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Abstract
In this paper, we are concerned with the oscillation of solutions to a class of
fourth-order delay differential equations with p-Laplacian like operators
(r(t)|x′′′(t)|p1–2x′′′(t))′ + q(t)|x(τ (t))|p2–2x(τ (t)) = 0 and
(r(t)|x′′′(t)|p1–2x′′′(t))′ + σ (t)|x′′′(t)|p1–2x′′′(t) + q(t)|x(τ (t))|p2–2x(τ (t)) = 0. New oscillation
criteria are presented by the comparison technique and employing the Riccati
transformation. Moreover, our results are an extension and complement to previous
results in the literature. Two examples are shown to illustrate the conclusions.

Keywords: Oscillation; Fourth-order; Delay differential equations; p-Laplacian like
operators

1 Introduction
In this work, we investigate the oscillation of solutions to a class of fourth-order half-linear
differential equations with p-Laplacian like operators
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under the condition
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Also, we establish new criteria for the oscillatory behavior of fourth-order differential
equations with middle term
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Throughout this paper, we assume that pi > 1, i = 1, 2, are real numbers and j ≥ 1,
r, σ , q ∈ C([t0,∞), [0,∞)), r(t) > 0, q(t) > 0, r′(t) + σ (t) ≥ 0, τ (t) ∈ C([t0,∞),R), τ (t) ≤ t,
limt→∞ τ (t) = ∞.

Definition 1.1 A nontrivial solution x of (1) and (3) is termed oscillatory or nonoscillatory
according to whether it does or does not have infinitely many zeros.

Definition 1.2 Equations (1) and (3) are called oscillatory if all their solutions are oscil-
latory.

Half-linear delay differential equations arise in a variety of phenomena including mixing
liquids, economics problems, biology, medicine, physics, engineering and automatic con-
trol problems, as well as vibrational motion in flight, and human self-balancing, see [1–6].
In particular, differential equations with p-Laplacian like operators, as the classical half-
linear or Emden–Fowler differential equations, have numerous applications in the study of
non-Newtonian fluid theory, porous medium problems, chemotaxis models, etc.; see [7–
10]. We can also refer to [11–13]for models from mathematical biology where oscillation
and/or delay actions may be formulated by means of cross-diffusion terms.

In what follows, we state some background details that motivate the analysis of (1) and
(3). In recent years, numerous significant results for the oscillation of delay differential
equations have been shown in [14–26].

Chiu and Li [4] considered the oscillatory behavior of a class of scalar advanced and
delayed differential equations with piecewise constant generalized arguments, which ex-
tended the theory of functional differential equations. The authors in [27–34] studied the
asymptotic properties of different orders of some differential equations. For more details
on this theory, we refer the reader to the papers [35–43].

In 2014, Li et al. [44] presented some open problems for the study of qualitative prop-
erties of solutions to differential equations, and the authors used the Riccati technique to
find oscillation conditions for the studied equations.

Zhang et al. [45] investigated a higher-order half-linear/Emden–Fowler delay equation
with p-Laplacian like operators
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In particular, the authors in [46] used the integral average technique and obtained several
oscillation criteria of the delay equation
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where κ is even and under the condition
∫ ∞

υ0

1
r1/(p–1)(s)

ds = ∞.

The motivation for this article is to continue the previous works [23, 31].
On the basis of the above discussion, we will establish criteria for the oscillation of (1)

and (3) by Riccati and comparison techniques under (2) and (4). Finally, two examples are
presented to show the significance of the conclusions.
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2 Auxiliary results
To establish oscillation criteria for (1) and (3), we give the following lemmas in this section.

Lemma 2.1 ([33]) Let h ∈ Cn([t0,∞), (0,∞)). Suppose that h(n)(t) is of a fixed sign on
[t0,∞), h(n)(t) not identically zero and that there exists t1 ≥ t0 such that, for all t ≥ t1,

h(n–1)(t)h(n)(t) ≤ 0.

If we have limt→∞ h(t) �= 0, then there exists tλ ≥ t0 such that

h(t) ≥ λ

(n – 1)!
tn–1∣∣h(n–1)(t)

∣∣

for every λ ∈ (0, 1) and t ≥ tλ.

Lemma 2.2 ([32]) If the function x satisfies x(i)(t) > 0, i = 0, 1, . . . , n, and x(n+1)(t) < 0, then

x(t)
tn/n!

≥ x′(t)
tn–1/(n – 1)!

.

Lemma 2.3 ([34]) Let V > 0. Then

Uu – Vu(κ+1)/κ ≤ κκ

(κ + 1)κ+1 Uκ+1V –κ . (5)

Lemma 2.4 Let (2) hold. If x is an eventually positive solution of (1), then x′ > 0 and x′′′ > 0.

Proof The proof is obvious and therefore is omitted. �

Lemma 2.5 If

∫ ∞

t0

(
Mp2–p1β(s)q(s)

τ 3(p2–1)(s)
s3κ

–
2p1–1

p1p1

r(s)(β ′(s))p1

μp1–1s2(p1–1)βp1–1(s)

)
ds = ∞ (6)

for some μ ∈ (0, 1), then x′′ < 0.

Proof Let x′′(t) > 0. From Lemmas 2.2 and 2.1, we find

x(τ (t))
x(t)

≥ τ 3(t)
t3 (7)

and

x′(t) ≥ μ

2
t2x′′′(t). (8)

Let

ζ (t) := β(t)
r(t)(x′′′(t))p1–1

xp1–1(t)
> 0. (9)
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From (7), (8), and (9), we find

ζ ′(t) ≤ β ′(t)
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ζ 1+(1/(p1–1))(t). (10)

Since x′(t) > 0, there exist t2 ≥ t1 and a constant M > 0 such that x(t) > M for all t ≥ t2.
Using inequality (5) with U = β ′/β , V = κμt2/(2r1/κ (t)β1/κ (t)) and u = ζ , we get

ζ ′(t) ≤ –Mp2–p1β(t)q(t)
τ 3(p1–1)(t)
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pp1
1

r(t)(β ′(t))p1
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.

This implies that
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which contradicts (6). The proof is complete. �

For convenience, we denote
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2
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where μ2 ∈ (0, 1).
We shall establish oscillation conditions for (3) by converting into the form (1). It is not

difficult to see that
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3 Main results
In this section, we establish oscillation criteria for (1) and (3) by the Riccati transformation
and comparison technique.

Theorem 3.1 If the equation

η′(t) +
λp2–1

6p2–1
qi(t)τ 3(p2–1)(t)

r(p2–1)/(p1–1)(τ (t))
η(p2–1)/(p1–1)(τ (t)

)
= 0 (11)

is oscillatory, then (1) is oscillatory.

Proof Let (1) have a nonoscillatory solution in [t0,∞). Then there exists t1 ≥ t0 such that
x(t) > 0 and x(τi(t)) > 0 for t ≥ t1. Let

η(t) := r(t)
(
x′′′(t)

)p1–1 > 0 [from Lemma 2.4],

which with (1) gives

η′(t) + q(t)xp2–1(τ (t)
)

= 0. (12)

Since x is positive and increasing, we see limt→∞ x(t) �= 0. So, using Lemma 2.1, we find

xp2–1(τ (t)
) ≥ λp2–1

6p2–1 τ 3(p2–1)(t)
(
x′′′(τ (t)

))p2–1 (13)

for all λ ∈ (0, 1). By (12) and (13), we see that

η′(t) +
λp2–1

6p2–1 qi(t)τ 3(p2–1)(t)
(
x′′′(τ (t)

))p2–1 ≤ 0.

So, η is a positive solution of the inequality

η′(t) +
λp2–1

6p2–1
q(t)τ 3(p2–1)(t)

r(p2–1)/(p1–1)(τ (t))
η(p2–1)/(p1–1)(τ (t)

) ≤ 0.

By using [40, Theorem 1], we find that (11) also has a positive solution, which is a contra-
diction. The proof is complete. �

Corollary 3.2 Let p2 = p1 and (2) hold. If

lim inf
t→∞

∫ t

τ (t)

λp2–1

6p2–1
q(s)τ 3(p2–1)(s)

r(p2–1)/(p1–1)(τ (s))
ds >

1
e

, (14)

then (1) is oscillatory.

Theorem 3.3 Let p2 ≥ p1 and (6) hold for some μ ∈ (0, 1). If

u′′(t) + Mp2–p1 R̃(t)u(t) = 0 (15)

is oscillatory, then (1) is oscillatory.



Bazighifan et al. Advances in Continuous and Discrete Models         (2022) 2022:24 Page 6 of 12

Proof Assume to the contrary that (1) has a nonoscillatory solution in [t0,∞). Without
loss of generality, we only need to be concerned with positive solutions of equation (1).
Then there exists t1 ≥ t0 such that x(t) > 0 and x(τi(t)) > 0 for t ≥ t1. From Lemmas 2.2
and 2.4, we have that

x′(t) > 0, x′′(t) < 0 and x′′′(t) > 0 (16)

for t ≥ t2, where t2 is sufficiently large. Now, integrating (1) from t to l, we have

r(l)
(
x′′′(l)

)p1–1 = r(t)
(
x′′′(t)

)p1–1 –
∫ l

t
q(s)xp2–1(τ (s)

)
ds. (17)

Using Lemma 3 in [34] with (16), we get

x(τ (t))
x(t)

≥ λ
τ (t)

t
,

which with (17) gives

r(l)
(
x′′′(l)

)p1–1 – r(t)
(
x′′′(t)

)p1–1 + λp2–1
∫ l

t
qi(s)

(
τ (s)

s

)p2–1

xp1–1(s) ds ≤ 0.

It follows, by x′ > 0, that

r(l)
(
x′′′(l)

)p1–1 – r(t)
(
x′′′(t)

)p1–1 + λp2–1xp1–1(t)
∫ l

t
q(s)

(
τ (s)

s

)p2–1

ds ≤ 0. (18)

Taking l → ∞, we have

–r(t)
(
x′′′(t)

)p1–1 + λp2–1xp1–1(t)
∫ ∞

t
q(s)

(
τ (s)

s

)p2–1

ds ≤ 0,

that is,

x′′′(t) ≥ λ(p2–1)/(p1–1)

r1/(p1–1)(t)
x(p2–1)/(p1–1)(t)

(∫ ∞

t
q(s)

(
τ (s)

s

)p2–1

ds
)1/(p1–1)

.

Integrating the above inequality from t to ∞, we obtain

–x′′(t) ≥ λ(p2–1)/(p1–1)x(p2–1)/(p1–1)(t)
∫ ∞

t

(
1

r(η)

∫ ∞

η

q(s)
(

τi(s)
s

)p2–1

ds
)1/(p1–1)

dη,

hence

x′′(t) ≤ –R̃(t)x(p2–1)/(p1–1)(t). (19)

Letting

φ(t) =
x′(t)
x(t)

,
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then φ(t) > 0 for t ≥ t1 and

φ′(t) =
x′′(t)
x(t)

–
(

x′(t)
x(t)

)2

.

By using (19) and the definition of φ(t), we see that

φ′(t) ≤ –R̃(t)
x(p2–1)/(p1–1)(t)

x(t)
– φ2(t). (20)

Since x′(t) > 0, there exists a constant M > 0 such that x(t) ≥ M for all t ≥ t2. Then (20)
becomes

φ′(t) + φ2(t) + Mp2–p1 R̃(t) ≤ 0. (21)

From [39], we obtain that (15) is nonoscillatory if and only if there exists t3 > max{t1, t2}
such that (21) holds, which is a contradiction. Theorem is proved. �

Theorem 3.4 Let p2 ≥ p1, τ ′
i (t) > 1 and (6) hold for some μ ∈ (0, 1). If

(
1

τ ′(t)
u′(t)

)′
+ M(p2–1)/(p1–2)R(t)u(t) = 0 (22)

is oscillatory, then (1) is oscillatory.

Proof From the proof of Theorem 3.3, we find that (17) holds. So, it follows from τ ′
i (t) ≥ 0

and x′(t) ≥ 0 that

r(l)
(
x′′′(l)

)p1–1 – r(t)
(
x′′′(t)

)p1–1 + xp2–1(τ (t)
)∫ l

t
q(s) ds ≤ 0. (23)

Thus, (16) becomes

x′′(t) ≤ –R(t)x(p2–1)/(p1–1)(τi(t)
)
. (24)

Letting

δ(t) =
x′(t)

x(τ (t))
, (25)

then δ(t) > 0 for t ≥ t1, and

δ′(t) =
x′′(t)

x(τ (t))
–

x′(t)
x2(τ (t))

x′(τ (t)
)
τ ′(t)

≤ x′′(t)
x(τ (t))

– τ ′(t)
(

x′(t)
x(τ (t))

)2

.

From (24) and (25), we find that

δ′(t) + M(p2–1)/(p1–2)R(t) + τ ′(t)δ2(t) ≤ 0. (26)
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From [39], we find that (22) is nonoscillatory if and only if there exists t3 > max{t1, t2} such
that (26) holds, which is a contradiction. Theorem is proved. �

Corollary 3.5 Let p2 = p1 and (6) hold. If

lim
t→∞

1
H(t, t0)

∫ t

t0

(
H(t, s)̃R(s) –

1
4

h2(t, s)
)

ds = ∞

or

lim inf
t→∞ t

∫ ∞

t
R̃(s) ds >

1
4

, (27)

then (1) is oscillatory.

Corollary 3.6 Let p2 = p1 and (6) hold. If ε ∈ (0, 1/4] such that

t2R̃(s) ≥ ε

and

lim sup
t→∞

(
tε–1

∫ t

t0

s2–εR̃(s) ds + t1–̃ε

∫ ∞

t
s̃εR̃(s) ds

)
> 1,

where ε̃ = 1
2 (1 –

√
1 – 4ε), then (1) is oscillatory.

Corollary 3.7 Let p1 = p2 and (4) hold. If

lim inf
t→∞

∫ t

τ (t)

λp2–1

6p2–1
ϑt0 (s)q(s)τ 3(p2–1)

i (s)
ϑ

(p2–1)/(p1–1)
t0 (τ (s))r(p2–1)/(p1–1)(τ (s))

ds >
1
e

,

then (3) is oscillatory.

Corollary 3.8 Let p1 = p2, (4), and

∫ ∞

t0

(
Mp2–p1β(s)ϑt0 (s)q(s)

τ 3κ (s)
s3κ

–
2p1–1

p1p1

r(s)(β ′(s))p1

μp1–1s2(p1–1)βp1–1(s)

)
ds = ∞, (28)

hold for some μ ∈ (0, 1). If

lim
t→∞

1
H(t, t0)

∫ t

t0

(
H(t, s)̂R(s) –

1
4

h2(t, s)
)

ds = ∞

or

lim inf
t→∞

∫ ∞

t
R̂(s) ds >

1
4

,

then (3) is oscillatory.
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Corollary 3.9 Let p1 = p2 and (28) hold. If ε ∈ (0, 1/4] such that

t2R̂(s) ≥ ε

and

lim sup
t→∞

(
tε–1

∫ t

t0

s2–εR̂(s) ds + t1–̃ε

∫ ∞

t
s̃εR̂(s) ds

)
> 1,

where ε̃ is defined as in Corollary 3.6, then (3) is oscillatory.

4 Examples and discussion
Two examples are presented to show the applications of our results. The first example is
given to demonstrate Corollaries 3.2 and 3.5.

Example 4.1 For t ≥ 1, consider the equation

(
t3(x′′′(t)

)3)′ +
q0

t7 x3(γ t) = 0, (29)

we see that p1 = p2 = 4, r(t) = t3, τ (t) = γ t and q(t) = q0/t7, γ ∈ (0, 1] and q0 > 0. So, we
obtain

R̃(t) = λ

(
q0

6

)1/3

γ
1

2t2 .

By Corollary 3.2 and Corollary 3.5, equation (29) is oscillatory if

q0 >
63

e(ln 1
γ

)γ 6
,

q0 >
(

34

2

)
1
γ 9 ,

and

q0 > 6
(

1
4γ

)3

,

respectively. Thus, equation (29) is oscillatory if

q0 > max

{(
34

2

)
1
γ 9 , 6

(
1

4γ

)3}
=

(
34

2

)
1
γ 9 . (30)

Now, we give the second example to demonstrate Corollary 3.8.

Example 4.2 Consider the equation

(
t3(x′′′(t)

)3)′ +
(
x′′′(t)

)3 +
q0

t5 x3(t/2) = 0, t ≥ 1, q0 > 0. (31)
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Let p1 = p2 = 4, r(t) = t3, σ (t) = 1, τ (t) = t/2, and q(t) = q0/t5. Thus, it is easy to verify that

∫ ∞

t0

[
1

r(s)
exp

(
–

∫ s

t0

σ (η)
r(η)

dx
)]1/p1–1

ds

=
∫ ∞

t0

[
1
s3 exp

(
–

∫ s

t0

1
s3 dx

)]1/3

ds = ∞.

Using Corollary 3.8, equation (31) is oscillatory.

5 Conclusion
The oscillation conditions of the fourth-order differential equations with p-Laplacian like
operators are obtained in this study. In order to improve and simplify prior results in the
literature, we expanded the results in [23, 31] to fourth-order equations and used the Ric-
cati transformation and comparison techniques. It is interesting to extend our results to
even-order damped differential equations with p-Laplacian like operators

(
r(t)

(
x(κ–1)(t)

)p–1)′ + σ (t)
∣
∣x′′′(t)

∣
∣p1–2x′′′(t) + q(t)f

(
x
(
τ (t)

))
= 0

under the condition

∫ ∞

t0

[
1

r(s)
exp

(
–

∫ s

t0

σ (η)
r(η)

dx
)]1/p1–1

ds < ∞.
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