, T0). (36)

Once again, since a(x) > 0 when x ∈ �, by (32), one has

∫∫

QT0

∣
∣∇(ϕv

α(x)
p(x) +1
ε

)∣
∣p(x) dx dt ≤ c(λ, T0)

(

1 +
∫ T

0

∫

Dλ

|∇vε|p(x) dx dt
)

≤ c(λ, T0), (37)

and so

∥
∥∇(ϕv

α(x)
p(x) +1
ε

)∥
∥

p–,QT0
≤ ∥
∥∇(ϕv

α(x)
p(x) +1
ε

)∥
∥

p(x),QT0
≤ c(T0). (38)

If one denotes v1ε = v
α(x)
p(x) +1
ε , then, from (36) and (38), Lemma 7 yields that ϕv1ε → ϕv1 a.e.

in QT . By the arbitrariness of ϕ, one has v1ε = v
α(x)
p(x) +1
ε → v1 a.e. in QT0 . By (12), v ∈ L∞(QT0 )

and

vε ⇀ v, weakly star in L∞(QT0 ). (39)

By the weak convergence theory, one has

v1 = v
α(x)
p(x) +1.

Thus, vε → v a.e. in QT0 , and then

gi(x, t, vε) → gi(x, t, v), d(x, t, vε) → d(x, t, v), a.e. in QT0 . (40)

Moreover, since a(x) ∈ C1(�) and a(x)|x∈� > 0, one has

∇v
α(x)
p(x) +1
ε ⇀ ∇v

α(x)
p(x) +1 in L1(0, T ; Lp(x)

loc (�)
)
. (41)



Zhan Advances in Continuous and Discrete Models         (2022) 2022:38 Page 10 of 18

Now, similar as the techniques used in [22, 27, 28, 30], if one chooses (v
α(x)
p(x) +1
ε – v

α(x)
p(x) +1)φ

as the test function where φ(x) ∈ C1
0(�), then there holds

∫ T0

0

∫

�

∂vε

∂t
(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)

φ dx dt

+
∫ T0

0

∫

�

φ(x)
(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε∇

(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)dx dt

+
∫ T0

0

∫

�

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε

(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)∇φ dx dt

–
N∑

i=1

∫ T0

0

∫

�

gi(x, t, vε)
∂vε

∂xi

(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)

φ dx dt

=
∫ T0

0

∫

�

d(x, t, vε)
(
v

α(x)
α(x) +1
ε – v

α(x)
α(x) +1)

φ dx dt. (42)

Since

∣
∣gi(x, t, vε)

∣
∣≤ g(x, t)|vε|

α(x)
p(x) , i = 1, 2, . . . , N ,

and using (14), it can be deduced that

∫ T0

0

∫

�

φ(x)a(x)|vε|α(x)|∇vε|p(x)∇vε∇v
α(x)
p(x) +1 dx dt ≤ c. (43)

By the arbitrariness of φ and |vε|α(x)|∇vε|p(x)–2∇vε ∈ L1(0, T0; L
p(x)

p(x)–1
loc (�)), one has

∇v ∈ L∞(0, T ; Lp(x)
loc (�)

)
. (44)

By this property, one can show that

gi(x, t, vε)
∂vε

∂xi
⇀ gi(x, t, v)

∂v
∂xi

in L1(QT0 ). (45)

The details are omitted here.
Thus, there are functions v(x, t) and ζi satisfying

v(x, t) ∈ L∞(QT0 ),
∣
∣ζi(x, t)

∣
∣ ∈ L1(0, T0; L

p(x)
p(x)–1 (�)

)

such that

vε ⇀ v, weakly star in L∞(QT0 ),

gi(x, t, vε) → gi(x, t, v), d(x, t, vε) → d(x, t, v), a.e. in QT0 ,

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε ⇀ �ζ , in L1(0, T0; L

p(x)
p(x)–1 (�)

)
.

Moreover, by the important property (44), it is not difficult to show that
∫∫

QT0

a(x)|v|α(x)|∇v|p(x)–2∇v · ∇ϕ dx dt =
∫∫

QT0

−→
ζ · ∇ϕ dx dt
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for any given function ϕ ∈ C1
0(QT0 ). Then v is a weak solution of equation (2) with the

initial value (3). �

4 The stability
For small η > 0, let

Sη(s) =
∫ s

0
hη(τ )dτ , hη(s) =

2
η

(

1 –
|s|
η

)

+
.

Certainly, hη(s) ∈ C(R) and

lim
η→0

Sη(s) = sgn s, lim
η→0

shη(s) = 0, lim
η→0

Hη(s) = |s|, (46)

where Hη(s) =
∫ s

0 Sη(τ )dτ . In this section, limλ→0 represents lim supλ→0.

Proof of Theorem 4 Let ϕ(x, t) = Sη(u – v)ϕλ(x) in (26) and denote Dλ = {x ∈ � : ϕ(x) ≥ λ}
for small enough λ. Then

∫ t

0

∫

�

∂(u – v)
∂t

ϕλ(x)Sη(u – v) dx dt

+
∫ t

0

∫

Dλ

a(x)ϕλ(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇(u – v)hη(u – v) dx dt

+
∫ t

0

∫

Dλ

a(x)ϕλ(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇(u – v)hη(u – v) dx dt

+
∫ t

0

∫

Dλ\D2λ

a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇ϕλSη(u – v) dx dt

+
∫ t

0

∫

Dλ\D2λ

a(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇ϕλSη(u – v) dx dt

–
N∑

i=1

∫ t

0

∫

Dλ

[
gi(x, t, u)uxi – gi(x, t, v)vxi

]
Sη(u – v)ϕλ(x) dx dt

=
∫ t

0

∫

Dλ

[
d(x, t, u) – d(x, t, v)

]
ϕλ(x)Sη

(
(u – v)

)
dx dt. (47)

The monotonicity of the p(x)-Laplacian operator yields

∫

Dλ

ϕλ(x)a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇(u – v)hη(u – v) dx ≥ 0. (48)

By the definition of ϕλ(x), there exists

lim
λ→0

lim
η→0

∫ t

0

∫

�

ϕλ

∂Hη(u – v)
∂t

dx dt

=
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx –

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx. (49)
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By that

∫

Dλ

a(x)|u|α(x)|∇u|p(x) dx ≤ c(λ),
∫

Dλ

a(x)|v|α(x)|∇v|p(x) dx ≤ c(λ),

using the Lebesgue dominated convergence theorem, one has

lim
η→0

∣
∣
∣
∣

∫

Dλ

ϕλ(x)a(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇(u – v)hη(u – v) dx

∣
∣
∣
∣

≤ lim
η→0

∫

Dλ

a(x)
∣
∣|u|α(x) – |v|α(x)∣∣||∇v|p(x)–1(|∇u| + |∇v|)hη(u – v) dx

≤ c lim
η→0

∫

Dλ

a(x)||u|α(x) – |v|α(x)||∇v|p(x)–1|∇u|hη(u – v) dx

+
∫

Dλ

a(x)
∣
∣|u|α(x) – |v|α(x)∣∣||∇v|p(x)hη(u – v) dx

≤ c lim
η→0

(∫

Dλ

a(x)
∣
∣|u|α(x) – |v|α(x)∣∣||∇v|p(x)hη(u – v) dx

) 1
q+

·
(∫

Dλ

a(x)||u|α(x) – |v|α(x)||∇u|p(x)hη(u – v) dx
) 1

p+

+ lim
η→0

∫

Dλ

a(x)
∣
∣|∇v|p(x)||u|α(x) – |v|α(x)∣∣|hη(u – v) dx

≤ c lim
η→0

(∫

D1λ

a(x)α(x)ξα(x)–1|∇v|p(x)∣∣(u – v)hη(u – v)
∣
∣dx

) 1
q+

·
(∫

D1λ

a(x)α(x)ξα(x)–1|∇u|p(x)∣∣(u – v)hη(u – v)
∣
∣dx

) 1
p+

+ lim
η→0

∫

D1λ

a(x)α(x)ξα(x)–1|∇v|p(x)∣∣(u – v)hη(u – v)
∣
∣dx

= 0, (50)

where D1λ = {x ∈ Dλ : α(x) �= 0, u(x) �= v(x)}, 0 < ξ ∈ (v, u), x ∈ D1λ is the mean value.
Since

∇ϕλ(x) = 0, x ∈ D2λ,

one has

∫

Dλ

a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇ϕλ(u – v)hη(u – v) dx

=
1
λ

∫

Dλ\D2λ

a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇ϕ(u – v)hη(u – v) dx

→ 0 (51)

as η → 0.
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Similarly, one has

lim
η→0

∫

Dλ

a(x)
(|u|α(x) – |u|α(x))|∇v|p(x)–2∇v∇ϕλ(u – v)hη(u – v) dx = 0. (52)

Moreover, for the sixth term on the left hand side of (47), by that

∂Gi(x, t, u)
∂xi

= gi(x, t, u)uxi +
∫ u

0

∂gi(x, t, s)
∂xi

ds,

one has
∫

Dλ

gi(x, t, u)uxi Sη(u – v)ϕλ(x) dx

=
∫

Dλ

[
∂Gi(x, t, u)

∂xi
–
∫ u

0

∂gi(x, t, s)
∂xi

ds
]

Sη(u – v)ϕλ(x) dx

= –
∫

Dλ

Gi(x, t, u)
[
hη(u – v)(u – v)xiϕλ(x) + Sη(u – v)ϕλxi (x)

]
dx

–
∫

Dλ

∫ u

0

∂gi(x, t, s)
∂xi

dsSη(u – v)ϕλ(x) dx (53)

and
∫

Dλ

gi(x, t, v)vxi Sη(u – v)ϕλ(x) dx

=
∫

Dλ

[
∂Gi(x, t, v)

∂xi
–
∫ v

0

∂gi(x, t, s)
∂xi

ds
]

Sη(u – v)ϕλ(x) dx

= –
∫

Dλ

Gi(x, t, v)
[
hη(u – v)(u – v)xiϕλ(x) + Sη(u – v)ϕλxi (x)

]
dx

–
∫

Dλ

∫ v

0

∂gi(x, t, s)
∂xi

dsSη(u – v)ϕλ(x) dx. (54)

Let (53) minus (54). Firstly, by the definition of ϕλ,

|uxi | ∈ L1(Dλ), |vxi | ∈ L1(Dλ), i = 1, 2, . . . , N ,

using the Lebesgue dominated convergence theorem, one has

lim
η→0

∫ t

0

∫

Dλ

[
Gi(x, t, u) – Gi(x, t, v)

]
hη(u – v)(u – v)xiϕλ(x) dx dt

= lim
η→0

∫ t

0

∫

Dλ

[
Gi(x, t, u) – Gi(x, t, v)

]
hη(u – v)(u – v)xiϕλ(x) dx dt = 0. (55)

Secondly, by the partial boundary value condition (20)–(21), one has

lim
λ→0

lim
η→0

∫ t

0

∫

Dλ\D2λ

N∑

i=1

[
Gi(x, t, u) – Gi(x, t, v)

]
Sη(u – v)ϕλxi (x) dx dt

= lim
λ→0

lim
η→0

∫ t

0

1
λ

∫

Dλ\D2λ

N∑

i=1

[
Gi(x, t, u) – Gi(x, t, v)

]
Sη(u – v)ϕxi (x) dx dt
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= lim
λ→0

∫ t

0

1
λ

∫

Dλ\D2λ

N∑

i=1

gi(x, t, ξ )|u – v|ϕxi (x) dx dt

≤ lim
λ→0

∫ t

0

1
λ

∫

Dλ\D2λ
⋂{x:

∑N
i=1 gi(x,t,ξ )ϕxi (x)>0}

|u – v|
N∑

i=1

gi(x, t, ξ )ϕxi (x) dx dt

=
∫ t

0

∫

∂�
⋂{x∈∂�:

∑N
i=1 gi(x,t,0)ϕxi (x)>0}

|u – v|
N∑

i=1

gi(x, t, 0)ϕxi (x) dx dt

= 0. (56)

Thus, it can be deduced that

lim
λ→0

lim
η→0

∫ t

0

∫

�

[
gi(x, t, u)uxi – gi(x, t, v)vxi

]
Sη(u – v)ϕλ(x) dx dt

= lim
λ→0

lim
η→0

∫ t

0

∫

�

[
Gi(x, t, u) – Gi(x, t, v)

]

× [
hη(u – v)(u – v)xiϕλ(x) + Sη(u – v)ϕλxi (x)

]
dx dt

– lim
λ→0

lim
η→0

∫ t

0

∫

�

∫ u

v

∂gi(x, t, s)
∂xi

dsSη(u – v)ϕλ(x) dx dt

≤ c
∫

�

|u – v|dx. (57)

Thirdly,

lim
λ→0

lim
η→0

∣
∣
∣
∣

∫ t

0

∫

�

[∫ u

0

∂gi(x, t, s)
∂xi

ds –
∫ v

0

∂gi(x, t, s)
∂xi

ds
]

ϕλ(x)Sη(u – v) dx dt
∣
∣
∣
∣

≤ c
∫ t

0

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx dt. (58)

At last, by that d(x, t, s) is a Lipschitz function, we have

lim
λ→0

lim
η→0

∣
∣
∣
∣

∫ t

0

∫

�

[
d(x, t, u) – d(x, t, v)

]
ϕλ(x)Sη(u – v) dx dt

∣
∣
∣
∣

≤ c
∫ t

0

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx dt.

(59)

After letting η → 0 in (47), let λ → 0. By (49)–(59), we have

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx + c

∫ t

0

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx dt,

the well-known Gronwall inequality yields

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx. �
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5 Conclusion and a simple comment
It is well known that, in order to study the well-posedness problem of a polytropic filtration
equation

vt = div
(|v|α|∇v|p–2∇v

)
+ f (x, t, v,∇v), (x, t) ∈ QT , (60)

one generally transfers it to the following type:

(|u|β–1u
)

t = δ div
(|∇u|p–2∇u

)
, (x, t) ∈ QT , (61)

as [6, 21], where β = (p – 1)(α + p – 1)–1, δ = βp–1. Then the methods and techniques used
in the study of the well-posedness of non-Newtonian fluid equations may be valid. But,
since equation (2) contains the nonlinear term |v|α(x) and the variable exponent p(x), to
transfer equation (2) to another equation similar to equation (61) is impossible. At the
same time, compared with our previous works [27, 28, 30], the key assumption α(x) ∈
C0(�) in [27, 28, 30] has been weakened to α(x) ∈ C(�). Moreover, the classical trace of
u ∈ W 1,1

0 (�) is generalized to u ∈ W 1,1
loc (�)

⋂
L∞(QT ), and basing on such a generalization,

a reasonable partial boundary value condition is found to match up with equation (2).
The methods used to prove the stability of the weak solutions also are valid to prove the
corresponding stability theorems related to the degenerate parabolic equation appearing
in [2, 22, 27, 28, 30].

At the end of the paper, we give a simple comment on the definition of the trace.
For a linear degenerate elliptic equation [15–17]

N+1∑

r,s=1

ars(x)
∂2u

∂xr∂xs
+

N+1∑

r=1

br(x)
∂u
∂xr

+ c(x)u = f (x), x ∈ �̃ ⊂R
N+1,

it is well known that an appropriate partial boundary condition is

u|∑2
⋃∑

3 = g(x). (62)

Here, {ns} is the unit inner normal vector of ∂�̃ and

�2 =
{

x ∈ ∂�̃ : arsnrns = 0,
(
br – ars

xs

)
nr < 0

}
,

�3 =
{

x ∈ ∂�̃ : arsnsnr > 0
}

.

It means that if the matrix ((ars)) is positive definite, then condition (62) is just the usual
Dirichlet boundary condition. Thus, for a classical parabolic equation

ut =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, t)
∂u
∂xi

– c(x, t)u + f (x, t), (63)

when the matrix ((aij)) is positive definite, then we should impose the following initial-
boundary condition:

u(x, 0) = u0(x), x ∈ �, (64)

u(x, t) = g(x, t), (x, t) ∈ ∂� × [0, T). (65)
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Naturally, the solutions of equations (60) and (63) are the classical solutions, and con-
ditions (61)(65) are true in the sense of continuity. However, for nonlinear degenerate
parabolic equations, the solutions generally are in a weak sense, the boundary value condi-
tion cannot be true in the sense of continuity. Moreover, since C∞

0 (�) is dense in a Sobolev
space W 1,p

0 (�), the trace of f (x) ∈ W 1,p
0 (�) on the boundary ∂� is defined as the limit of a

sequence fε(x) as

f (x)|x∈∂� = lim
ε→0

fε(x)|x∈∂� = 0. (66)

If the weak solution of a nonlinear equation belongs to a Sobolev space W 1,p
0 (�), then the

Dirichlet boundary value condition is true in the sense of (66). Actually, let BV(�) be the
BV function space, i.e., | ∂f

∂xi
| is a regular measure, and

BV(�) =
{

f (x) :
∫

�

∣
∣
∣
∣
∂f
∂xi

∣
∣
∣
∣ < c, i = 1, 2, . . . , N

}

.

Then the BV function space is the weakest space such that the trace of u ∈ BV(�) can be
defined as (66) (when u = 0 on the boundary ∂�).

If a weak solution of a nonlinear equation does not belong to a Sobolev space W 1,p
0 (�),

how to impose a suitable boundary condition has been an important and difficult problem
for a long time. A typical example is evolutionary p-Laplacian equations of the form

∂u
∂t

– div
(
α(x)|∇u|p–2∇u

)
– bi(x)Diu + c(x, t)u = f (x, t), (x, t) ∈ QT , (67)

where α(x) ∈ C(�), α(x) > 0 in � but may be equal to 0 on the boundary ∂�. The authors
of [23] classified the boundary ∂� into three parts: the nondegenerate boundary �3,

�3 =
{

x ∈ ∂� : α(x) > 0
}

,

the weakly degenerate boundary

�4 =
{

x ∈ ∂� : α(x) = 0, there exists r > 0, such that
∫

�
⋂

Br (x)
a(y)– 1

p–1 dy < +∞
}

,

and the strongly degenerate boundary

�0 = ∂� \ (�3 ∪ �4) =
{

x ∈ ∂� : for any small r > 0,
∫

�
⋂

Br(x)
a(y)– 1

p–1 dy = +∞
}

,

where Br(x) = {y : d(x, y) < r}. Denote by B the closure of the set C∞
0 (QT ) with respect to

the norm

‖u‖B =
∫∫

QT

a(x)
(∣
∣u(x, t)

∣
∣p +

∣
∣∇u(x, t)

∣
∣p
)

dx dt, u ∈ B.

In [23], the trace of u ∈ B, u(x, t) = 0 on the boundary is defined as

ess sup lim
λ→0

∫

{x∈∂�λ :
∑N

i=1 bi(x)ni(x)<0}
u2

N∑

i=1

bi(x)ni(x) dσ = 0, (68)

where ess sup limλ→0 f (λ) = infδ>0{ess sup{f (λ) : |λ| < δ}} is the super limit.
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Meanwhile, by defining

�0 =

{

x ∈ �0 :
N∑

i=1

bi(x)ni(x) = 0

}

,

�1 =

{

x ∈ �0 :
N∑

i=1

bi(x)ni(x) > 0

}

,

and

�2 =

{

x ∈ �0 :
N∑

i=1

bi(x)ni(x) < 0

}

,

they imposed a partial boundary value condition

u(x, t) = 0, (x, t) ∈
(
�2

⋃
�3

⋃
�4

)
× (0, T), (69)

where �n = {ni(x)} is the inner normal vector of ∂�.
Along this way, the author of this paper has given another generalization of the trace to

the functional space L∞(0, T ; W 1,p
loc (�)) in [29] recently. However, such a generalization of

the trace is based on the convection term bi(x)Diu. Once a nonlinear evolutionary equa-
tion is without a convection term, for example, if considering the equation

vt = div
(
a(x)|v|α(x)|∇v|p(x)–2∇v

)
+ f (x, t, v), (x, t) ∈ QT , (70)

then the definition of (68) cannot be used. On the other hand, the general trace defined as
Definition 3 is valid for equation (70) and any other equations appearing in this paper. So,
we think the trace defined as Definition 3 is more natural and novel.
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