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1 Introduction

Simpson’s rules are well-known ways for numerical integration and numerical estimation
of definite integrals. This method is known as developed by Simpson (1710-1761). How-
ever, Kepler used the same approximation about 100 years ago, so that this method is also
known as Kepler’s rule. Simpson’s rule includes the three-point Newton—Cotes quadrature
rule, so estimation based on three-step quadratic kernel is sometimes called a Newton-
type result.

1) Simpson’s quadrature formula (Simpson’s 1/3 rule)
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2) Simpson’s second formula or Newton—Cotes quadrature formula (Simpson’s 3/8 rule).
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There are a large number of estimations related to these quadrature rules in the literature;

one of them is the following estimation known as Simpson’s inequality.
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Theorem 1 Suppose that F : [k1,k3] — R is a four times continuously differentiable map-
ping on (k1,ks), and let | F® oo = sup | F@(5)| < 00. Then we have the inequality

»€(k1,k2)
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Integral-type inequalities have numerous applications in the study of qualitative the-
ory of different classes of differential equations and partial differential equations; see, for
instance, [3, 4, 8, 11, 14, 15, 20-22] for more detail. In recent years, many authors have
focused on Simpson’s type inequalities for various classes of functions. Specifically, some
mathematicians have worked on Simpson’s and Newton’s type results for convex map-
pings, because convexity theory is an effective and powerful method for solving a large
number of problems that arise within different branches of pure and applied mathemat-
ics. For example, Dragomir et al. [9] presented new Simpson’s type results and their ap-
plications to quadrature formulas in numerical integration. Moreover, some inequalities
of Simpson’s type for s-convex functions are deduced by Alomari et al. [2]. Afterwards,
Sarikaya et al. [30] observed variants of Simpson’s type inequalities based on convexity.
In [25] and [26] the authors provided some Newton’s type inequalities for harmonic con-
vex and p-harmonic convex functions. Additionally, new Newton’s type inequalities for
functions whose local fractional derivatives are generalized convex are given by Iftikhar
et al. [17]. For more recent developments, the reader can consult [1, 5, 12, 27, 31].

2 Generalized fractional integrals
In this section, we summarize the generalized fractional integrals defined by Sarikaya and
Ertugral [29].

Let a function ¢ : [0, 00) — {0, 00) satisfy the following condition:

1
/ @dr«)o
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We define the following left-sided and right-sided generalized fractional integral opera-
tors, respectively, as follows:

K1+I¢.7-"(%) = /% (p(%%i__:)}'(r)dr, %> K1, (2.1)
1, F () = / : %}'(r)dt, < k. (2.2)

The most important feature of generalized fractional integrals is that they generalize
some types of fractional integrals such as the Riemann-Liouville fractional integral, k-
Riemann-Liouville fractional integral, Katugampola fractional integral, conformable frac-
tional integral, Hadamard fractional integral, etc. These important particular cases of the
integral operators (2.1) and (2.2) are mentioned below.

i) If we take ¢(7) = 7, then operators (2.1) and (2.2) reduce to the Riemann integral:

Ixff(%)=/ F(r)dr, x>«
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K2
[Kif(%):/ F(r)dr, <k,
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T@)’ then operators (2.1) and (2.2) reduce to the Riemann-Liouville

ii) If we take (1) =
fractional integral:

o _ 1 * _ p\a-1
IK{'}-(%)_ —F(a) «/:q Ge=-1) " F(r)dt, x>k,

I,‘j‘z_]-'(%) = ﬁ /Kz(t — ) VF(t)dr, <Ko

iii) If we take ¢(t) = @r %, then operators (2.1) and (2.2) reduce to the k-Riemann—
Liouville fractional integral:
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where
oo '[k
Ii(a) = / % e Fdr, R)>0,
0

and

Ti(a) = k&' (%) R(a) >0, k>0,

are given by Mubeen and Habibullah [24].
Sarikaya and Ertugral also established the following Hermite—Hadamard inequality for
the generalized fractional integral operators.

Theorem 2 ([29]) Let F : [k1,k2] — R be a convex function on [k1, k2] with k1 < ky. Then

we have the following inequalities for fractional integral operators:

Flir) + Flko)
2

1
]__(/q +K2> < F(l)[ L, F(k2) 4y I, Flic1)] < , (2.3)

2 K1+ ®

where the mapping A : [0,1] — R is defined by

u

mp[ﬂ@ﬂﬁm
0

In the literature, there are several papers on inequalities for generalized fractional inte-
grals. We refer the reader to [6, 7, 13, 16, 18, 19, 23, 28, 32].

3 Alemma
In this section, we propose a parameterized identity involving the ordinary first derivative
via generalized fractional integrals.
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Lemma 1 Let F : [k1,k2] — R be a differentiable function on («1,k2). If F' is continuous

on (K1, k2], then for A, u > 0, we have the identity

AWRF() + AL - x)f(%) + A - W F (k)

— [%JrI@f(KZ) +%_I¢f(lq)]

1

= (ky — K1)|:/2 (A(r) - A(l))\)]:/(l'l(2 +(1- t)/q) dt

0

+ /I(A(r) - AM)u)F'(ticr + (1 - 1)ky) dr:|. (3.1)

1

2
Proof Applying fundamental rules of integration, we have

1

/7 (A0) = A F (tiy + (1 - )iy ) d
0

_ 1 [A<l)_A(l)k]:<K1;K2>+AA(1)F(K1)—n;K2_I¢]:(K1)] (3.2)

Ky — K1 2

and
1
/ (A(T) - A@)p) F (ti2 + (1 = T)ky) d
%
1 1
- [A(l)(l — W F () - A(—)f(’“ - “)
Ky — K1 2 2
+ A(1)M]-‘<K1 -2H<2) _Kl;m]w]-‘(xz)], (3.3)
By adding (3.1) and (3.3) we obtain the required equality (3.1). O

Remark 1 If ¢(t) = T in Lemma 1, then Lemma 1 becomes [10, Lemma 2.1 for m = 1].

@

Corollary 1 In Lemma 1, if we set ¢(t) = 715, then we obtain the following new Riemann—

Liouville fractional integral identity:

K1+ K2

AFGer) + (i x)f( ) (- W F (k)

Mo +1)

- m[ ?«[1%;7:(/(2) +]@_-7:(K1)]

1

= (ky — /q)|:/2 (r“ - A)f’(rkz +(1- r)/q) dt

0

1
+/ ('[a—M)f/(TK2+(1—T)K1)dT].

1

2
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a

Corollary 2 In Lemma 1, if we set ¢(t) = #k@, then we obtain the following new k-
Riemann—Liouville fractional integral identity:

K1+ K2

AF () + (1 - x)f( ) (- WF (k)

Tila+1) -, )
) m[ whk}-(’(z) +J%—J<‘F(K1)]

1

= (ky —K1)|:/2 (r% —A)F (tha+ (1= 1)iy) dr

0

1

2

1
+ / ('L'% - ) F (ticr + (1 - t)/q) dr:|.

4 Simpson’s inequalities for generalized fractional integrals
In this section, we establish some new Simpson’s type inequalities for differentiable convex

functions via generalized fractional integrals.

Theorem 3 We assume that the conditions of Lemma 1 hold. If the mapping | F'| is convex

on [k1, k2], then we have the following inequality for generalized fractional integrals:

K1+ K2
2

AMLF(r) + A1) (i - x)f( ) + A - W F (k)

_ [%J‘p}"(/@) e I(p}"(/q)]‘

< (e = k) [|F () I () + TIE () } + | F () { TS (1) + TS ()} ], (4.1)

where

n‘f(x):/iqA(r)-Au)udr, Hg(k):/7(1—t)|A(t)—A(1)A|dt,
0 0

1 1
- [ c|aw-aulde, M- [ 0-0]am- a0 dr,

2

Proof By taking the modulus in Lemma 1 and using the properties of the modulus, we
obtain that

K1+ Ko
2

‘A(l)mxl) F AL - x)f( ) + A - W F (k)

— [%_‘_Lp./—'v(l(z) +

K1;'<2_I¢.7:(K1)]‘
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1
+ /1 |A(r) - A(l)u| |.7:/('CK2 +(1- r)K1)|dr:|. (4.2)
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Since the mapping |F’| is convex on [k1, k3], we have

‘Au)mxl) F AL - x)f(“l ;"2) + A - W F (k)

- [%+I‘p]:(l<2) +K1;K2 _ I(p.F(Kl)] ‘

< (k2 -,q)[\f’(@)\ </02 7| Ar) — AQ)A| dr + ﬁ

2

1 1
+ |]-"/(K1)|(/0 (1—t)|A(r)—A(1)A|dr+/; (1—T)|A(T)—A(1)M|df)]

1 t!A(t) — A(l),u}dr)

= (i = k) [| F ) { I () + TE ()} + | F () { TS (1) + TS ()} ],

which ends the proof. d

Remark2 In Theorem 3, if we take ¢(t) = 7, then Theorem 3 reduces to [10, Theorem 2.1
fors=m=1].

Corollary 3 In Theorem 3, if we use ¢(t) = %, then we obtain the following parameter-
ized Simpson’s type inequality for Riemann—Liouville fractional integrals:

K1+ K2

kf(/q)+(u—k)f( )+(1—u)f(f<z)

Ma+1) ., a
- 7[]& Fliz) +]K1+K2;F(K1)]
(K2 —Kl)a 7t 2
< (k2 = k))[|F Ge2) {1 () + TS ()} + [ F () {115 () + TIE ()} ], (4.3)
where
Mgy - —2p% -2 !
= o —_— + ,
! o+2 8  20+2(q +2)
2a a+ A 1
INOE Ao —— ¢ (x),
2= AT A
(o) & a2 5 2042 4 1
= o —_—— + —_—,
s =2t Tt T g 1)
and
(o) 200 w1 3 2+l 4 1 ()
= o —_—— + —_— .
sW=o Tt oM 20+ (o + 1) 3

o

Corollary 4 In Theorem 3, if we use ¢(t) = %, then we obtain the following parame-
terized Simpson’s type inequality for k-Riemann—Liouville fractional integrals:

K1+ K2

AF (k1) + (M—k)f( )+(1—u)f(1<2)

Fk(Ol +1

a
(kg — K1) %

[ @hk}-('fz) +1@_’k}_('€1)]
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< (ko = k)[| F () {TIf () + TS ()} + [ F o) [{T15 (0) + T ()} ], (4.4)
where
4 o a+2k 1
I (x) = @« ——
2/ 8 a+2k 2%
o+ 2K 25% (a+k )
g 2 at A 1 @
mig) = — % -2+~ _nf,
2 9 (Df_+k
k
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H%( o a2k 5 . 2°F +1
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o+ 2k 8 2°% (on;(Zk)
and
2 3 2% 41
o o sl + a
MG (W)= ———p'e = Spt g =TI
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Theorem 4 We assume that the conditions of Lemma 1 hold. If the mapping | F|P1, p1 > 1,
is convex on [k1, k2], then we have the following inequality of Simpson’s type for generalized

fractional integrals:

K1+ K2

‘A(l))»]:(/q) + A(L)(n — }»)7< ) + A1 = p)Flxa)
_ [%J,Iw}—(’@) e Lp]-"(/q)]‘
1 17% 1
< (ky— /<1)|:</ |A(r) - A(I)M dr) (H‘f()\)|]-"/(,(2){1’1 + Hg(x)|]-‘/(,(1)|m)71
0
1 1-50 L
+ ( f INGEFNGT dr) (MEW[F () [ + TG ()| F () 1) 71 } (4.5)
where T1{ (1), T15 (), 11§ (1), and 113 (1) are defined in Theorem 3.

Proof Reusing inequality (4.2), by the power mean inequality we have

‘A(mf(xl) F AL - x)f(%) + A - W F (k)

_ [%Jrl(ﬂ./—'-(l(z) e I(p}'(/q)]‘

; A
S(@—M)[(/ |A(T)—A(1)k|dt)
0

X (/2 |A(T) = AQA||F (Tiea + (1 = 2)ict) [ dr>p_l
0

1 1-50
+ (/1 |A(t) - A(l)u| dr)
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1 1
X (/ |A(t) - A(l),u| |]:/(‘L'K2 +(1- T)Kl)\p1 dt)p1 ]
%
Using the convexity of | F'|P1, we have

K1 + K2

’A(l)?»f('cl) + A1) (- MF(T) + AQ)(1 = ) F(k2)

— [%JrI&ﬂf(KZ) +Iq;Q_I¢f(K1)]‘

% -
< (ko _Kl)|:<./o |A(r) - A(l)k|dr>

x (|]'—/(K2)|pl /07 T|A(r) - A(D)A|dT

+ | F () [ / (1-1)|A(r) = A(D)A] dr)m

0
1 -0
+ (ﬁ ’A(‘L’) — A(l),u’ dr)

1
X (|-7:/(K2)|p1/; T|A(T)—A(1),u|dr

1 I
+|.7-"(/c1)|plﬁ (1—r)|A(r)—A(1)u|dt> ]

3 1_1%1 N
T Kl)[(/o 4@ - AWA dt) (M| F )| + TG F (k)| 7
1 ]_p% 1
' (/ |4 - A4 d’) (50| F o) + nzw)lﬁwim)ml

which finishes the proof. O

Remark 3 In Theorem 4, if we assume that ¢(t) = 7, then Theorem 4 reduces to [10, The-
orem 2.3 for s =m = 1].

Corollary 5 If we assume that ¢(t) = % in Theorem 4, then we have the following pa-
rameterized Simpson’s type inequality for Riemann—Liouville fractional integrals:

K1+ K2

AF (k1) + (M—A)F( )+(1—u)f(1<z)

Mo +1
_ M[ o F2) +]2‘15K2_f(x1)]‘

(k2 — K1)
< (kg — )[(TT9 () + TS ()71 ()| F (o) [P + TIE ()| F (k)1 71

(112 () + TS ) 71 (112 )| F ) [P+ TS )| F e ) 1 ), (4.6)

where T1{ (1), TIS (1), T1§ (), and 1§ () are defined in Corollary 3.
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ot

kr ( in Theorem 4, then we have the following pa-
rameterized Simpson’s type inequality for k-Riemann—Liouville fractional integrals:

Corollary 6 If we assume that ¢(t) =

W F (k) + (. —A)f(%) + (1= W) F(ka)

Fk(Ol + 1)

-t i N k]:(KZ)+]@—,k}—(K1)]
S(IQ_KI)[(HQ(AHH ()" ( nf( (W) F ()| +nf (W|F (e[ 71

(T (o) + T ()71 (T ()| F ) [P+ T1E )| F )Y 71, 4.7)

where l'[f ), Hf ), 1'137 (), and Hf () are described in Corollary 4.

Theorem 5 We assume that the conditions of Lemma 1 hold. If the mapping |F'|"\, r; > 1

is convex on [k1, k2], then we have the following inequality of Simpson’s type for generalized
fractional integrals:

‘Au)qu) F AL - x)f('“ ;"2) £ A - W F (k)

- [%+I‘/"F(K2) +¥7 I(p.F(Kl)]‘

= e - “1)[</2 |A(x) - A dr) " ('P(’QN” + 31F (k)| ) 0
0

8

1 p% ! r ! r %
+</1 |A(t)—A(1),u’pld'r> (3|]:(K2)| E;F|~7:(K1)| ) il, (4.8)

where + +o-=1
p1

Proof Reusing inequality (4.2), by the well-known Hoélder inequality we have

‘Au)qu) F AL - x)f('“ ;"2) £ A - W F (k)
- [%+I‘/"F(K2) +¥7 I(p.F(Kl)] ‘

< (ky —/q)|:</2 |A() = A" dr)pl (/2 |F (thy + (1= 0y )| dr) "
0 0
1 pl—l 1 %
+</1 |A(‘L’)—A(1),u’pld‘r> (/1 |f/(m2+(1-r),<1)|”dr) }

Since | F'|"t is convex, we have

‘Au)mxl) - A - x)f(’“ ;"2) + A - W F (k)

— [%_‘_Lp./—'v(l(z) +"1;"2_ I(p.F(Kl)]‘
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1

< (Kz—/q)[</2|A(r)—A(1)A|p1 dt)p_l
0
Pl [ rar e Fep [fa-oar)’
x(| " [ rar s [Pl [fa-o r)

1 i
+</1 |A(T) - A@) ™ dr>
1 1 i
X (|.7-"’(/c2)|r1/; tdt+|]:/(l<1)|r]/1 (l—T)dl') :|

2
1

= (2 —Kl)[( / YA - A" df>p_1<|}—/(’€2)|” + 3|f’(xl)|’1)ﬁ
0

8

1 T / " y "y &
+(/1 |A(T)_A(1),U«|pld‘r> <3|.7:(K2)| + | F'(k1)| ) il,

8
which completes the proof. O

Remark 4 In Theorem 5, if we set ¢(t) = 7, then Theorem 5 reduces to [10, Theorem 2.2

fors=m=1].

Corollary7 In Theorem 5, if we set ¢(t) = %, then we obtain the following parameterized

Simpson’s type inequality for Riemann-Liouville fractional integrals:

‘mxl) (1 —Mf(%) + (1= W) F ko)

B Mo +1)

(k2 — K1)

1 L , " , _
< ([ o) (LA
0

L / r 4 r L
([ ) (B 0y
2

Corollary 8 In Theorem 5, if we set ¢(t) = %, then we obtain the following parameter-

Vg, F62) # g Fle0)]

ized Simpson’s type inequality for k-Riemann—Liouville fractional integrals:

K1+ K2

’U:(IQH(M—?»)]:( )+(1—M)-7:(/<2)

Cil+1) 3
" e oyt Vg T ) + g Fle)]

= (K2 —K1)|:</2 |‘L'% _)L|191 d‘l,’)pl (|.7:/(I(2)|r1 +83|]:/(K1)|r1),1
0

1 + / r / r ,i
([t ) (BT T T

2
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5 Particular cases
In this section, we give some particular cases of our main results.

Remark 5 From Lemma 1 we get the following identities.

(1) For A = % and u = %, we have the new identity:

é[A(l)f"(Kl) + A(1)4J‘E(K1 ;’Q) + A(l)]—'(/cz)}

— [%Jrlw-}—(lcﬂ +%_I¢f(lq)]

= (kg — k1) X |:/07 (A(r) - %)]‘—/(tkz +(1- r)/q)dt

/1< ()_SA_(I)> (K2+(1—r)K1)dr].

2

—

(2) ForA=pu= 2, we have the identity

Flc) + F
g JpF (ko) +raapa L,F(k1)] - M

1
aml

1
= (”;ZA_(;“ (AQ) = 2A(0)) F (ties + (1= T)icy ) d

(3) For & =0and u = 1, we have the identity

+ 1
}'(Klsz) A(1)[”“”2 1, F (ko) #1321, F (k)]
1
2

(k2 — k1)
= A |:/0 A(T)F (‘L’K2 +(1- r)/q) dr

1
+ /1 (A(r) = A1) F (i + (1= T)k1) d‘L'i|.

3
Remark 6 From Corollary 1 we have the following identities.

(1) For A = % and u = %, we have the identity

é [f(,q) + 4f<"1 ’2“ KZ) + ;f(,cz)}

r 1
O s Flo) s Fl)]

(kg — K1)*
1

=(K2—K1)[/07<t°‘— %).7:/('(/(2+(1—T)K1)d‘[
1
+/1 <t°‘—g)]:’(r/c2+(1—r)/q)dr:|.

2
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(2) ForA=pu= %, we have the identity

P+l " Fk1) + Flka)
m[ %*,]:(KZ) +]w_f(l(1)] — f
_ 1
= (K22K1) /0 (I—ZTQ)-F/(TKZ*'(I—‘L')IQ) dr.

(3) For & =0and u =1, we have the identity

r 1
}_(/{1+K2) (o + )[]@+F(Kz)+]@,}—(’q)]

2 - (k2 —K1)*

1

= (ky — K1)|:/2 (r"‘ _ 1)]—'/(r/<2 +(1- r)/q) dr

0

1
+ ﬁ t“}"(tkz +(1- t)/q) dr:|.

2

Remark 7 From Corollary 2 we have the following identities.

(1) For A = % and u = g, we have the identity

é [f(,q) + 4}‘<K1 ; ”2> + ;f(,cz)}

— M[ o .7:(K2) +](')(t1%_,k]:(’cl)]

o K1+K9
(k2 — Kl)i 7 vk

= (ko —K1)|:/2 <T% - é)}-l(flcz +(1 —‘L')Kl)dr
0

+ /1<f% - g)f/(r/cz +(1-1)ky) dt].

(2) ForA=pu= %, we have the identity

D=

CRR N o Fk1) + Flicy)
m[ %tk}—(’@) +]%—,k]:(l(1)] S m—
(ky — K1) 1 o
= 5 A (1—2‘L'k)]: (TK2+(1—T)K1)d‘L"

(3) For A =0and p = 1, we have the identity

- a K1+k2
2 (kg —sy) % = 2 K

f<xl +K2> L@+ k) e o Fle g Fle)]

= (y — ,q)[/ (et 1) F (thy + (1 - 0)ir) dr

0

1
+ / ‘L'%]:,(‘L'Kz +(1- r)/q)dr].
1

2

Remark 8 From Theorem 3 we have the following new inequalities.
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(1) Forr == and u= g, we have the following Simpson’s type inequality for generalized

fract1onal integrals:

‘E[A(l)}_(/q) + A(1)4}"<

K1+ Ko

5 ) + A(l)]'"(Kz)}

_ [%+I¢J:(K2) g I(p]:(/q)]‘

coafreal ) )] ) )]

(2) Forr=p= % we have the following trapezoidal-type inequality for generalized

fractional integrals:

F k1) + F(ka)

[K1+K2 1, .7"(/(2)"’"1*"2 I ]:( 1)] 2

1
s

s(Kz_Kl)[|f/(K2>|{nfG) n@f’(l)} |]:’(K1)|{H“’<;)+Hf(%>}].

(3) For & =0and u = 1, we have the following midpoint-type inequality for generalized

fractional integrals:

K1+ K3 1
(572 - agp g ot v o)

< (k2 = k) [|F () {1 (0) + TS} + [FGer) [{TT5(0) + TIZ(M)}]-
Remark 9 From Corollary 3 we have the following inequalities.

(1) For = ¢ and u= 6, we have the following Simpson’s type inequality for

Rlemann Liouville fractional integrals:

E |:]-'(K1) + 4}'(K1 ; K2> + f(xz)}

r 1
C IO e F) + S Fl)]
(Kz—Kl)a 7t 2

el )l

(2) For A = u = 5, we have the following trapezoidal-type inequality for

Riemann— L10uv1lle fractional integrals:

IMa+1)

(kg — Kk1)*

Fk1) + Fka)
2

[ K1+K2 ]:(KZ) +](}¥1;K2_\F(K1)] —

il fC) )] ) )]
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(3) For A =0and p = 1, we have the following midpoint-type inequality for generalized
fractional integrals:

r 1
‘]__<K1 +K2> (@+1) []@J:(KZ) +I@_F(K1)]

2 ) (k-r)
< (k2 = k))[|F () {5 (0) + (W)} + | F' () [{115(0) + TIE (1)} ].
Remark 10 From Corollary 4 we have the following inequalities.

(1) For = % and u = %, we have the following Simpson’s type inequality for

k-Riemann-Liouville fractional integrals:

’% |:]-"(K1) + 4f("1 ; "2> + f(xz)}

Cila +k) ¢, 3
- m[ whk}"(fcz) +]K1;K2_,k}'(;<1)]‘

< (k2 - K1)|:|}—/(K2)‘{H1% (é) * Hf (2)}
Felfn (L) eni (2))]

(2) Fora=p= %, we have the following trapezoidal-type inequality for
k-Riemann-Liouville fractional integrals:

P e ¢ Flr) + Fle)
m[ %hk‘r(’ﬁ) +]w_’kf(lcl)] - 5

<t |Fealnf (3) e ni ()]
rwl|nf (2) s ()]

(3) For & =0and u = 1, we have the following midpoint-type inequality for
k-Riemann-Liouville fractional integrals:

K1+ K Cila +k) ¢, a
() - P P )+ T

2 ) (ke — K1) ¥
< (k2 — k) [|F () |[{TI (0) + TIF (1)} + | F (k) [{T15 (0) + T1f (1) }].
Remark 11 From Theorem 4 we have the following new inequalities.

(1) Fork:éandu:%
fractional integrals:

, we have the following Simpson’s type inequality for generalized

1

‘E |:A(1)]-'(/<1) + A(1)4]-'<

K1+ Ko

) + A(l)f(Kz):|

— [w+1¢f(l(z) +$_ I(p.F(Kl)]‘
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3 5r
S(@-h)[(/ A(ﬂ—%‘dr)
0
x | 17 1 | F () [P + 11 1 | F () [ g
1 6 2 2 6 1
(/)
(ﬂ 4 P1 5 4 1 p_ll
><< 3( >|.7:(K)| +H‘p(6>|]-"(/q)| > ]

(2) Forh=p= %, we have the following trapezoidal-type inequality for generalized

NG )-%(1) d‘L’) z

fractional integrals:

Fkr) + Flka)

1
2

A(l)[KWz L, F(2) +sya_ 1, Flir)]
5(:@—;@[(/05 A(f)—¥‘d1>l’%
(me (2 (3
(o)

x( ;f( >|f(x)|"‘+n¢(;>|f’(xl)|"‘>“].

(3) For & =0and u = 1, we have the following midpoint-type inequality for generalized

fractional integrals:

1
’F(Kl +K2) A(l)[K1+K2 1 ./T'V(KZ)"'”M2 1 ‘F(Kl)]‘

3 57 1
< (s - >[( / 1A() dr) (M O)|F ()| + T O)|F ()|
0

1 o N
¥ ( f A - AQ)] dt) (T2 Q)| F (k) [P + TIE ()| F (k) [) ]

Remark 12 From Corollary 5 we have the following inequalities.

(1) For A= é and pu = %, we have the following Simpson’s type inequality for
Riemann-Liouville fractional integrals:

‘%[f(mﬂél]—‘(lq;/cz) +]—'(K2):| M[ oy F62) + [ F 1))

(kg — K1)*

1 1\\ 71
<t (me(5) ()
1 ! P1 1 ! P1 p_ll
x(l‘[‘{‘<6>|}"(x2)| +H§‘<g>|]-"(/q)| )
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5 5\\ 71
' (“?(9 ' “3<a)>
X (Hg‘(g) |]-"’(K2)|p1 + HZ’(Z) |}"’(K1)|p1>p_1].

(2) ForA=p = %, we have the following trapezoidal-type inequality for

Riemann-Liouville fractional integrals:

Mo +1)

(kg — Kk1)*

1 1\ 5
<t (ni(3) +ms(5))

o 1 / P1 o 1 ) P1 711

x(l’[l(§>|}'(fc2)| +1‘I2(§>|}'(K1)| )
1 1\ 7

o(me(5) m(5))

o 1 -/ P1 [ 1 / P1 pil
x(ns(g)yﬂkz)y +l‘[4(§)]]-‘(/q)] ) ]

(3) For & =0and u = 1, we have the following midpoint-type inequality for generalized

Flx1) + Flka)
2

Viea Fle2) + T g Flo)] -

fractional integrals:

2 (k2 — K1)

‘}_<K1 + Kz) _ Pla+1) [ @g‘:(m) +]7?‘1;K2_]-'(K1)]‘
< (2 = ) (TI5(0) + T15(0)) 71 (TS (0)| F ()" + TI5(0)| F o)) 7
+ (M2 + T2 (1) 71 (MED)|F (o) + D) F () )71 -

Remark 13 From Corollary 6 we have the following inequalities.

(1) Fora = % and p = g, we have the following Simpson’s type inequality for

k-Riemann-Liouville fractional integrals:

‘% [f(xl) + 4]-‘(KI ; "2> + .7-'(/(2):|

(o + k
_ M[ ﬁ#+,kF(K2) +]?([1¥,k}-('(1)]’

(k2 — K1 ¥

1-L

e /] a /1 P1
=te-w)|(nf(3) +ni(5))

% 1 / pP1 % 1 / P1 p_ll
x(n1 <g)|}"(/<2)| Y <g>|]-"(/<1)| )
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o (5 ¢ /5\\ 7
(m(E) ()
x (HB’L: (g)|.7-"’(/<2)|p1 + Hf <2>|}"’(K1)|pl)p_l].

(2) For A = u = 1, we have the following trapezoidal-type inequality for

k-Riemann-Liouville fractional integrals:

Cila + k) ¢, " F (k1) + Fliz)
) _Kl)% [ %hk}-(@) +]%_,k}—(’fl)] - )
1-L

o ((2) 0i(2)

a /1 a 1%1
< (nf ()1l ok (5) 17wt

1-L
+ (l'[

@ xR

1 l_[% 1 1
()i (3))

% 1 / pP1 % 1 / P1 p_ll
><<1'I3 <§)|J-"(/<2)| o <§>|}"(K1)| ) ]

(3) For A =0and p = 1, we have the following midpoint-type inequality for

k-Riemann-Liouville fractional integrals:

K1+ K Tl +k) ¢, N
(5 e g Ut P s )

2 ) (KZ_KI)%

< (ky— Kl)[(nl%(o) + nz%(o))l’zf_ll (nl%(o)|}'/(fc2)|”’1 + Hz%(0)\J-'/(/<1)|’”1)"1_1

(M) + 1F )7 (T )| F )P+ T (O] F Ge)) 71 )

Remark 14 From Theorem 5 we have the following inequalities.

(1) Forx= % and p = g, we have the following Simpson’s type inequality for generalized

fractional integrals:

‘%[A(l)}'(/q) + A(1)4]-'(¥) + A(l)]:(/cz):|

- [w+1¢f(1(2) +¥7 I(p.F(Kl)]‘

([
(f

1

o ),:1 (|f’(xz)|’1 +31F (k)" ) g
dt

a0

A(T) - 3

5A(1)

A(T) —

7 ) (3|f'<xz>|'1 F1F )| ) ]
dr 3 .
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(2) Forr=p= 2, we have the following trapezoidal-type inequality for generalized

fractional integrals:

’A:(l )[K1+K2 I JT"(KZ)+K1+K2 I JT_'(KI)] w
=t _KI)K/ Jam- 22" dr)m (lp("zn” +83|}"(K1)|r1>r1
0
A(1)

A==

(/] K )A(SW(K”'” + |]-'/(K1)|r1>’11}
' 8 .

(3) For & =0and u = 1, we have the following midpoint-type inequality for generalized

fractional integrals:

K1+ K 1
‘f( 1 2)_m[%+]¢f(/cz)+fq;f<2_1¢f(lq)]‘

< (Kz—K1)|:</0§‘A(r)‘pl dt)m<|]:(K2)| ' ;3|]'—(K1)| 1)’1
! Pil 4 r 4 r %
+(/ |A(T)—1|p1dr> (W(Kﬂl ) ]

Remark 15 From Corollary 7 we have the following inequalities.

(1) For A== and uw= 6, we have the following Simpson’s type inequality for

Rlemann Liouville fractional integrals:

‘%[J:(Kl) +4]-'(/<1 erlcz) + f(Kz)i| - M[ GRS F i) +]KW2 -F(Kl)]‘
(12

—K1)”
< G- ([ |- ! o) (Lt 37
0
+ (/1 " df)”ll <3|F(Kz)|” + |F(x1)|”>’ll}.
1 8

8
(2) Forr=p= 2, we have the following trapezoidal-type inequality for

r"‘—l

o O
o=

6

Riemann-Liouville fractional integrals:

Mo +1)
m[ Kl*"Z ‘F(KZ) +]K1+K2 (Kl)] —

o
(f

Fk1) + Flka)
2

N

o 1
‘E’ _——
2

” ),:1 (|f’(xz)|’1 +31F (k1) ) 0
dt g

1

7 ) <3|]:/(K2)|r1 ¥ |f/(xl)|’1>fﬁ}
dr .
2 8

% — =

—_
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(2) For 2 =0and u =1, we have the following midpoint-type inequality for generalized

fractional integrals:

‘}_(Kl +K2> B (I"(a +1) [J% 00y Fli2) +]7?t1;K2_]:(K1)]‘

2 Ky —kep) AT
T 1
< (ko — K1) /%‘Ta|pldr P (F ()| + 31F (k) ) 1
< (k2 —K1 i -
1
31 F ()| + |.F/(K1)|r1>r1:|

1 r
+(/ |‘L'a—1|p1d1') (
1 8

Remark 16 From Corollary 8 we have the following inequalities.

(1) For A= % and pu = g, we have the following Simpson’s type inequality for

k-Riemann-Liouville fractional integrals:

’% []-"(/q) + 4]-'<Kl ; "2> + ]-"(Kz)}

_ Fk(Ol + k)

o

(ko —Kk1)¥

Vtiser,, F ko) + Ty _,kf(xl)]‘

Kl +l(2
—5=+k

1

o [
([

Tk - =
6
(2) For A = u = 3, we have the following trapezoidal-type inequality for
k-Riemann-Liouville fractional integrals:

« 1
Tk ——

6

1 1
1 )"1 <3|JT’(K2)I’1 + If’(Kl)I”)’l]
dr .

1 1
1 )‘”_1<|-7:/(l€2)|r1 +3|-7:/(Kl)|”>H
dr 5

8

Ti(a + k) [ a Fley) +]‘,’<#7,k.7:(lq)] B Flx1) -2F Flka)

g VSEC IS

(k2 —K1)%

1

o[
([

Tk — =
(3) For A =0and p = 1, we have the following midpoint-type inequality for

o« 1
Th—=
2

1 1

P Pr (3| F (k)| + | F (k) \ 1
dr 3 .

1 1
g )ﬂ<|f/(x2>|’1+3|f/(x1)|’1)ﬁ
dr 3

2

k-Riemann-Liouville fractional integrals:

- @ K1+K9
2 (k2 — Kl)% 7 ok

=l "‘”[( f etp df)“(WKz)I” - 3I}"(/<1)|’1>r1
0
31F (k)| + | F (1) | ) rll]

. o
+</ |T’<—1|pldt) (
1 8

2
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6 Application to some particular means
Let us recall the following means for real numbers «; and «,.
(1) The arithmetic mean of «1,k2 > 0 is
K1+ Ko

A=A(K1,K2)= ) .

(2) The generalized logarithmic mean of k1,5 > 0 is

K1 if k1 =Ko,
LVI = Ln(KI)KZ) = n+l_, n+l ne R\{—I,O}

K2 —K .
Do) LK1 7K

(3) The logarithmic mean of 1,3 > 0 is

K1 ifl(l =Ko,

g 1l
[ e 1 ifxL 7k

L =L(k1,k2) =

We further give some applications to above given means using the new inequalities.

Proposition 1 Let ky,k3 € R, 0 < k1 < Ky, and p € Z with |p| > 2. Then we have the follow-
ing inequalities:

12061, k2) — A (k] 2)| < @A(K

=

L,

(kg — K1)
|AP(K1,K2) - Ll[:(Klsz)| < ple

A(Kf_l,/cf_l).
Proof Using Remark 9, parts (2) and (3), for « = 1 and F () = 5¢”, we immediately obtain
the inequalities. 0

Proposition 2 Let k1,2 € R, 0 < k1 < ko, and p € Z with |p| > 2. Then we have the follow-
ing inequalities:

v - A )| < 2 a0,

plicy — K1)

AP (1, 162) = Ly (i1, k2) | < >

A 8.

Proof Using Remark 12, parts (2) and (3), for « = 1 and F(5¢) = »#, we immediately obtain
the inequalities. 0

Proposition 3 Let k1,k3 € R, 0 < k1 < k3, 0 € [K1, k3]. Then we have the inequality

[ A7 (e ko) = L7 (i1, k02) | < @A(Kfz,lczq).

Proof Using Remark 9, part (3), for « = 1 and F(x) = i, we immediately obtain the in-
equality. O
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Proposition 4 Let 1,k € R, 0 < k1 < k3, 0 ¢ [k, k3]. Then we have the inequality

|A™ (i1, K02) = L7 (K1, 102)| < @A(Kfz,lcz_z).

Proof Using Remark 12, part (3), for & = 1 and F(»r) = i, we immediately obtain the in-
equality. d

7 Concluding remarks

In this study, we proved some new bounds for Simpson’s inequalities for differentiable
convex functions via generalized fractional integrals. We also show that the results proved
here are a strong generalization of some already published ones. It is an interesting and
new problem that the forthcoming researchers can use the techniques of this study to
obtain similar inequalities for different kinds of convexity in their future work.
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