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Abstract
Fractional differential equations have recently demonstrated their importance in a
variety of fields, including medicine, applied sciences, and engineering. The main
objective of this study is to propose an Adams-type multistep method for solving
differential equations of fractional order. The method is developed by implementing
the Lagrange interpolation and taking into account the idea of the Adams–Moulton
method for fractional case. The fractional derivative applied in this study is in the
Caputo derivative operator. The analysis of the proposed method is presented in
terms of order of the method, order of accuracy, and convergence analysis, with the
proposed method being proved to converge. The stability of the method is also
examined, where the stability regions appear to be symmetric to the real axis for
various values of α. In order to validate the competency of the proposed method,
several numerical examples for solving linear and nonlinear fractional differential
equations are included. The method will be presented in the numerical
predict–correct technique for the condition where α ∈ (0, 1), in which α represents
the order of fractional derivatives of Dαy(t).

Keywords: Fractional differential equation; Linear FDE; Nonlinear FDE; Single order
FDE; Multistep method

1 Introduction
For α > 0 and under the assumptions that function f is smooth, we have the fractional
initial value problem (FIVP) in the form [1]

CDα
t0 y(t) = f

(
t, y(t)

)
, y(t0) = y0, (1)

where α is the order of fractional differential equation (FDE) and 0 < α < 1, while CDα
t0 de-

notes the fractional Caputo’s α-derivative operator (in sequel, we denote it as Dα) defined
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as follows [2]:

Dαy(t) =
1

�(m – α)

∫ t

t0

y(m)(τ ) dτ

(t – τ )α–m+1 , m – 1 < α < m ∈ Z
+. (2)

As stated in the research study by Garrappa and Roberto [2], CDα
t0 = RLDα

t0 (y(t) – y(t0))
with RLDα

t0 (y(t)) is the Riemann–Liouville differential operator which can be defined as
follows:

RLDα
t0 y(t) =

1
�(m – α)

(
d
dt

)m ∫ t

t0

y(τ ) dτ

(t – τ )α–m+1 , α > 0, m = �α�. (3)

Many experts choose to use the Caputo definition in their research. This is because,
according to Diethelm and Ford [3], utilizing Caputo’s concept, one may typically have a
well-intelligible physical meaning that can be measured. As a result, the Caputo definition
will be used in this study to develop a new fractional multistep method for handling FDE
problems. The existence and uniqueness of the solution of Equation (1) have been given
in [3].

Numerous numerical treatments have been proposed to handle different types of FDE,
such as finite difference method [4], fractional backward differentiation formulae [5], and
block implicit Adams method [1]. Among these studies, [6] gives a comparison of numer-
ical methods for single order FDEs, and concluding the predictor–corrector method by
Diethelm et al. [7] is recommended in most cases. For both linear and nonlinear FDEs, the
approach has been shown to have the advantage of being simple to implement. However,
the function evaluation for the iterations will rise as the number of intervals N increases.
In a study by Gnitchogna and Atangana [8], an explicit technique for solving fractional
order partial differential equations based on the Adams–Bashforth numerical scheme in
a Laplace space is proposed.

The main interest of this study is to develop an implicit method of order two for solv-
ing fractional differential equations in a predict–correct numerical scheme. The proposed
method will be derived based on the idea of Adams–Moulton method, where the func-
tion will be interpolated using Lagrange interpolation. The analysis in terms of stability
properties of the method, method order, its convergence properties as well as the order
of accuracy will also be discussed. Note that in order to make a numerical comparison,
this paper restricts the analysis in which 0 < α < 1. Further, to validate the efficiency of the
method, several numerical examples of FDE are included along with the discussion of the
numerical results.

2 Fractional Adams method of predictor–corrector order 2
The proposed multistep method will be presented in the predictor–corrector form known
as fractional Adams method of explicit order 2, implicit order 2 (FAM22).

Suppose that the interval t ∈ (a, b), where the computation for the approximation so-
lution will take place for y(ti+1) at ti+1. The computation as well will require the previous
approximate value of y(ti) at ti.
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2.1 Explicit order 2
The explicit method of order 2 can be expressed as follows:

y(ti+1) = y(ti) +
hα

�(α)

[(
2(i + 1)α – (i)α

α
+

(i + 1)α+1 + (i)α+1

α + 1

)
Fi

+
(

–(i + 1)α

α
+

(i + 1)α+1 – (i)α+1

α + 1

)
Fi–1

]
.

(4)

The above numerical solution obtained in Equation (4) can be discovered in the pre-
vious research [8], in which the researchers developed this method and extended it by
implementing the concept of Laplace transform. The extended method is then being ap-
plied to solve problems of partial fractional differential equations (PFDE). However, the
established method (4) will be considered as the predictor for FAM22 to solve ordinary
FDE in the case of 0 < α < 1.

2.2 Implicit order 2
As stated in the preceding section, the proposed implicit formula of FAM22 is derived
using Lagrange interpolation while taking into consideration the concept of second order
Adams–Moulton method.

The derivation procedure began by considering the FIVP in the form [9]

Dαy(t) = f
(
t, y(t)

)
, yk(0) = yk

0, k = 0, 1, . . . , �α� – 1. (5)

The above FIVP of Equation (5) is known to be equivalent to the Volterra integral based
on [9] and can be rewritten in the form

y(t) =
�α�–1∑

k=0

tk

k!
yk(0) +

1
�(α)

∫ t

0

[
(t – τ )α–1f

(
τ , y(τ )

)]
dτ . (6)

Then, using the classical first-order equation, we construct a fractional method, yielding
Equation (5) as

Dy(t) = f
(
t, y(t)

)
, y(0) = y0. (7)

Equation (6) is simplified as referred in [8] and gives

y(t) = y0 +
1

�(α)

∫ t

0

[
(t – τ )α–1f

(
τ , y(τ )

)]
dτ . (8)

Rewrite Equation (8) based on two conditions which are as follows:
i. As t = ti+1, we have

y(ti+1) = y0 +
1

�(α)

∫ ti+1

0

[
(ti+1 – τ )α–1f

(
τ , y(τ )

)]
dτ . (9)

ii. As t = ti, we have

y(ti) = y0 +
1

�(α)

∫ ti

0

[
(ti – τ )α–1f

(
τ , y(τ )

)]
dτ . (10)
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Subtracting Equation (9) from Equation (10) will yield

y(ti+1) = y(ti) +
1

�(α)

[∫ ti+1

0
(ti+1 – τ )α–1f

(
τ , y(τ )

)
dτ

–
∫ ti

0
(ti – τ )α–1f

(
τ , y(τ )

)
dτ

]
.

(11)

The implicit formula of FAM22 is of order 2. Therefore, two interpolating functions of
Fi+1 and Fi are required in the Lagrange approximation for the proposed method, given
by

P(t)(≈ f
(
τ , y(τ )

)
=

t – ti

ti+1 – ti
Fi+1 +

t – ti+1

ti – ti+1
Fi, (12)

and we also let

h = ti+1 – ti, t = τ . (13)

Substituting (12) and (13) into (11) yields

y(ti+1) = y(ti) +
1

�(α)

[∫ ti+1

0
(ti+1 – t)α–1

(
t – ti

ti+1 – ti
Fi+1 +

t – ti+1

ti – ti+1
Fi

)
dt

–
∫ ti

0
(ti – t)α–1

(
t – ti

ti+1 – ti
Fi+1 +

t – ti+1

ti – ti+1
Fi

)
dt

]

= y(ti) +
1

�(α)

[ i∑

m=0

∫ tm+1

tm

(ti+1 – t)α–1
(

t – ti

ti+1 – ti
Fi+1 +

t – ti+1

ti – ti+1
Fi

)
dt

–
i–1∑

m=0

∫ tm+1

tm

(ti – t)α–1
(

t – ti

ti+1 – ti
Fi+1 +

t – ti+1

ti – ti+1
Fi

)]

= y(ti) +
1

�(α)

[ i∑

m=0

(
Fi+1

h

∫ tm+1

tm

(ti+1 – t)α–1(t – ti) dt

–
Fi

h

∫ tm+1

tm

(ti+1 – t)α–1(t – ti+1) dt
)

–
i–1∑

m=0

(
Fi+1

h

∫ tm+1

tm

(ti – t)α–1(t – ti) dt

–
Fi

h

∫ tm+1

tm

(ti – t)α–1(t – ti+1) dt
)]

.

(14)

Next, we implement the following change of variables, where:
i. For the first summation part,

dy = –dt, y = ti+1 – t;

ii. For the second summation part,

dy = –dt, y = ti – t.
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Therefore, we have Equation (14) as follows:

y(ti+1) = y(ti) +
1

�(α)

[ i∑

m=0

{
Fi+1

h

(
–

∫ ti+1–tm+1

ti+1–tm

(y)α–1(ti+1 – y – ti) dy
)

–
Fi

h

(
–

∫ ti+1–tm+1

ti+1–tm

(y)α–1(ti+1 – y – ti+1) dy
)}

–
i–1∑

m=0

{
Fi+1

h

(
–

∫ ti–tm+1

ti–tm

(y)α–1(ti – y – ti) dy
)

–
Fi

h

(
–

∫ ti–tm+1

ti–tm

(y)α–1(ti – y – ti+1) dy
)}]

.

(15)

Following that,

y(ti+1) = y(ti) +
1

�(α)

[ i∑

m=0

{
Fi+1

h

(
–

∫ ti+1–tm+1

ti+1–tm

(y)α–1(ti+1 – y – ti) dy
)

–
Fi

h

(
–

∫ ti+1–tm+1

ti+1–tm

(y)α–1(ti+1 – y – ti+1) dy
)}

–
i–1∑

m=0

{
Fi+1

h

(
–

∫ ti–tm+1

ti–tm

(y)α–1(ti – y – ti) dy
)

–
Fi

h

(
–

∫ ti–tm+1

ti–tm

(y)α–1(ti – y – ti+1) dy
)}]

= y(ti) +
1

�(α)

[ i∑

m=0

{
Fi+1

h

(
–

∫ ti+1–tm+1

ti+1–tm

(y)α–1(h – y) dy
)

–
Fi

h

(
–

∫ ti+1–tm+1

ti+1–tm

(y)α–1(–y) dy
)}

–
i–1∑

m=0

{
Fi+1

h

(
–

∫ ti–tm+1

ti–tm

(y)α–1(–y) dy
)

–
Fi

h

(
–

∫ ti–tm+1

ti–tm

(y)α–1(–h – y) dy
)}]

= y(ti) +
1

�(α)

[ i∑

m=0

{
Fi+1

h

(
–

∫ ti+1–tm+1

ti+1–tm

(
hyα–1 – yα

)
dy

)

–
Fi

h

(
–

∫ ti+1–tm+1

ti+1–tm

(
–yα

)
dy

)}

–
i–1∑

m=0

{
Fi+1

h

(
–

∫ ti–tm+1

ti–tm

(
–yα

)
dy

)

–
Fi

h

(
–

∫ ti–tm+1

ti–tm

(
–hyα–1 – yα

)
dy

)}]

.

(16)
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Next, solving the integration part will give

y(ti+1) = y(ti) +
1

�(α)

[ i∑

m=0

{
Fi+1

h

(
–h
α

[
(ti+1 – tm+1)α – (ti+1 – tm)α

]

+
1

α + 1
[
(ti+1 – tm+1)α+1 – (ti+1 – tm)α+1]

)

–
Fi

h

(
1

α + 1
[
(ti+1 – tm+1)α+1 – (ti+1 – tm)α+1]

)}

–
i–1∑

m=0

{
Fi+1

h

(
1

α + 1
[
(ti – tm+1)α+1 – (ti – tm)α+1]

)

–
Fi

h

(
h
α

[
(ti – tm+1)α – (ti – tm)α

]

+
1

α + 1
[
(ti – tm+1)α+1 – (ti – tm)α+1]

)}]

= y(ti) +
1

�(α)

[{
Fi+1

h

(
–h
α

[
(ti+1 – ti+1)α – (ti+1 – t0)α

]

+
1

α + 1
[
(ti+1 – ti+1)α+1 – (ti+1 – t0)α+1]

)

–
Fi

h

(
1

α + 1
[
(ti+1 – ti+1)α+1 – (ti+1 – t0)α+1]

)}

–
{

Fi+1

h

(
1

α + 1
[
(ti – ti)α+1 – (ti – t0)α+1]

)

–
Fi

h

(
h
α

[
(ti – ti)α – (ti – t0)α

]

+
1

α + 1
[
(ti – ti)α+1 – (ti – t0)α+1]

)}]
.

(17)

Therefore, the numerical formula of the implicit part in FAM22 is obtained as follows:

y(ti+1) = y(ti) +
1

�(α)

[
hα

{(
(i + 1)α

α
–

(i + 1)α+1

α + 1

)
Fi+1 +

(
(i + 1)α+1

α + 1

)
Fi

}

– hα

{(
–

(i)α+1

α + 1

)
Fi+1 +

(
(i)α

α
+

(i)α+1

α + 1

)
Fi

}]
,

y(ti+1) = y(ti) +
hα

�(α)

[(
(i + 1)α

α
+

(i)α+1 – (i + 1)α+1

α + 1

)
Fi+1

+
(

–(i)α

α
+

(i + 1)α+1 – (i)α+1

α + 1

)
Fi

]
.

(18)

Equation (18) will act as the corrector of the proposed method FAM22.

3 Analysis of the method
As mentioned before, the main interest of this paper is to propose an implicit method for
solving problems of FDE in a predict–correct numerical scheme. Therefore, the analysis
of the method will focus on the implicit method of FAM22 that has been developed.
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3.1 Order of the method
Definition 1 ([5]) The general formulation of fractional linear multistep method (FLMM)
for the solution of Equation (5) is considered:

i∑

j=0

αjyi–j = hα

i∑

j=0

βjf (ti–j, yi–j), (19)

where αj and βj are real parameters and α denotes the fractional order.

Definition 2 ([10]) As C0 = C1 = · · · = Cq = 0 and Cq+1 �= 0, the linear multistep method is
said to be of order q. The following is the formula for calculating the constant Cq:

Cq =
k∑

j=0

[
jqαj

q!
–

jq–1βj

(q – 1)!

]
, q = 0, 1, 2, . . . , (20)

where k is the order of the proposed method, α is the coefficient acquired from the pro-
posed method, and β is the coefficient obtained from the proposed method. It is important
to note that the method’s error constant is Cq+1.

Proof For the objective of investigating the order of the implicit method of FAM22 in
Equation (18), firstly, we obtain αj and βj by comparing Equations (18) and (19). Therefore,
we have

α0 = –1, β0 =
1

�(α)

(
–(i)α

α
+

(i + 1)α+1 – (i)α+1

α + 1

)
,

α1 = 1, β1 =
1

�(α)

(
(i + 1)α

α
+

(i)α+1 – (i + 1)α+1

α + 1

)
.

(21)

Substituting Equation (21) into (20) will give

C0 =
2∑

j=0

αj = 0,

C1 =
2∑

j=0

(jαj – βj) = 0,

C2 =
2∑

j=0

(
j2αj

2!
– jβj

)
= 0,

C3 =
2∑

j=0

(
j3αj

3!
–

j2βj

2!

)
= –

1
12

.

(22)

Therefore, the implicit method is proven to be of order 2 with error constant C3 =
– 1

12 . �
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3.2 Order of accuracy
To begin with, the implicit method of FAM22 is given in Equation (18), and for simplicity,
let

A =
(i + 1)α

α
, B =

(i)α+1 – (i + 1)α+1

α + 1
,

C =
–(i)α

α
, D =

(i + 1)α+1 – (i)α+1

α + 1
.

(23)

Hence, we will obtain

y(ti+1) = y(ti) +
hα

�(α)
[
(A + B)Fi+1 + (C + D)Fi

]
.

Next, according to the concept of Taylor expansion, it is given that

y(ti+1) = y(ti) + hy′(ti) +
h2

2!
y′′(θ ), (24)

and for the case of initial value problem,

y′(ti) ≈ f
(
ti, y(ti)

)
. (25)

Therefore, the local truncation error denoted as ei+1 can be obtained as follows:

ei+1 = y(ti+1) – y(ti) –
hα

�(α)
[
(A + B)y′(ti+1)

]
–

hα

�(α)
[
(C + D)y′(ti)

]
. (26)

Expanding Equation (26) by implementing the Taylor expansion in Equations (24) and
(25) will give

ei+1 = y(ti) + hy′(ti) +
h2

2!
y′′(θ ) – y(ti) –

hα

�(α)

[
(A + B)y′(ti) + hy′′(ti) +

h2

2!
y′′′(θ )

]

–
hα

�(α)
[
(C + D)y′(ti)

]
+ O

(
h3).

(27)

Based on Equation (27), the local truncation error ei+1 is O(h3). As known, the local
truncation error is usually denoted as O(h(n+1)), where n is the order of accuracy and h is
the step size. Therefore, it can be concluded that the proposed method is proved to be in
the second order of accuracy.

3.3 Convergence analysis
Theorem 1 ([11]) Let f (t, y) be Lipschitz continuous at all points (t, y) in the region R
defined by [10], given by

a ≤ t ≤ b, –∞ < y < ∞, (28)

such that a and b are finite. Suppose that there exists a constant L such that, for every t, y, y∗,
the coordinates t, y, y∗ and (t, y∗) are both in R where

∣
∣f (t, y) – f

(
t, y∗)∣∣ ≤ L

∣
∣y – y∗∣∣. (29)
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Theorem 2 ([1, 11, 12]) A linear multistep method is said to be convergent if, for all initial
values problems subject to the hypothesis of Theorem 1 as t ∈ [a, b] and 0 < α < 1, we have
that

∣
∣y – y∗∣∣ ≤ K .tα–1hp,

where K is a constant depending only on α and p as p ∈ (0, 1) stated by [12] and

lim
h→0

yi = y∗(ti).

Proof In the first step of this convergence analysis, we recall the proposed method as in
Equation (18), where

y(ti+1) = y(ti) +
hα

�(α)

[(
(i + 1)α

α
+

(i)α+1 – (i + 1)α+1

α + 1

)
Fi+1

+
(

–(i)α

α
+

(i + 1)α+1 – (i)α+1

α + 1

)
Fi

]
.

Based on the above equation, let

P =
(i + 1)α

α
+

(i)α+1 – (i + 1)α+1

α + 1
,

Q =
–(i)α

α
+

(i + 1)α+1 – (i)α+1

α + 1
.

(30)

For the next step, substituting Equation (30) into Equation (18) will give the following:
i. The exact form of the system is given by

y∗(ti+1) – y∗(ti) =
hα

�(α)
(P)F∗

i+1 +
hα

�(α)
(Q)F∗

i –
1

12
h3y∗(3)(ξ ). (31)

ii. The approximate form of the system is

y(ti+1) – y(ti) =
hα

�(α)
(P)Fi+1 +

hα

�(α)
(Q)Fi. (32)

Subtracting Equation (32) from (31) will give

y(ti+1) – y∗(ti+1) = y(ti) – y∗(ti) +
hα

�(α)
(P)

[
f (ti+1, yi+1) – f

(
t∗
i+1, y∗

i+1
)]

+
hα

�(α)
(Q)

[
f (ti, yi) – f

(
t∗
i , y∗

i
)]

–
1

12
h3y∗(3)(ξ ).

(33)

Let

|di+1| =
∣
∣yi+1 – y∗

i+1
∣
∣, |di| =

∣
∣yi – y∗

i
∣
∣. (34)
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In the next step, we apply the Lipschitz condition as in Theorem 1 and the assumption
in Equation (34). Therefore, we have

(
1 –

hαP
�(α)

)
|di+1| ≤

(
1 +

hαQ
�(α)

)
|di| –

1
12

h3y∗(3)(ξ ). (35)

Rewriting Equation (35) based on Theorem 2, we obtain

(
1 – Khα

)|di+1| ≤
(
1 + Khα

)|di| –
1

12
h3y∗(3)(ξ ). (36)

As h is sufficiently small or h → 0 and the initial value tends to 0, it is proved that |di+1| ≤
|di|; therefore, we have |yi+1| = |y∗

i+1| and |yi| = |y∗
i |. As a result, Theorem 2 is satisfied, and

the implicit method of FAM22 has been proven to converge. �

4 Stability of the method
4.1 Characteristic polynomial
Definition 3 Let λ1,λ2, . . . ,λm be the roots of the characteristic equation

P(λ) = λm – am–1λ
m–2 – · · · – a1λ – a0, (37)

for the given m-step multistep method,

yi+1 = am–1yi + am–2yi–1 + · · · + a0yi+1–m

+ h
[
bmf (ti+1, yi+1) + bm–1f (ti, yi) + · · · + b0f (ti+1–m, yi+1–m)

]
.

(38)

If all roots with absolute value 1 are simple roots, then the difference equation is said to
satisfy the root condition. Following that, methods that satisfy the root condition and have
λ = 1 as the only root of the characteristic equation with magnitude one are called strongly
stable [13].

Proof Based on Definition 1, we can obtain the characteristic polynomial of our proposed
method of Equation (18) as follows:

P(λ) = λ2 – λ = 0,

λ(λ – 1) = 0,

λ = 0, λ = 1.

(39)

The above characteristic polynomials satisfy the root condition, therefore the method
is strongly stable. �

4.2 Stability region
The stability analysis for the implicit method of FAM22 is performed by considering the
following test equation [14]:

Dαy(t) = λy(t), λεC, 0 < α < 1,

y(t0) = y0,
(40)
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where the exact solution can be expressed in terms of the Mittag-Leffler function

Eα(t) =
∞∑

k=0

(
tk

�(αk + 1)

)

as y(t) = Eα(λ(t – t0)α)y0.
Substituting test Equation (40) into the numerical method in Equation (18) results in

the stability polynomial of

(
1 –

(i + 1)α

α
+

(i)(α+1) – (i + 1)(α+1)

α + 1

)
× h̄

β
× r2

–
(

1 +
–(i)α

α
+

(i + 1)(α+1) – (i)(α+1)

α + 1

)
× h̄

β
× r = 0,

(41)

where r is the root of the stability polynomial h̄ = λhα and β = �(α).
The stability regions are shown in Fig. 1 by using Maple software for different values of

α. The planes are separated between the complex and the real axis, where the horizontal
axis is labeled as Re = Real axis and the vertical axis is labeled as Im = Imaginary.

The boundary of the stability region is determined by substituting root r in the stability
polynomial with 1, –1 and eIθ = cos(t)+I sin(t), where I is the imaginary root for 0 < θ < 2π .
We determine the stability region by considering the fact that every root of r must meet
the condition that r is real and |r| ≤ 1 as stated in [15]. As a result, the proposed method
has been shown to be stable in the shaded region. The three figures also show that the
regions are symmetric to the real axis and that the shape of the stability regions does not
vary. However, the figure illustrates that as α increases, the regions appear to be enlarged.

The stability regions for the explicit method of FAM22 are also illustrated in Fig. 2 for
α = 0.3, 0.5, and 0.7. Based on the figure, it can be seen that as α increases, the regions
symmetric to the real axis are approaching the left side of the imaginary axis.

5 Implementation
5.1 Algorithm of the method
Foremost, the basic inputs are the values of endpoints a and b, the total number of intervals
N , and the value of α. As we are interested in solving FDE of single order, we also need
to input the initial value as y0. The procedure of implementation using FAM22 method is
illustrated as follows:

Step 1. Set t0 = a, t1 = b, y0 = c, α = alpha, �(α) = gamma, and h = b–a
N .

Step 2. For i = 0, 1, calculate the approximate value of y1 by using the fractional Euler
method [16] y(ti+1) = y(ti) + hα

�(α) (Fi).
Step 3. Next, the implementation using FAM22 begins for i = 2, 3, . . . , I in order to

obtain the approximate value y2, y3, . . . , yN . Steps 4–6 are iterated until yN is
achieved.

Step 4. Set t = a + ih.
Step 5. The method is implemented in a predictor–corrector numerical scheme.

Explicit formula of Equation (4) is used as the predictor. Implicit formula of (18)
which acts as the corrector is applied to obtain the desired approximate solution.
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Figure 1 Stability region for the implicit method of FAM22 as α = 0.3 – 0.7

Step 6. Calculate the absolute error using the formula error = |yi – Yi|, where yi is the
approximate solution and Yi is the exact solution. The output is the absolute
error at each point t.

Step 7. STOP.

6 Numerical examples and discussion
This research study includes solving five different types of FDE problems. Example 1 is a
FIVP with variable coefficients, while Example 2 is a simple linear FDE with the Mittag-
Leffler function as the exact solution. Example 3 is the FIVP system, which has an exact
solution when α = 1.0. Example 4 includes a nonlinear FDE initial value problem, whereas
Example 5 is a fractional Riccati differential equations application problem (FRDE)

All numerical examples are computed in C programming. Below are the notations used
in the tables:

N : Total number of interval.
P: Predictor.
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Figure 2 Stability region for the explicit method of FAM22 as α = 0.3 – 0.7

C: Corrector.
Approx.: Approximate solution y(t).

Error: Absolute error.
MXE: Maximum error.
EOC: Order of convergence.

FAM22: Fractional Adams method of explicit order 2, implicit order 2 (in this research).
FFDM: Fractional finite difference method [17].

2-BFBDF: 2-step Block fractional backward differentiation formula [1].
SFMoPF: Spline function method of polynomial form [14].

FVIM: Fractional variational iteration method [18].
MHPM: Modified homotopy perturbation method [19].
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6.1 Numerical examples
Example 1 FIVP with variable coefficients [17], given by

Dαy(t) =
40,320

�(9 – α)
t8–α – 3

�(5 + α/2)
�(5 – α/2)

t4–α/2 +
9
4
�(α + 1), y(0) = 0. (42)

The exact solution is y(t) = t8 – 3t4+α/2 + 9
4 tα .

Example 2 A simple linear fractional differential equation [20] is given by

Dαy(t) = –y(t), y(0) = 1. (43)

The exact solution is y(t) = Eα(–tα), where Eα(z) is the Mittag-Leffler function defined as
Eα(z) =

∑∞
k=0

zk

�(kα+1) .

Example 3 The system of FIVP [1] is given by

Dαy1(t) = y1(t) + y2(t), y1(0) = 0.

Dαy2(t) = –y1(t) + y2(t), y2(0) = 1.
(44)

The exact solution is y1(t) = et sin(t), y2(t) = et cos(t) when α = 1.0.

Example 4 A nonlinear initial value problem of FDE [14] is given by

Dαy(t) = (1 – y)4, y(0) = 1. (45)

The exact solution is y(t) = 1+3t–(1+6t+9t2)
1
3

(1+3t) as α = 1.0.

Example 5 An application problem of fractional Riccati differential equations [18] is given
by

Dαy(t) = –y2(t) + 1, y(0) = 0. (46)

The exact solution is y(t) = e2t–1
e2t+1 when α = 1.0.

6.2 Discussion
Table 1 presents the absolute error at each point t for solving Example 1, where α =
0.10, 0.30, 0.50, 0.70, 0.90 at different number of intervals N . According to the table, ac-
curacy improves as N increases and α approaches 1.0. Based on the table, as a large gap
of α is chosen, the obvious improvement in the accuracy can be seen, especially at t = 1.0
for respective h = 10–3, 10–4. For comparison purpose, Table 2 shows the absolute error at
each point t between α = 0.20 and 0.50 using FAM22 and the existence method FFDM.
As shown in the table, FAM22 is able to produce comparable results as FFDM, and it was
able to perform better as the value of α increased. Figure 3 displays the performance graph
of approximate solutions for N = 10, 100, 1000 and alpha = 0.50 when solving Example 1,
where the graph indicates that as the number of intervals for each point N increases, the
approximate solutions approach the exact solution.
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Table 1 Absolute error for solving Example 1 using FAM22

t α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

N = 10
0.1 2.1237×10–2 1.6869×10–2 1.5034×10–2 1.1942×10–3 9.4858×10–5

0.2 3.4132×10–1 2.1077×10–2 1.6911×10–2 1.0716×10–3 5.5759×10–5

0.3 2.2375×10–2 1.2294×10–2 9.5737×10–3 5.5784×10–4 1.9550×10–5

0.4 8.3608×10–1 4.0257×10–2 3.0489×10–3 1.6929×10–4 4.1245×10–4

0.5 2.4287×10–1 9.9985×10–2 3.3196×10–3 1.9016×10–4 6.8290×10–5

0.6 5.9337×10–2 2.0654×10–2 1.4528×10–3 3.4112×10–4 9.4593×10–4

0.7 1.1839×10–2 3.6469×10–3 3.4620×10–4 1.1934×10–4 1.0920×10–4

0.8 2.1256×10–1 5.4729×10–3 2.5639×10–4 1.6121×10–4 9.5445×10–4

0.9 1.3815×10–2 1.0644×10–2 4.3516×10–3 1.6825×10–4 4.7081×10–4

1.0 1.4196×10–2 2.2823×10–3 2.0042×10–3 1.1475×10–3 1.1258×10–4

MXE (P) 8.9981×10–1 6.1012×10–1 2.6222×10–2 1.2265×10–3 9.3398×10–4

MXE (C) 8.3608×10–1 9.9985×10–2 1.6911×10–2 1.1942×10–3 9.4593×10–4

N = 100
0.1 1.8929×10–3 1.1275×10–3 2.2043×10–4 2.8474×10–5 1.9437×10–6

0.2 2.0568×10–4 4.1104×10–4 4.3601×10–5 5.5340×10–6 3.0493×10–6

0.3 1.2279×10–4 2.1909×10–4 1.4540×10–5 3.0654×10–5 2.9076×10–6

0.4 1.9977×10–2 1.0491×10–4 4.1222×10–4 1.0029×10–5 1.1102×10–4

0.5 2.0961×10–2 6.5845×10–5 2.9836×10–4 2.4317×10–4 2.4317×10–4

0.6 2.9182×10–3 2.5162×10–5 2.5287×10–4 4.8042×10–4 2.8421×10–4

0.7 2.4222×10–3 1.3609×10–5 2.5527×10–4 2.0413×10–4 4.7843×10–4

0.8 3.0189×10–3 1.6910×10–4 2.1368×10–4 1.1368×10–4 6.9968×10–4

0.9 2.3863×10–3 2.7373×10–3 2.6067×10–4 1.2458×10–4 8.4414×10–5

1.0 2.2487×10–4 9.1943×10–4 3.8386×10–4 5.3033×10–5 3.1828×10–5

MXE (P) 3.9876×10–2 5.1160×10–2 4.7111×10–3 8.1344×10–4 6.9879×10–4

MXE (C) 2.0961×10–2 1.1275×10–3 4.1222×10–4 4.8042×10–4 4.7843×10–4

N = 1000
0.1 2.3829×10–6 1.2597×10–6 4.1370×10–7 2.0759×10–7 4.5297×10–8

0.2 3.8739×10–5 6.2953×10–6 4.2549×10–6 4.2424×10–6 1.3459×10–6

0.3 1.7056×10–4 3.4361×10–5 2.3979×10–5 2.1452×10–6 3.7382×10–6

0.4 2.0515×10–4 1.1117×10–4 7.9413×10–5 5.1713×10–5 2.8182×10–5

0.5 3.1833×10–4 2.6778×10–5 1.9476×10–4 9.4507×10–5 3.4317×10–5

0.6 3.4375×10–4 5.2858×10–5 3.8462×10–4 1.6811×10–4 1.8441×10–5

0.7 2.0771×10–4 8.9072×10–4 6.4326×10–4 2.6662×10–4 2.7278×10–5

0.8 2.9196×10–4 1.2836×10–4 9.0151×10–4 3.5514×10–4 2.4969×10–5

0.9 1.1469×10–4 1.4765×10–4 9.5666×10–4 3.3925×10–4 6.5225×10–5

1.0 1.2166×10–4 8.2634×10–4 3.0109×10–4 4.6796×10–5 2.5072×10–6

MXE (P) 1.4329×10–3 1.0997×10–3 1.0342×10–3 4.8332×10–4 8.9883×10–5

MXE (C) 3.4375×10–4 8.9072×10–4 9.5666×10–4 3.3925×10–4 6.5225×10–5

EOC (P) 1.44 1.67 0.66 0.23 0.89
EOC(C) 1.60 1.56 1.81 1.54 1.86

Table 2 Comparison of absolute error for solving Example 1 using FAM22 and FFDM as N = 100

t α = 0.20 α = 0.50

FFDM FAM22 FFDM FAM22

0.1 5.0290×10–3 4.0035×10–6 1.2319×10–2 2.2043×10–6

0.2 2.2890×10–3 7.4119×10–5 5.9930×10–3 4.3601×10–5

0.3 1.4730×10–3 3.9708×10–5 3.9660×10–3 1.4540×10–5

0.4 1.0710×10–3 6.2716×10–4 2.9960×10–3 4.1222×10–4

0.5 8.9700×10–4 3.0469×10–4 2.5090×10–3 2.9836×10–4

0.6 7.5900×10–4 2.5632×10–4 2.2930×10–3 2.5287×10–4

0.7 6.6200×10–4 2.4127×10–4 2.2130×10–3 2.5527×10–4

0.8 6.5400×10–4 2.3682×10–4 2.1430×10–3 2.1368×10–4

0.9 5.8800×10–4 1.7271×10–3 1.8600×10–3 2.6067×10–4

1.0 5.1200×10–4 1.1196×10–3 1.1620×10–3 1.8386×10–4
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Figure 3 Graph of approximate solution y(t) against point t as α = 0.50 for solving Example 1 using FAM22

Figure 4 Graph of approximate solution y(t) against point t as α = 0.50 for solving Example 2 using FAM22

Table 3 in Example 2 shows the absolute error of solving a simple fractional differential
equation with the Mittag-Leffler function as the exact solution for α = 0.3, 0.5, 0.7 with
respective step sizes of h = 10–3, 10–4 at each point t. It can be observed in the table that
as α increases, the absolute error reduces. Furthermore, when the step size h decreased,
FAM22 demonstrated improved accuracy. Figure 4 depicts the performance graph for
solving Example 2, where the graph shows that as the number of intervals N increases,
the approximate solutions clearly approach the exact solution.

Table 4 shows the absolute error at each point t when α = 1.0 with different number of
point intervals N = 10, 100, and 1000 by using the proposed method FAM22 for solving
Example 3. Based on the table, better accuracy was obtained as N increased. This implies
that as N increases, the approximate solution when α = 1.0 at each point t is closely ap-
proaching the exact solution. Besides, as we compare the maximum error obtained using
FAM22 and the existing method 2-BFBDF as shown in Table 5, it can be seen that FAM22
produces either comparable or slightly better accuracy compared to 2-BFBDF. The graphs
of approximate solutions y1 and y2 in the case of various values of α as N = 100 for solving
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Table 3 Absolute error for solving Example 2 using FAM22

t α = 0.30 α = 0.50 α = 0.70

N = 10
0.1 3.2216×10–2 2.3213×10–3 1.5385×10–3

0.2 4.4606×10–1 2.5222×10–3 1.4874×10–3

0.3 4.3647×10–1 2.2733×10–3 1.3271×10–3

0.4 4.1044×10–2 2.0532×10–3 1.1903×10–3

0.5 3.8532×10–2 1.8714×10–3 1.0719×10–3

0.6 3.6307×10–2 1.7175×10–3 9.6760×10–4

0.7 3.4316×10–2 1.5845×10–3 8.7453×10–4

0.8 3.2472×10–2 1.4673×10–3 7.9069×10–4

0.9 3.0692×10–2 1.3624×10–3 7.1464×10–4

1.0 2.8899×10–2 1.2673×10–3 6.4525×10–4

MXE (P) 4.3321×10–1 2.3999×10–3 1.5621×10–3

MXE (C) 4.4606×10–1 2.5222×10–3 1.5385×10–3

N = 100
0.1 1.3802×10–2 4.5839×10–4 2.3083×10–4

0.2 1.1960×10–2 4.6889×10–4 1.9921×10–4

0.3 1.0771×10–2 4.0123×10–4 1.7128×10–4

0.4 9.8697×10–3 3.4551×10–4 1.4545×10–4

0.5 9.1203×10–3 2.9771×10–4 1.2110×10–4

0.6 8.4456×10–3 2.5569×10–4 9.7922×10–5

0.7 7.7904×10–3 2.1807×10–4 7.5770×10–5

0.8 6.2013×10–3 1.8385×10–4 5.4552×10–5

0.9 4.3485×10–3 1.5222×10–4 5.4214×10–5

1.0 2.4687×10–3 1.2240×10–4 4.4716×10–5

MXE (P) 1.4502×10–2 4.9911×10–4 2.2198×10–4

MXE (C) 1.3802×10–2 4.6889×10–4 2.3083×10–4

N = 1000
0.1 1.3587×10–3 2.3047×10–4 2.3902×10–5

0.2 1.2134×10–3 1.7297×10–4 4.3898×10–6

0.3 1.0996×10–3 1.3013×10–4 2.4291×10–6

0.4 9.8168×10–4 9.5146×10–5 5.0362×10–6

0.5 8.4478×10–4 6.5135×10–5 3.3773×10–6

0.6 6.7965×10–4 3.8351×10–5 3.2049×10–6

0.7 4.7942×10–4 4.3431×10–5 2.9736×10–6

0.8 2.3848×10–4 2.2925×10–5 2.1809×10–6

0.9 4.8087×10–5 3.6124×10–5 2.3275×10–5

1.0 3.8468×10–4 6.3798×10–5 3.9177×10–5

MXE (P) 9.9923×10–3 3.7298×10–4 3.2240×10–5

MXE (C) 9.8168×10–3 2.3047×10–4 3.9177×10–5

EOC (P) 1.49 0.68 0.84
EOC (C) 1.51 1.74 1.81

Example 3 are also presented in Figs. 5 and 6. The figures illustrate that as α increases, the
approximate solutions are indeed approaching the exact solution.

In addition, the numerical results in the form of approximate solution and absolute er-
ror when α = 1.0 at each point t for solving a problem of nonlinear FDE are tabulated
in Table 6. The results show that as the number of point intervals N increases, the ab-
solute error decreases. For better analysis, the results for solving Example 4 using the
FAM22 method are compared to those of the existing method SFMoPF. The compari-
son results are shown in Table 7 where FAM22 managed to achieve comparable results as
SFMoPF. The graph of solving Example 4 using FAM22 is also included in Fig. 7 where
the approximate solution can be clearly seen approaching the exact solutions as α in-
creases.
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Table 4 Absolute error for solving Example 3 using FAM22 as α = 1.0

t α = 1.00

N = 10 N = 100 N = 1000

0.1 2.7392×10–4 5.7294×10–6 6.1875×10–7

0.2 1.4233×10–4 5.7586×10–6 5.9900×10–7

0.3 4.9600×10–4 4.9114×10–6 5.9501×10–7

0.4 1.5393×10–4 4.4170×10–6 5.2650×10–7

0.5 2.8864×10–4 4.2112×10–6 4.6503×10–7

0.6 4.7404×10–4 4.0345×10–6 4.1340×10–7

0.7 6.8287×10–4 3.2814×10–6 3.5839×10–7

0.8 9.2013×10–4 2.7075×10–6 3.0094×10–7

0.9 1.1969×10–4 2.2386×10–6 2.2808×10–7

1.0 2.2211×10–3 1.4694×10–6 1.4545×10–7

MXE (P) 2.6881×10–3 6.3300×10–6 7.0285×10–7

MXE (C) 2.2211×10–3 5.7586×10–6 6.1875×10–7

EOC (P) 1.56
EOC (C) 2.59

Table 5 Comparison of maximum error as α = 1.0 for solving Example 3 using FAM22 and 2-BFBDF

N α = 1.0

FAM22 2-BFBDF

5 2.6541×10–2 6.6470×10–2

10 2.2211×10–3 5.2760×10–3

20 1.7620×10–4 9.8390×10–4

40 3.4102×10–5 2.0730×10–4

80 2.8172×10–6 4.7170×10–5

Figure 5 Graph of approximate solution y1(t) against point t as N = 100 for solving Example 3 using FAM22

Table 8 shows the result on the absolute error at each point t for solving the FRDE
problem by using the proposed method FAM22 as Example 5. The results are presented
when α = 1.0 for different interval N = 10, 100, and 1000. According to the table, it can
be seen that the accuracy of FAM22 is better as N increases. It implies that the approx-
imate solution approaches the exact solution for smaller value of h. For better analysis,
the graph of solving the FRDE problem using FAM22 is visualized in Fig. 8 for N = 10
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Figure 6 Graph of approximate solution y2(t) against point t as N = 100 for solving Example 3 using FAM22

Table 6 Approximate solution and absolute error as α = 1.0 for solving Example 4 by using FAM22

t Exact N = 10 N = 100 N = 1000

Approx. Error Approx. Error Approx. Error

0.1 8.3756×10–2 0.0000 ×100 8.3756×10–2 2.6591×10–2 2.1643×10–3 8.3034×10–2 2.2180×10–4

0.2 1.4504×10–1 8.2805×10–2 6.2234×10–2 1.3962×10–1 5.4235×10–3 1.4448×10–1 1.6167×10–4

0.3 1.9265×10–1 1.4567×10–1 4.6974×10–2 1.8833×10–1 4.3138×10–3 1.9219×10–1 1.5978×10–4

0.4 2.3116×10–1 1.9381×10–1 3.7348×10–2 2.2761×10–1 3.5526×10–3 2.3077×10–1 2.2008×10–4

0.5 2.6324×10–1 2.3246×10–1 3.0779×10–2 2.6024×10–1 3.0022×10–3 2.6289×10–1 2.4983×10–4

0.6 2.9056×10–1 2.6453×10–1 2.6024×10–2 2.8797×10–1 2.5881×10–3 2.9026×10–1 1.0214×10–4

0.7 3.1423×10–1 2.9179×10–1 2.2436×10–2 3.1196×10–1 2.2667×10–3 3.1396×10–1 2.7299×10–4

0.8 3.3503×10–1 3.1539×10–1 1.9641×10–2 3.3302×10–1 2.0109×10–3 3.3478×10–1 2.4986×10–4

0.9 3.5351×10–1 3.3610×10–1 1.7408×10–2 3.5171×10–1 1.8033×10–3 3.5328×10–1 2.3113×10–4

1.0 3.7009×10–1 3.5451×10–1 1.5588×10–2 3.6847×10–1 1.6317×10–3 3.6988×10–1 2.1569×10–4

MXE (P) 4.9989 ×10–2 2.1009 ×10–2 1.1232 ×10–3

MXE (C) 4.7348 ×10–2 5.4235 ×10–3 2.7299 ×10–4

EOC (P) 1.27
EOC (C) 1.24

Table 7 Comparison of absolute error as α = 1.0, N = 10,000 for solving Example 4 using FAM22 and
SFMoPF

t Exact α = 1.0

FAM22 SFMoPF

0.1 8.3756×10–2 8.6456×10–5 9.3660×10–5

0.2 1.4504×10–1 8.0214×10–5 1.1397×10–4

0.3 1.9381×10–1 7.7033×10–5 1.1162×10–4

0.4 2.3116×10–1 7.5360×10–5 1.0297×10–4

0.5 2.6324×10–1 6.4478×10–5 9.3223×10–5

0.6 2.9056×10–1 6.4037×10–5 8.4033×10–5

0.7 2.1423×10–1 5.3851×10–5 7.5850×10–5

0.8 2.3503×10–1 4.3814×10–5 6.8710×10–5

0.9 3.5351×10–1 3.3865×10–5 6.2520×10–5

1.0 3.7009×10–1 3.1967×10–5 5.7152×10–5

when α = 0.75, 0.85, 0.90, 0.95, 1.0. According to the graph, the approximate solutions y(t)
approach the exact solution when α increases. In the interim, when α = 1.0, Fig. 8 shows
that the approximate solution is in line with the exact solution.
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Figure 7 Graph of approximate solution y(t) against point t as N = 1000 for solving Example 4 using FAM22

Table 8 Absolute error for solving Example 5 using FAM22 as α = 1.0

t α =1.00

N = 10 N = 100 N = 1000

0.1 0.0000 ×100 0.0000 ×100 0.0000 ×100

0.2 9.5000×10–5 8.7304×10–6 9.8045×10–7

0.3 1.8121×10–4 1.5174×10–5 1.5844×10–6

0.4 2.5921×10–4 2.2295×10–5 2.2901×10–6

0.5 3.2978×10–4 3.8738×10–5 3.4286×10–6

0.6 3.9363×10–4 4.4568×10–5 4.5064×10–6

0.7 4.5139×10–4 4.9843×10–5 5.0292×10–6

0.8 5.0366×10–4 5.4616×10–5 5.5022×10–6

0.9 5.5094×10–4 5.8935×10–5 5.9302×10–6

1.0 5.9372×10–4 6.2843×10–5 6.3175×10–6

MXE (P) 7.7702×10–4 6.9950×10–5 1.0259×10–5

MXE (C) 5.9372×10–4 6.2843×10–5 6.3175×10–6

EOC (P) 1.04
EOC (C) 2.06

This paper also includes the comparison between FAM22 and the existing methods
FVIM and MHPM when solving FRDE, as presented in Table 9. Based on the compar-
ison table, FAM22 produces a comparable result as the previous methods. It follows that
FAM22 is also able to perform well in solving nonlinear FDEs [21].

The order of convergence (EOC) for each examples are calculated by using the general
formula of

EOC = log10

(
MXE(h)

MXE(h/10)

)
. (47)

The order of convergence is calculated for both predictor and corrector methods. Based
on the result, it can be seen that the order of convergence for corrector method is better
compared to the predictor method. This achieved our goal of obtaining better numerical
results as we solved the FDE problem using a predict–correct numerical scheme. Besides,
for corrector method, in terms of the order of convergence, all examples have success-
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Figure 8 Graph of approximate solution y(t) against point t as N = 10 for solving Example 5 using FAM22

Table 9 Comparison of approximate solution and absolute error as α = 1.0, N = 10 for solving
Example 5 using FAM22, FVIM, and MHPM

t Exact FVIM MHPM FAM22

Approx. Error Approx. Error Approx. Error

0.1 9.9667×10–2 9.9967×10–2 0.0000 ×100 9.9667×10–2 0.0000 ×100 9.9967×10–2 0.0000 ×100

0.2 1.9738×10–1 1.9738×10–1 0.0000 ×100 1.9738×10–1 0.0000 ×100 1.9739×10–1 9.5000×10–5

0.3 2.9131×10–1 2.9132×10–1 8.0000×10–6 2.9131×10–1 0.0000 ×100 2.9133×10–1 1.8121×10–4

0.4 3.7995×10–1 3.8001×10–1 5.7000×10–5 3.7994×10–1 4.0000×10–6 3.7998×10–1 2.5921×10–4

0.5 4.6212×10–1 4.6234×10–1 2.5800×10–4 4.6208×10–1 3.9000×10–5 4.6215×10–1 3.2978×10–4

0.6 5.3705×10–1 5.3792×10–1 8.7400×10–4 5.3686×10–1 1.9200×10–4 5.3709×10–1 3.9363×10–4

0.7 6.0437×10–1 6.0677×10–1 2.4010×10–3 6.0363×10–1 7.3600×10–4 6.0442×10–1 4.5139×10–4

0.8 6.6404×10–1 6.6970×10–1 5.6590×10–3 6.6171×10–1 2.3300×10–3 6.6409×10–1 5.0366×10–4

0.9 7.1630×10–1 7.2814×10–1 1.1842×10–2 7.0992×10–1 6.3780×10–3 7.1685×10–1 5.5094×10–4

1.0 7.6159×10–1 7.8413×10–1 2.2532×10–2 7.4603×10–1 1.5562×10–2 7.6218×10–1 5.9372×10–4

fully satisfied second order accuracy, except for Example 4, which produced the first order
accuracy. This could be because of the complexity of the example. Example 4 is an FDE
of a nonlinear initial value problem. According to the investigation, as the computation
for the approximate solution became more complicated, the accuracy may have been af-
fected. However, when the absolute error acquired for solving Example 4 using FAM22 is
compared to the existing method SFMoPF, it can be seen that FAM22 gives results that
are comparable or show slightly better accuracy than the existing method.

7 Conclusion
This research paper has constructed derivation, analysis as well as the numerical experi-
ment for the proposed method, fractional Adams method of explicit order 2, implicit order
2 (FAM22). Based on the experiment, FAM22 is proved to be able of achieving compara-
ble results as the existing methods for the purpose of solving both linear and nonlinear
FDE. The outcome for an increment in the order of FDE, α is also investigated where, as α

increases and approaches 1.0, the results yield better accuracy. In addition, the numerical
results also validate the convergence analysis where the approximate solutions indeed con-
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verge as the step size h decreases. Therefore, FAM22 can be a suitable alternative method
to preserve accuracy for solving different types of FDEs.
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