
Advances in Continuous
and Discrete Models

Yatakoat et al. Advances in Continuous and Discrete Models         (2022) 2022:25 
https://doi.org/10.1186/s13662-022-03698-5

R E S E A R C H Open Access

On some accelerated optimization
algorithms based on fixed point and
linesearch techniques for convex
minimization problems with applications
Pornsak Yatakoat1, Suthep Suantai2,3 and Adisak Hanjing4*

*Correspondence:
adisak_h@cmu.ac.th
4Department of Science and
Mathematics, Rajamangala
University of Technology Isan Surin
Campus, Surin, Thailand
Full list of author information is
available at the end of the article

Abstract
In this paper, we introduce and study a new accelerated algorithm based on
forward–backward and SP-algorithm for solving a convex minimization problem of
the sum of two convex and lower semicontinuous functions in a Hilbert space. Under
some suitable control conditions, a weak convergence theorem of the proposed
algorithm based on a fixed point is established. Moreover, we choose the stepsize of
our algorithm which is independent on the Lipschitz constant of the gradient of the
objective function by using a linesearch technique, and then a weak convergence
result of the proposed algorithm is analyzed. As applications, we apply the proposed
algorithm for solving the image restoration problems and compare its convergence
behavior with other well-known algorithms in the literature. By our experiment, the
algorithms have a higher efficiency than the others.
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1 Introduction
Throughout this paper, let H be a real Hilbert space with an inner product 〈·, ·〉 and the
induced norm ‖ · ‖. Let R and N be the set of real numbers and the set of positive integers,
respectively. Let I denote the identity operator on H. The symbols ⇀ and → denote the
weak and strong convergence, respectively.

In this work, we are interested in solving the convex minimization problems of the fol-
lowing form:

minimize
x∈H

ψ1(x) + ψ2(x), (1)

where ψ1 : H → R is a convex and differentiable function with a L-Lipschitz continuous
gradient of ψ1 and ψ2 : H →R∪{∞} is a proper lower semi-continuous and convex func-
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tion. If x is a solution of problem (1), then x is characterized by the fixed point equation
of the forward–backward operator

x = proxαψ2
︸ ︷︷ ︸

backward step

(

x – α∇ψ1(x)
)

︸ ︷︷ ︸

forward step

, (2)

where α > 0, proxψ2 is the proximity operator of ψ2, and ∇ψ1 stands for the gradient of
ψ1.

In the recent years, various iterative algorithms for solving a convex minimization prob-
lem of the sum of two convex functions were introduced and studied by many mathemati-
cians, see [1, 4, 7–10, 14–16, 18, 21, 25] for instance.

One of the popular iterative algorithms, called forward–backward splitting (FBS) algo-
rithm [8, 16], is defined by the following: let x1 ∈H and set

xn+1 = proxcnψ2

(

xn – cn∇ψ1(xn)
)

, ∀n ∈ N, (3)

where 0 < cn < 2/L.
In 2005, Combettes and Wajs [8] introduced the following relaxed forward–backward

splitting (R-FBS) algorithm, which is defined by the following: let ε ∈ (0, min(1, 1
L )), x1 ∈ R

N

and set

yn = xn – cn∇ψ1(xn), xn+1 = xn + βn
(

proxcnψ2 (yn) – xn
)

, ∀n ∈N, (4)

where cn ∈ [ε, 2
L – ε] and βn ∈ [ε, 1].

To accelerate the forward–backward splitting algorithm, an inertial technique is em-
ployed. So, various inertial algorithms were introduced and studied in order to accel-
erate convergence behavior of the algorithms, see [3, 6, 11, 26] for example. Recently,
Beck and Teboulle [3] introduced a fast iterative shrinkage-thresholding algorithm (FISTA)
for solving problem (1). FISTA is defined by the following: let x1 = y0 ∈ R

N , t1 = 1 and
set

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

tn+1 = 1+
√

1+4t2
n

2 , αn = tn–1
tn+1

,

yn = prox 1
L ψ2

(xn – 1
L∇ψ1(xn)),

xn+1 = yn + αn(yn – yn–1), n ∈N.

(5)

Note that αn is called an inertial parameter which controls the momentum yn – yn–1.
It is observed that both FBS and FISTA algorithms need to assume the Lipschitz conti-

nuity condition on the gradient of ψ1, and the stepsize depends on the Lipschitz constant
L, which is not an easy task to find in general practice.

In 2016, Cruz and Nghia [9] proposed a linesearch technique for selecting the stepsize
which is independent of the Lipschitz constant L. Their linesearch technique is given by
the following process:
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Linesearch. Fix x ∈H, σ > 0, δ > 0, and θ ∈ (0, 1).
Input α = σ .

While

α
∥

∥∇ψ1
(

proxαψ2 (I – α∇ψ1)(x)
)

– ∇ψ1(x)
∥

∥ > δ
∥

∥proxαψ2 (I – α∇ψ1)(x) – x
∥

∥,

do

α = θα.

End
Output α.

The forward–backward splitting algorithm where the stepsize cn is generated by above
linesearch was introduced by Cruz and Nghia [9] and defined by the following:

(FBSL). Let x1 ∈H, σ > 0, δ ∈ (0, 1/2), and θ ∈ (0, 1). For n ≥ 1, let

xn+1 = proxcnψ2

(

xn – cn∇ψ1(xn)
)

,

where cn := Linesearch(xn,σ , θ , δ).

Moreover, they also proposed an accelerated algorithm with an inertial technical term
as follows.

(FISTAL). Let x0 = x1 ∈H, α0 = σ > 0, δ ∈ (0, 1/2), θ ∈ (0, 1), and t1 = 1. For n ≥ 1, let

tn+1 =
1 +

√

1 + 4t2
n

2
, αn =

tn – 1
tn+1

,

yn = xn + αn(xn – xn–1),

xn+1 = proxcnψ2

(

yn – cn∇ψ1(yn)
)

,

where cn := Linesearch(yn, cn–1, θ , δ).

For the past decade, various fixed point algorithms for nonexpansive operators were
introduced and studied for solving convex minimization problems, problem (1), see
[11, 13, 17, 23]. In 2011, Phuengrattana and Suantai [23] introduced a new fixed point
algorithm known as SP-iteration and showed that this algorithm has a convergence rate
better than that of Ishikawa [13] and Mann [17] iterations. The SP-iteration for nonex-
pansive operator S was defined as follows:

vn = (1 – βn)xn + βnSxn,

yn = (1 – γn)vn + γnSvn,

xn+1 = (1 – θn)yn + θnSyn, n ∈N,

where x1 ∈H, {βn}, {γn}, and {θn} are sequences in (0, 1).
Motivated by these works, we combine the idea of SP-iteration, FBS algorithm, and a

linesearch technique to propose a new accelerated algorithm for a convex minimization
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problem which can be applied to solve the image restoration problems. We obtain weak
convergence theorems in Hilbert spaces under some suitable conditions.

2 Preliminaries
In this section, we give some definitions and basic properties for proving our results in the
next sections.

Let ψ : H → R ∪ {∞} be a proper, lower semi-continuous, and convex function. The
proximity (or proximal) operator [2, 19] of ψ , denoted by proxψ , is defined for each x ∈H,
proxψ x is the unique solution of the minimization problem

minimize
y∈H

ψ(y) +
1
2
‖x – y‖2. (6)

The proximity operator can be formulated in the equivalent form

proxψ = (I + ∂ψ)–1 : H →H, (7)

where ∂ψ is the subdifferential of ψ defined by

∂ψ(x) :=
{

u ∈H : ψ(x) + 〈u, y – x〉 ≤ ψ(y),∀y ∈H
}

, ∀x ∈H.

Moreover, we have the following useful fact:

x – proxαψ (x)
α

∈ ∂ψ
(

proxαψ (x)
)

, ∀x ∈H,α > 0. (8)

Note that the subdifferential operator ∂ψ is maximal monotone (see [5] for more details)
and the solution of (1) is a fixed point of the following operator:

x ∈ Argmin(ψ1 + ψ2) ⇐⇒ x = proxcψ2 (I – c∇ψ1)(x),

where c > 0. If 0 < c < 2
L , we know that proxcψ2 (I – c∇ψ1) is a nonexpansive operator.

An operator S : H →H is said to be Lipschitz continuous if there exists L > 0 such that

‖Sx – Sy‖ ≤ L‖x – y‖, ∀x, y ∈H.

If S is 1-Lipschitz continuous, then S is called a nonexpansive operator. A point x ∈ H is
called a fixed point of S if x = Sx. The set of all fixed points of S is denoted by Fix(S).

The operator I – S is called demiclosed at zero if for any sequence {xn} in H which con-
verges weakly to x and the sequence {xn – Sxn} converges strongly to 0, then x ∈ Fix(S).
It is known [22] that if S is a nonexpansive operator, then I – S is demiclosed at zero. Let
S : H → H be a nonexpansive operator and {Sn : H → H} be a sequence of nonexpansive
operators such that ∅ �= Fix(S) ⊂ ⋂∞

n=1 Fix(Sn). Then {Sn} is said to satisfy NST-condition
(I) with S [20] if for each bounded sequence {xn} in H,

lim
n→∞‖xn – Snxn‖ = 0 implies lim

n→∞‖xn – Sxn‖ = 0.
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Let x, y ∈H and t ∈ [0, 1]. The following inequalities hold on H:

∥

∥tx + (1 – t)y
∥

∥
2 = t‖x‖2 + (1 – t)‖y‖2 – t(1 – t)‖x – y‖2, (9)

‖x ± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2. (10)

The following lemmas are crucial for our main results.

Lemma 2.1 ([6]) Let ψ1 : H → R be a convex and differentiable function with an L-
Lipschitz continuous gradient of ψ1, and let ψ2 : H → R ∪ {∞} be a proper lower semi-
continuous and convex function. Let Sn := proxcnψ2 (I – cn∇ψ1) and S := proxcψ2 (I – c∇ψ1),
where cn, c ∈ (0, 2/L) with cn → c as n → ∞. Then {Sn} satisfies NST-condition (I) with S.

Lemma 2.2 ([24]) If f : H →R∪{∞} is a proper, lower semi-continuous, and convex func-
tion, then the graph of ∂f defined by Gph(∂f ) := {(x, y) ∈ H ×H : y ∈ ∂f (x)} is demiclosed,
i.e., if the sequence {(xk , yk)} in Gph(∂f ) satisfies xk ⇀ x and yk → y, then (x, y) ∈ Gph(∂f ).

Lemma 2.3 ([12]) Let ψ1,ψ2 : H → R ∪ {∞} be two proper, lower semi-continuous, and
convex functions. Then, for any x ∈H and c2 ≥ c1 > 0, we have

c2

c1

∥

∥x – proxc1ψ2

(

x – c1∇ψ1(x)
)∥

∥ ≥ ∥

∥x – proxc2ψ2

(

x – c2∇ψ1(x)
)∥

∥

≥ ∥

∥x – proxc1ψ2

(

x – c1∇ψ1(x)
)∥

∥.

Lemma 2.4 ([11]) Let {an} and {tn} be two sequences of nonnegative real numbers such
that

an+1 ≤ (1 + tn)an + tnan–1, ∀n ∈N.

Then an+1 ≤ M · ∏n
j=1(1 + 2tj), whereM = max{a1, a2}. Moreover, if

∑∞
n=1 tn < ∞, then {an}

is bounded.

Lemma 2.5 ([27]) Let {an} and {bn} be two sequences of nonnegative real numbers such
that an+1 ≤ an + bn for all n ∈N. If

∑∞
n=1 bn < ∞, then limn→∞ an exists.

Lemma 2.6 ([22]) Let {xn} be a sequence in H such that there exists a nonempty set � ⊂H
satisfying:

(i) For every p ∈ �, limn→∞ ‖xn – p‖ exists;
(ii) ωw(xn) ⊂ �,

where ωw(xn) is the set of all weak-cluster points of {xn}. Then {xn} converges weakly to a
point in �.

3 The SP-forward–backward splitting based on a fixed point algorithm
In this section, we introduce a new accelerated algorithm by using FBS and SP-iteration
with the inertial technique to solve a convex minimization problem of the sum of two
convex functions ψ1 and ψ2, where

• ψ1 : H →R is a convex and differentiable function with an L-Lipschitz continuous
gradient of ψ1;
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Algorithm 1 SP-forward–backward splitting (SP-FBS)
Take x0, x1 ∈H arbitrarily and calculate xn+1 as follows:

un = xn + αn(xn – xn–1),

vn = un + βn
(

proxcnψ2

(

un – cn∇ψ1(un)
)

– un
)

,

yn = vn + γn
(

proxcnψ2

(

vn – cn∇ψ1(vn)
)

– vn
)

,

xn+1 = yn + θn
(

proxcnψ2

(

yn – cn∇ψ1(yn)
)

– yn
)

, ∀n ≥ 1.

• ψ2 : H →R∪ {∞} is a proper lower semi-continuous and convex function;
• � := Argmin(ψ1 + ψ2) �= ∅.
Now, we are ready to prove the convergence theorem of Algorithm 1 (SP-FBS).

Theorem 3.1 Let {xn} be the sequence generated by Algorithm 1. Assume that the se-
quences {αn}, {βn}, {γn}, {θn}, and {cn} satisfy the following conditions:

(C1) γn, θn ∈ [0, 1], βn ∈ [a, b] ⊂ (0, 1);
(C2) αn ≥ 0,

∑∞
n=1 αn < ∞;

(C3) 0 < cn, c < 2/L such that limn→∞ cn = c.
Then the following statements hold:

(i) ‖xn+1 – p∗‖ ≤ M · ∏n
j=1(1 + 2αj), where M = max{‖x1 – p∗‖,‖x2 – p∗‖} and p∗ ∈ �.

(ii) {xn} converges weakly to a point in �.

Proof For each n ∈ N, set Sn := proxcnψ2 (I – cn∇ψ1)andS := proxcψ2 (I – c∇ψ1). Then the
sequence {xn} generated by Algorithm 1 is the same as that generated by the following
inertial SP-iteration:

un = xn + αn(xn – xn–1),

vn = (1 – βn)un + βnSnun,

yn = (1 – γn)vn + γnSnvn,

xn+1 = (1 – θn)yn + θnSnyn.

(11)

By condition (C3), we know that Sn and S are nonexpansive operators with
⋂∞

n=1 Fix(Sn) =
Fix(S) = Argmin(ψ1 + ψ2) := �. By Lemma 2.1, we obtain that {Sn} satisfies NST-condition
(I) with S.

(i) Let p∗ ∈ �. By (11), we have

∥

∥un – p∗∥
∥ ≤ ∥

∥xn – p∗∥
∥ + αn‖xn – xn–1‖ (12)

and

∥

∥vn – p∗∥
∥ ≤ (1 – βn)

∥

∥un – p∗∥
∥ + βn

∥

∥Snun – p∗∥
∥ ≤ ∥

∥un – p∗∥
∥. (13)

Similarly, we get that

∥

∥yn – p∗∥
∥ ≤ ∥

∥vn – p∗∥
∥ and

∥

∥xn+1 – p∗∥
∥ ≤ ∥

∥yn – p∗∥
∥. (14)
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From (12), (13), and (14), we get

∥

∥xn+1 – p∗∥
∥ ≤ ∥

∥yn – p∗∥
∥

≤ ∥

∥vn – p∗∥
∥

≤ ∥

∥un – p∗∥
∥

≤ ∥

∥xn – p∗∥
∥ + αn‖xn – xn–1‖. (15)

This implies that

∥

∥xn+1 – p∗∥
∥ ≤ (1 + αn)

∥

∥xn – p∗∥
∥ + αn

∥

∥xn–1 – p∗∥
∥. (16)

Apply Lemma 2.4, we get ‖xn+1 – p∗‖ ≤ M · ∏n
j=1(1 + 2αj), where M = max{‖x1 – p∗‖,‖x2 –

p∗‖}.
(ii) It follows from (i) that {xn} is bounded. This implies

∑∞
n=1 αn‖xn – xn–1‖ < ∞. By (15)

and Lemma 2.5, we obtain that limn→∞ ‖xn – x∗‖ exists. By (10), we have

∥

∥un – x∗∥
∥

2 ≤ ∥

∥xn – p∗∥
∥

2 + α2
n‖xn – xn–1‖2 + 2αn

∥

∥xn – p∗∥
∥‖xn – xn–1‖. (17)

From (9), we also have

∥

∥vn – p∗∥
∥

2 = (1 – βn)
∥

∥un – p∗∥
∥

2 + βn
∥

∥Snun – p∗∥
∥

2

– βn(1 – βn)‖un – Snun‖2

≤ ∥

∥un – p∗∥
∥

2 – βn(1 – βn)‖un – Snun‖2. (18)

By (14), (17), and (18), we obtain

∥

∥xn+1 – p∗∥
∥

2 ≤ ∥

∥yn – p∗∥
∥

2

≤ ∥

∥vn – p∗∥
∥

2

≤ ∥

∥un – p∗∥
∥

2 – βn(1 – βn)‖un – Snun‖2

≤ ∥

∥xn – p∗∥
∥

2 + α2
n‖xn – xn–1‖2 + 2αn

∥

∥xn – p∗∥
∥‖xn – xn–1‖

– βn(1 – βn)‖un – Snun‖2. (19)

Since 0 < a ≤ βn ≤ b < 1,
∑∞

n=1 αn‖xn – xn–1‖ < ∞ and limn→∞ ‖xn – p∗‖ exists, the above
inequality implies limn→∞ ‖un – Snun‖ = 0. Since {un} is bounded and {Sn} satisfies NST-
condition (I) with S, we have limn→∞ ‖un – Sun‖ = 0. By the demiclosedness of I – S, we
have ωw(un) ⊂ Fix(S) = �. Since limn→∞ ‖un –xn‖ = 0, we have ωw(xn) ⊂ ωw(un) ⊂ Fix(S) =
�. By Lemma 2.6, we can conclude that {xn} converges weakly to a point in �. This com-
pletes the proof. �

Remark 3.2 If we set αn = 0, Sn = S for all n ∈ N, then Algorithm 1 is reduced to the SP-
algorithm [23]:

vn = (1 – βn)xn + βnSxn,
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yn = (1 – γn)vn + γnSvn,

xn+1 = (1 – θn)yn + θnSyn,

where βn,γn, θn ∈ (0, 1).

Remark 3.3 If we set αn = γn = θn = 0 for all n ∈ N, then Algorithm 1 is reduced to the
Krasnosel’skii–Mann algorithm [8]:

xn+1 = (1 – βn)xn + βnSnxn, n ≥ 1,

where βn ∈ (0, 1).

4 The SP-forward–backward splitting algorithm with linesearch technique
In this section, we introduce a new accelerated algorithm by using the inertial and line-
search technique to solve a convex minimization problem of the sum of two convex func-
tions ψ1 and ψ2, where

(B1) ψ1 : H →R and ψ2 : H →R∪ {∞} are two proper, lower semi-continuous, and
convex functions and � := Argmin(� := ψ1 + ψ2) �= ∅;

(B2) ψ1 is differentiable on H. The gradient ∇ψ1 is uniformly continuous on H.
We note that assumption (B2) is a weaker than the Lipschitz continuity assumption on
∇ψ1.

Lemma 4.1 ([9]) If {xn} is a sequence generated by the following algorithm:

xn+1 = proxcnψ2

(

xn – cn∇ψ1(xn)
)

,

where cn := Linesearch(xn,σ , θ , δ). Then, for each n ≥ 1 and p ∈H,

‖xn – p‖2 – ‖xn+1 – p‖2 ≥ 2cn
[

(ψ1 + ψ2)(xn+1) – (ψ1 + ψ2)(p)
]

+ (1 – 2δ)‖xn+1 – xn‖2.

Now, we are ready to prove the convergence theorem of Algorithm 2 (SP-FBSL).

Algorithm 2 SP-forward–backward splitting with linesearch (SP-FBSL)
Take x0, x1 ∈H arbitrarily and calculate xn+1 as follows:

un = xn + αn(xn – xn–1),

vn = un + βn
(

proxc1
nψ2

(

un – c1
n∇ψ1(un)

)

– un
)

,

yn = vn + γn
(

proxc2
nψ2

(

vn – c2
n∇ψ1(vn)

)

– vn
)

,

xn+1 = yn + θn
(

proxc3
nψ2

(

yn – c3
n∇ψ1(yn)

)

– yn
)

, ∀n ≥ 1,

where c1
n := Linesearch(un,σ , θ , δ), c2

n := Linesearch(vn,σ , θ , δ) and c3
n := Line-

search(yn,σ , θ , δ).
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Theorem 4.2 Let {xn} be the sequence generated by Algorithm 2. If {γn}, {θn} ⊂ [0, 1], βn ∈
[a, b] ⊂ (0, 1), αn ≥ 0 for all n ∈ N and

∑∞
n=1 αn < ∞, then {xn} converges weakly to a point

in �.

Proof We denote

ūn := proxc1
nψ2

(

un – c1
n∇ψ1(un)

)

, v̄n := proxc2
nψ2

(

vn – c2
n∇ψ1(vn)

)

, and

ȳn := proxc3
nψ2

(

yn – c3
n∇ψ1(yn)

)

.

Let p∗ ∈ �. Apply Lemma 4.1, we have for any n ∈N and p ∈H

‖un – p‖2 – ‖ūn – p‖2 ≥ 2c1
n
[

�(ūn) – �(p)
]

+ (1 – 2δ)‖ūn – un‖2, (20)

‖vn – p‖2 – ‖v̄n – p‖2 ≥ 2c2
n
[

�(v̄n) – �(p)
]

+ (1 – 2δ)‖v̄n – vn‖2, (21)

‖yn – p‖2 – ‖ȳn – p‖2 ≥ 2c3
n
[

�(ȳn) – �(p)
]

+ (1 – 2δ)‖ȳn – yn‖2. (22)

Putting p = p∗ in (20)–(22), we have

∥

∥ūn – p∗∥
∥ ≤ ∥

∥un – p∗∥
∥,

∥

∥v̄n – p∗∥
∥ ≤ ∥

∥vn – p∗∥
∥ and

∥

∥ȳn – p∗∥
∥ ≤ ∥

∥yn – p∗∥
∥.

So, we obtain

∥

∥xn+1 – p∗∥
∥ =

∥

∥(1 – θn)
(

yn – p∗) + θn
(

ȳn – p∗)∥
∥

≤ (1 – θn)
∥

∥yn – p∗∥
∥ + θn

∥

∥ȳn – p∗∥
∥

≤ ∥

∥yn – p∗∥
∥. (23)

Similarly, we get

∥

∥yn – p∗∥
∥ ≤ ∥

∥vn – p∗∥
∥ and

∥

∥vn – p∗∥
∥ ≤ ∥

∥un – p∗∥
∥. (24)

From (23) and (24), we obtain

∥

∥xn+1 – p∗∥
∥ ≤ ∥

∥un – p∗∥
∥

=
∥

∥xk + αn(xn – xn–1) – p∗∥
∥

≤ ∥

∥xn – p∗∥
∥ + αn‖xn – xn–1‖

≤ (1 + αn)
∥

∥xn – p∗∥
∥ + αn

∥

∥xn–1 – p∗∥
∥. (25)

This implies by Lemma 2.4 that {xn} is bounded, and hence
∑∞

n=1 αn‖xn – xn–1‖ < ∞. It
follows that

lim
n→∞‖un – xn‖ = 0. (26)

By (25) and Lemma 2.5, limn→∞ ‖xn – p∗‖ exists and limn→∞ ‖xn – p∗‖ = limn→∞ ‖un – p∗‖.
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Next, we show that ωw(xn) ⊂ �. Let x ∈ ωw(xn), i.e., there exists a subsequence {xnk } of
{xn} such that xnk ⇀ x. By (26), we have unk ⇀ x.

From (23), (24), and (9), we have

∥

∥xn+1 – p∗∥
∥

2 ≤ ∥

∥vn – p∗∥
∥

2

= (1 – βn)
∥

∥un – p∗∥
∥

2 + βn
∥

∥ūn – p∗∥
∥

2 – βn(1 – βn)‖un – ūn‖2

≤ ∥

∥un – p∗∥
∥

2 – βn(1 – βn)‖un – ūn‖2

=
∥

∥xk + αn(xn – xn–1) – p∗∥
∥

2 – βn(1 – βn)‖un – ūn‖2

≤ ∥

∥xn – p∗∥
∥

2 + α2
n‖xn – xn–1‖2 + 2αn

∥

∥xn – p∗∥
∥‖xn – xn–1‖

– βn(1 – βn)‖un – ūn‖2. (27)

Since 0 < a ≤ βn ≤ b < 1, limn→∞ ‖xn – p∗‖ exists, and
∑∞

n=1 αn‖xn – xn–1‖ < ∞, the above
inequality implies

lim
n→∞‖un – ūn‖ = 0. Hence ¯unk ⇀ x. (28)

Now, let us split our further analysis into two cases.
Case 1. Suppose that the sequence {c1

nk
} does not converge to 0. Without loss of gener-

ality, there exists c > 0 such that c1
nk

≥ c > 0. By (B2), we have

lim
n→∞

∥

∥∇ψ1(un) – ∇ψ1(ūn)
∥

∥ = 0. (29)

From (8), we get

unk – ¯unk

c1
nk

+ ∇ψ1( ¯unk ) – ∇ψ1(uki ) ∈ ∂ψ2( ¯unk ) + ∇ψ1( ¯unk ) = ∂�( ¯unk ). (30)

By (28)–(30), it follows from Lemma 2.2 that 0 ∈ ∂�(x), that is, x ∈ �.

Case 2. Suppose that the sequence {c1
nk

} converges to 0. Define ̂c1
nk

=
c1

nk
θ

> c1
nk

> 0 and

ûnk := prox̂c1
nk ψ2

(

unk – ̂c1
nk

∇ψ1(unk )
)

.

By Lemma 2.3, we have

‖unk – ûnk ‖ ≤
̂c1

nk

c1
nk

‖unk – ¯unk ‖ =
1
θ
‖unk – ¯unk ‖. (31)

Since ‖unk – ¯unk ‖ → 0, we have ‖unk – ûnk ‖ → 0. By (B2), we have

lim
k→∞

∥

∥∇ψ1(unk ) – ∇ψ1(ûnk )
∥

∥ = 0. (32)

It follows from the definition of Linesearch that

̂c1
nk

∥

∥∇ψ1(unk ) – ∇ψ1(ûnk )
∥

∥ > δ‖unk – ûnk ‖. (33)
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By (32) and (33), we get

lim
k→∞

‖unk – ûnk ‖
̂c1

nk

= 0. (34)

From (8), we get

unk – ûnk
̂c1

nk

+ ∇ψ1(ûnk ) – ∇ψ1(unk ) ∈ ∂ψ2(ûnk ) + ∇ψ1(ûnk ) = ∂�(ûnk ). (35)

Since unk ⇀ x and ‖unk – ûnk ‖ → 0, we have ûnk ⇀ x. By (34) and (35), it follows from
Lemma 2.2 that 0 ∈ ∂�(x), that is, x ∈ �. Therefore, ωw(xn) ⊂ �. Using Lemma 2.6, we
obtain that xn ⇀ x̄ for some x̄ ∈ �. This completes the proof. �

5 Application in image restoration problems
In this section, we apply the convex minimization problem (1) to image restoration prob-
lems. We analyze and compare efficiency of SP-FBS and SP-FBSL algorithms with FBS al-
gorithm, R-FBS algorithm, FISTA algorithm, FBSL algorithm, and FISTAL algorithm. All
experiments and visualizations are performed on a laptop computer (Intel Core-i5/4.00
GB RAM/Windows 8/64-bit) with MATLAB.

The image restoration problem is a basic linear inverse problem of the form

Ax = y + ε, (36)

where A ∈ R
M×N and y ∈ R

M are known, ε is an unknown noise, and x ∈ R
N is the true

image to be estimated. To approximate the original image in (36), we need to minimize
the value of ε by using the LASSO model [28]:

min
x∈RN

{

1
2
‖Ax – y‖2

2 + λ‖x‖1

}

, (37)

where λ is a positive parameter, ‖ · ‖1 is the l1-norm, and ‖ · ‖2 is the Euclidean norm. It is
noted that problem (1) can be applied to LASSO model (37) by setting

ψ1(x) =
1
2
‖y – Ax‖2

2 and ψ2(x) = λ‖x‖1,

where y represents the observed image and A = RW , where R is the kernel matrix and W
is 2-D fast Fourier transform.

We take two RGB test images (Wat Chedi Luang and antique kitchen with size of 256 ×
256 and 512 × 512, respectively) and use the peak signal-to-noise ratio (PSNR) in decibel
(dB) [28] as the image quality measures, which is formulated as follows:

PSNR(xk) = 10 log10

(

M · 2552

‖xk – x‖2
2

)

,

where M is the number of image samples, and x is the original image.
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Table 1 Details of blurring processes

Scenarios Kernel matrix

I Gaussian blur of filter size 9× 9 with standard deviation σ̂ = 10
II Out-of-focus blur (disk) with radius r = 6
III Motion blur specifying with motion length of 21 pixels and motion orientation 11o

Figure 1 Deblurring of the Wat Chedi Luang and Antique kitchen

Next, we will present three scenarios of blurring processes and noise 10–4 in Table 1 and
see the original images and the blurred images in Fig. 1.

Next, we test the image recovery performance of the studied algorithms for recovering
the images (Wat Chedi Luang and antique kitchen) by setting the parameters as in (38) and
by choosing the blurred images as the starting points. The maximum iteration number for
all methods is fixed at 200. In LASSO model (37), the regularization parameter is taken by
λ = 10–4. Details of parameters for the studied algorithms are chosen as follows:

cn =
1
L

, σ = 10, δ = 0.1, θ = 0.9, βn = γn = θn =
0.99n
n + 1

,

αn =

⎧

⎨

⎩

n
n+1 if 1 ≤ n ≤M,
1

2n otherwise,
(38)

where M is a large positive number which depends on the number of iterations.
The obtained results for deblurring test images (scenarios I–III) are presented in

Figs. 2–7. We observe from Figs. 2–8 that if the iteration number is fixed at 200, the
PSNR of SP-FBSL algorithm and SP-FBS algorithm are slightly higher than that of the
others.
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Figure 2 PSNR at the 200th number of iteration of FBS, R-FBS, FISTA, FBSL, FISTAL, SP-FBS and SP-FBSL
algorithms for deblurring (scenario I) of the Wat Chedi Luang

Figure 3 PSNR at the 200th number of iteration of FBS, R-FBS, FISTA, FBSL, FISTAL, SP-FBS and SP-FBSL
algorithms for deblurring (scenario II) of the Wat Chedi Luang
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Figure 4 PSNR at the 200th number of iteration of FBS, R-FBS, FISTA, FBSL, FISTAL, SP-FBS and SP-FBSL
algorithms for deblurring (scenario III) of the Wat Chedi Luang

Figure 5 PSNR at the 200th number of iteration of FBS, R-FBS, FISTA, FBSL, FISTAL, SP-FBS and SP-FBSL
algorithms for deblurring (scenario I) of the Antique kitchen
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Figure 6 PSNR at the 200th number of iteration of FBS, R-FBS, FISTA, FBSL, FISTAL, SP-FBS and SP-FBSL
algorithms for deblurring (scenario II) of the Antique kitchen

Figure 7 PSNR at the 200th number of iteration of FBS, R-FBS, FISTA, FBSL, FISTAL, SP-FBS and SP-FBSL
algorithms for deblurring “scenario (III)” of the Antique kitchen



Yatakoat et al. Advances in Continuous and Discrete Models         (2022) 2022:25 Page 16 of 18

Figure 8 The graphs of PSNR of the algorithms: (a)–(c) for “Wat Chedi Luang” image and (d)–(f) for “Antique
kitchen” image

6 Conclusions
In this work, we propose an inertial SP-forward–backward splitting (SP-FBS) algorithm
for solving convex minimization problems. We prove that a sequence generated by SP-FBS
algorithm converges weakly to a solution of problem (1) under the assumption of the Lip-
schitz continuity of the gradient of the objective function and the stepsize of the algorithm
depends on the Lipschitz constant of the gradient of the objective function. Moreover, we
remove the Lipschitz continuity assumption on the gradient of the objective function by
using the linesearch technique of Cruz and Nghia [9] and propose an inertial SP-forward–
backward splitting algorithm with linesearch (SP-FBSL) to solve a convex minimization
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problem. We also prove that a sequence generated by SP-FBSL converges weakly to a min-
imizer of the sum of those two convex functions under suitable control conditions. Finally,
we present numerical experiments of the studied algorithms for solving image restoration
problems. From our experiments, we see that our algorithms have a higher efficiency than
the well-known algorithms in [3, 8, 9, 16].
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