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Abstract
We consider the optimal control problem for stochastic differential equations (SDEs)
with random coefficients under the recursive-type objective functional captured by
the backward SDE (BSDE). Due to the random coefficients, the associated
Hamilton–Jacobi–Bellman (HJB) equation is a class of second-order stochastic PDEs
(SPDEs) driven by Brownian motion, which we call the stochastic HJB (SHJB) equation.
In addition, as we adopt the recursive-type objective functional, the drift term of the
SHJB equation depends on the second component of its solution. These two
generalizations cause several technical intricacies, which do not appear in the existing
literature. We prove the dynamic programming principle (DPP) for the value function,
for which unlike the existing literature we have to use the backward semigroup
associated with the recursive-type objective functional. By the DPP, we are able to
show the continuity of the value function. Using the Itô–Kunita’s formula, we prove
the verification theorem, which constitutes a sufficient condition for optimality and
characterizes the value function, provided that the smooth (classical) solution of the
SHJB equation exists. In general, the smooth solution of the SHJB equation may not
exist. Hence, we study the existence and uniqueness of the solution to the SHJB
equation under two different weak solution concepts. First, we show, under
appropriate assumptions, the existence and uniqueness of the weak solution via the
Sobolev space technique, which requires converting the SHJB equation to a class of
backward stochastic evolution equations. The second result is obtained under the
notion of viscosity solutions, which is an extension of the classical one to the case for
SPDEs. Using the DPP and the estimates of BSDEs, we prove that the value function is
the viscosity solution to the SHJB equation. For applications, we consider the
linear-quadratic problem, the utility maximization problem, and the European option
pricing problem. Specifically, different from the existing literature, each problem is
formulated by the generalized recursive-type objective functional and is subject to
random coefficients. By applying the theoretical results of this paper, we obtain the
explicit optimal solution for each problem in terms of the solution of the
corresponding SHJB equation.
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1 Introduction
Let (�,F ,P, {Fs}s≥0) be a complete filtered probability space, on which an r-dimensional
standard Brownian motion, B, is defined, where {Fs}s≥0 is a natural filtration generated by
B augmented by all the P-null sets in F . Let E and EFs be the expectation and the condi-
tional expectation with respect to Fs, respectively. For x, y ∈R

n, x� denotes the transpose
of x, 〈x, y〉 is the inner product, and |x| := 〈x, x〉1/2. Let Tr(·) be the trace operator. Let Sn

be the set of n × n real symmetric matrices. Let s ∈ [0, T] and x ∈ R
n be time and spatial

variables, respectively.
In this paper, we consider the stochastic optimal control with random coefficients and

the associated stochastic Hamilton–Jacobi–Bellman (SHJB) equation. Specifically, given
the following forward–backward stochastic differential equation (FBSDE):

⎧
⎪⎪⎨

⎪⎪⎩

dxt,a;u
s = f (s, xt,a;u

s , us) ds + σ (s, xt,a;u
s , us) dBs,

dyt,a;u
s = –l(s, xt,a;u

s , us, yt,a;u
s , zt,a;u

s ) ds + zt,a;u
s dBs,

xt,a;u
t = a, yt,a;u

T = m(xt,a;u
T ),

(1)

we formulate the stochastic control problem by defining the following value function:

V (t, a) = ess inf
u∈Ut,T

yt,a;u
t subject to (1),P-a.s. (2)

Note that in (1) and (2), f : � × [0, T] × R
n × U → R

n, σ : � × [0, T] × R
n × U → R

n×r ,
l : � × [0, T] × R

n × U × R × R
1×r → R, and m : � × R

n → R are random coefficients,
where U is the control space that is a nonempty compact subset of Rm. We note that (2)
is a class of recursive-type stochastic optimal control problems with random coefficients.

The first main objective of this paper is to obtain the dynamic programming principle
(DPP) and the verification theorem for the value function in (2), where the latter con-
stitutes a sufficient condition for optimality, provided that the associated SHJB equation
(given below) admits a unique solution. The second main objective of this paper is to study
the viscosity solution analysis of (2). That is, we show that the value function in (2) is the
viscosity solution to the SHJB equation given by

⎧
⎪⎪⎨

⎪⎪⎩

dV (s, x) = –H(s, x, (V , DV , D2V , q, Dq)(s, x)) ds + q(s, x) dBs,

(s, x) ∈ [0, T) ×R
n,

V (T , x) = m(x), x ∈R
n,

(3)

where H : �× [0, T]×R
n ×R×R

n ×S
n ×R

1×r ×R
r×n →R is the stochastic Hamiltonian

defined by

H(s, x, y, p, P, q, Q) = ess inf
u∈U

{
〈
p, f (s, x, u)

〉
+ Tr

(
σ (s, x, u)Q

)
(4)

+ l
(
s, x, u, y, q +

〈
p,σ (s, x, u)

〉)
+

1
2

Tr
(
σσ�(s, x, u)P

)
}

.

We also obtain regularities of V in (2) with respect to both time and spatial variables.
We should mention that by the coefficients in (1) and (2), the SHJB equation in (3) can
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be viewed as a class of second-order nonlinear stochastic partial differential equations
(SPDEs) driven by Brownian motion. As in SPDEs, the two unknown components, (V , q),
define the solution of (3), which are {Fs}s≥0-adapted stochastic processes.

The existence and uniqueness of (strong or weak) solutions to a class of SPDEs includ-
ing SHJB equations has been regarded as an important research topic, since Peng initiated
the problem in [1]. Specifically, [1] considered the stochastic optimal control problem with
random coefficients, where the SHJB equation was first introduced. The SHJB equation in
[1] is a special case of (3) in that l in (4) does not depend on y and q + 〈p,σ 〉 (equiva-
lently, l in (1) does not depend on y and z). In fact, unlike [1], due to the recursive-type
objective functional in (2), H , the drift term of the SHJB equation, depends on q, the sec-
ond component of its solution. In [1], the existence and uniqueness of the weak solution
was also shown via the Sobolev-space technique. Later, the approaches for the existence
and uniqueness of (strong or weak) solutions for a class of SPDEs were established in the
literature; see [2–9] and the references therein.

On the other hand, the existence and uniqueness of viscosity solutions for a class of SHJB
equations had been a long-standing open problem [10]. Recently, this was solved in [11].
Note that the SHJB equation in [11] is identical with that of [1] and therefore is a special
case of (3), for which l in (4) does not depend on y and q + 〈p,σ 〉 (equivalently, l in (1) does
not depend on y and z). Hence, the problem formulation (see (2) and (3)) and the main
results of this paper can be viewed as generalizations of those in [1, 11]. Below, we provide
a detailed literature review and the summary of the main results of this paper.

As mentioned above, (2) is a class of recursive-type stochastic optimal control prob-
lems with random coefficients. Here, “recursive” means that the objective functional is
also a dynamical system captured by the backward stochastic differential equation (BSDE)
(yt,a;u

s , zt,a;u
s )s∈[t,T] in (1), where the optimization constraint is described by the forward SDE

(xt,a;u
s )s∈[t,T] in (1). In fact, the motivation of studying recursive-type stochastic control

problems is to consider the general dynamic structure of the objective functional. For ex-
ample, the wealth process of investors in mathematical finance, the utility-maximization
model in economics, and the (continuous-time) principal-agent problem in economics
can be formulated using the framework of recursive-type BSDE objective functionals,
which describe the general dynamic behavior of the investor (agent) [12–15]. Theoreti-
cally, the recursive-type stochastic control problem, which was first studied by [16], can
be viewed as an extension of classical stochastic control problems (e.g., [17–20]) to the
case when the objective functional itself has a dynamic structure.

There are various problem formulations, approaches, and results for recursive-type
stochastic control problems. Specifically, [16] showed that the value function is the vis-
cosity solution to the associated Hamilton–Jacobi–Bellman (HJB) equation. Note that the
HJB equation in [16] can be regarded as a generalization of the classical HJB equations
(e.g., [17–20]), where the dynamic structure of the recursive-type BSDE objective func-
tional is embedded. Later, the results in [16] were generalized to the framework of two-
player zero-sum differential games in [21], to the reflected recursive objective functional in
[22], to the case with delay in [23], and to the risk-sensitive framework with the quadratic
BSDE in [14]. Further, various stochastic maximum principles for recursive-type problems
under different settings were established in [15, 24].

In stochastic optimal control, one can also formulate the problem with random coef-
ficients as in (2). The purpose of allowing for random coefficients in stochastic control
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problems and their applications is to describe general modeling frameworks and to cap-
ture random parameter variations due to imprecisions, such as inaccurate modeling, en-
vironment changes, random disturbances, and the high sensitivity of dynamical systems
[18, 25, 26]. From a theoretical perspective, stochastic control problems with random co-
efficients can be regarded as generalizations of classical stochastic control problems with
deterministic coefficients (e.g., [17–20]). We note that, as discussed in [1, 11, 25–28], the
approaches for solving stochastic control problems with random coefficients are different
from those for the case with deterministic coefficients.

The first notable result of stochastic optimal control problems with random coefficients
was obtained in [27] within the linear–quadratic (LQ) framework. The nonlinear stochas-
tic control problem with random coefficients was studied in [1]. As stated above, unlike
the case of deterministic coefficients, the HJB equation in [1] becomes the SHJB equation,
which is the second-order SPDE driven by Brownian motion. The verification theorem,
and the existence and uniqueness of the weak solution for the SHJB equation were also
studied in [1]. Recently, the existence and uniqueness of the viscosity solution to the SHJB
equation were studied in [11], where, as stated above, the SHJB equations in [11] and [1] are
identical. Note that by the preceding discussion, the stochastic optimal control problem
in [1, 11] is a special case of the problem in (2) (see Remark 2). Several different results for
stochastic LQ control problems with random coefficients can be found in [25, 26, 28–30]
and the references therein.

There are various applications of stochastic control with random coefficients and asso-
ciated SHJB equations (or SPDEs), which can be studied using the approaches established
in this paper. Specifically, optimizing of FitzHugh–Nagumo communication networks was
considered in [31, 32], where their problems can be generalized to the recursive-type prob-
lem studied in this paper. Various mathematical finance problems with random coeffi-
cients were considered in [26, 30, 33], which can be studied in different aspects using the
approach of this paper. We may also study a class of SPDEs including (3) for nonlinear
filtering in partially observed stochastic control problems and differential games [34–38].
The reader is referred to [26, 30, 33, 34, 37–42] and the references therein for applica-
tions of stochastic control with random coefficients in diverse fields, such as mathemati-
cal finance, economics, engineering, analysis of SPDEs, and mean-field-type interacting-
particle systems. Indeed, various applications of stochastic control problems with deter-
ministic coefficients in mathematical finance, economics, science, and engineering (see
[17–20] and the references therein) can be generalized to the recursive-type problem with
random coefficients of this paper to model the general dynamic behavior of the objective
functional and to capture random parameter variations due to imprecisions, such as inac-
curate modeling, environment changes, random disturbances, and the high sensitivity of
dynamical systems.

We should mention that the earlier results for recursive stochastic control problems
mentioned above (see [14, 16, 21–23] and the references therein) considered the case with
deterministic coefficients only. That is, their corresponding FBSDEs have deterministic co-
efficients. Hence, unlike (2) and (3), their value functions are deterministic, and their HJB
equations are deterministic PDEs. Moreover, the existing literature on stochastic optimal
control with random coefficients mentioned above (see [1, 11] and the references therein)
did not consider the case of recursive-type BSDE objective functionals. Accordingly, in
contrast to (3), the SHJB equation in [1, 11] cannot explain the dynamic structure of the
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objective functional, which is a special case of (3).1 We stress that a complete analysis for
the recursive-type stochastic control problem with random coefficients and its associated
SHJB equation, formulated, respectively, in (2) and (3), has not been presented in the exist-
ing literature, which we address in this paper. The detailed statements of the comparison
with the existing literature are given in Sect. 1.1.

We now summarize the main results of this paper:
(a) We formulate the recursive-type stochastic optimal control problem with random

coefficients given in (1) and (2).2 We obtain the dynamic programming principle
(DPP) for the value function in (2) (see Theorem 1), where, unlike the case with
deterministic coefficients, (2) is a random field [1, 11]. The DPP in Theorem 1 is
shown by using the backward semigroup associated with the recursive-type BSDE
objective functional and the precise estimates of BSDEs including the comparison
result. As a byproduct of the DPP, we are able to prove the continuity of the value
function with respect to time and spatial variables (see Corollary 1);

(b) We prove the verification theorem (see Theorem 2), which constitutes a sufficient
condition for optimality and characterizes the value function in (2), provided that
the smooth (classical) solution of the SHJB equation in (3) exists. To prove the
verification theorem, we use the Itô–Kunita formula along with the precise
estimates of BSDEs and the theory of linear BSDEs, which is different from the case
without recursive-type BSDE objective functionals in [1, Sect. 3.2] (see a related
discussion in Sect. 1.1);

(c) As an application of the verification theorem, we study the general indefinite
linear–quadratic (LQ) control problem with random coefficients, where the cost
parameters need not be (positive-) definite matrices. In particular, we characterize
the quadratic-type smooth solution of the SHJB equation in (3) for the LQ case.
Then, by applying the verification theorem of Theorem 2, we obtain an explicit
linear state-feedback optimal solution in terms of the solution of the corresponding
SHJB equation (see Proposition 2). This result can be viewed as an extension of
[25, 26, 43–45] to the problem with the recursive-type quadratic objective
functional (see a related discussion in Sect. 1.1);

(d) Note that in general, the smooth (classical) solution of the SHJB equation in (3) may
not exist. Hence, we study the existence and uniqueness of the solution under two
different weak-solution concepts, which leads to the characterization of the value
function in (2). First, in the appendix, under the structural assumptions on the
coefficients, we show the existence and uniqueness of the weak solution of the SHJB
equation in (3) via the Sobolev-space technique and the evolution-type BSDE theory
(see Theorem 6.1);

(e) Secondly, we show that the value function in (2) is the viscosity solution to the SHJB
equation in (3) (see Theorem 3). In particular, we provide the notion of viscosity
solutions for (3) (see Definition 2), where its definition is an extension of the
classical one (see [46]) to the case for SPDEs. Note that Definition 2 requires a class
of {Fs}s≥0-adapted stochastic processes that admits a Doob–Meyer-type

1As discussed, when l in (4) does not depend on y and q + 〈p,σ 〉, (equivalently, l in (1) does not depend on y and z), the
SHJB equation in (3) is reduced to the SHJB equation of [1, 11].
2As mentioned, the stochastic optimal control problem in [1, 11] is a special case of the problem in (2) of this paper (see
Remark 2).
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decomposition (or weakly differentiable); see the definition of S2
F in Definition 1. In

fact, we modify the notion of viscosity solutions in [11], where the class of functions
in S2

F converts (3) into the one unknown component of the SPDE. Then, using the
DPP and the precise estimates of BSDEs (including the continuity of the value
function), we prove that the value function in (2) is a viscosity solution to the SHJB
equation in (3) in the sense of Definition 2 (see Theorem 3), where its proof is
different from that of [11, Theorem 4.2] due to the presence of the recursive-type
objective functional (see a related discussion in Sect. 1.1). We also provide the
uniqueness of the viscosity solution for (3) under additional parameter assumptions
(including the superparabolic SPDE case) similar to [11] (see Theorems 4 and 5). We
mention that the general uniqueness result of the viscosity solution for (3) remains
an open problem, which we will address in the near future;

(f ) We consider two different applications of this paper arising in mathematical finance
and economics. The first example is the utility-maximization problem (Sect. 4.1),
whereas the second application is the European option-pricing problem (Sect. 4.2).
Both problems consider the case of recursive-type BSDE objective functionals and
are subject to random coefficients, which can be regarded as extensions of classical
problems studied in the literature (e.g., [12, 13, 20, 47, 48]). We apply the theoretical
results of this paper to obtain the explicit optimal solution for each problem in
terms of the solution of the SHJB equation in (3). In fact, the optimal solution of the
first problem (i.e., the utility-maximization problem) provides the optimal
investment strategy (see Proposition 3), while that of the second example (i.e., the
European option-pricing problem) characterizes the optimal portfolio strategy that
achieves the corresponding contingent claim for the investor (see Proposition 4).

We discuss several potential applications of the results presented in this paper. As noted
above, stochastic control problems can be applied to study various applications in fi-
nance, economics, science, and engineering. Then, these problems can be extended to
the recursive-type problem with random coefficients studied in this paper, which allows
capturing more practical situations, including the general dynamic behavior of the objec-
tive functional and the random parameter variations due to imprecisions.3 In fact, two
examples in the statement of (f ) can be regarded as possible applications of the results of
this paper in mathematical finance and economics. Another example would be the power-
adjustment control problem in wireless communication networks studied in [49, 50]. This
example can be studied using the formulation of this paper to describe more practical be-
havior such as the dynamic structure of optimal power adjustment and/or the unexpected
parameter fluctuations. Finally, the results of this paper can be applied to study the opti-
mization problem of FitzHugh–Nagumo neuron networks [31, 32].

The organization of the paper is as follows. Section 2 introduces the stochastic optimal
control problem with random coefficients given in (1) and (2). We obtain the DPP for (2)
and the verification theorem. We also consider the indefinite LQ problem in Sect. 2. In
Sect. 3, we provide the notion of viscosity solutions and then show that the value function
in (2) is the corresponding viscosity solution of (3). The uniqueness of the viscosity solu-
tion for (3) is also shown in Sect. 3. In Sect. 4, two different applications of this paper in

3In the introduction of this paper, various applications of stochastic control problems are discussed (see [12–15, 18, 20, 26,
30–33, 39] and the references therein). Note that these applications can be studied in different aspects using the approaches
of this paper.
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mathematical finance including the application of the SHJB equation in (3) are considered.
We conclude the paper in Sect. 5. In the appendix, we show the existence and uniqueness
of the weak solution to (3).

1.1 Comparison of the paper with the existing literature
This paper extends the results in the existing literature in several different directions. Be-
low, we provide the detailed comparisons (the statements given earlier in (a)–(f )) with the
existing literature.

The statement in (a) generalizes the results of [11, Theorem 3.4] to the case of recursive-
type BSDE objective functionals. In particular, unlike [11, Theorem 3.4], to prove the DPP
(see Theorem 1), we have to use the semigroup property of the auxiliary BSDE associated
with the recursive-type objective functional (see (9)) and the precise estimates of BSDEs
including the comparison result. Furthermore, the proof for the continuity of the value
function in our paper (see Corollary 1) requires the application of the DPP in Theorem 1
and the precise estimates of BSDEs, which must be different from [11, Proposition 3.3].

Regarding the statement in (b), the verification theorem of this paper (see Theorem 2)
extends [1, Sect. 3.2] to the case of recursive-type BSDE objective functionals with ran-
dom coefficients. We note that the proof for Theorem 2 is necessarily different from that
of [1, Sect. 3.2]. Specifically, unlike [1, Sect. 3.2], to cope with the stochastic nature of the
SHJB equation in (3) with the presence of generalized components y and q + 〈p,σ 〉 in l of
(4), we have to use the Itô–Kunita’s formula and the precise estimates of BSDEs, includ-
ing the linear BSDE theory and the comparison result, to obtain the desired optimality
condition. In addition, as for the statement in (d), in the appendix, we show the existence
and uniqueness of the weak solution to the SHJB equation in (3) via the Sobolev-space
technique and the evolution-type BSDE theory (see Theorem 6.1), which can be viewed
as an extension of [1, Sect. 4] to the case of recursive-type objective functionals.

As seen from the statement in (c), we generalize the earlier LQ results in [25, 26, 43–45]
to the problem of the recursive-type quadratic objective functional with random coeffi-
cients. In particular, in contrast to [25, 26, 43–45], due to the dependence of l in (4) on y
and q + 〈p,σ 〉, the standard completion of squares method cannot be applied, and we have
to solve the complex SHJB equation in (3) for the LQ case to characterize the correspond-
ing optimal solution via the verification theorem (see Proposition 2). Note that when l in
(4) does not depend on y and q + 〈p,σ 〉, Proposition 2 degenerates to [26, Theorem 1] and
[44, Theorem 5.1], in which case we can simply use the completion of squares technique
to obtain the optimal solution instead of solving the SHJB equation (see [26, Theorem 1]).

As for the statement in (e), Theorem 3 shows that the value function in (2) is the viscosity
solution to the SHJB equation in (3) in the sense of Definition 2, which is an extension of
[11, Theorem 4.2] to the case for recursive-type BSDE objective functionals with random
coefficients. We mention that the proof for Theorem 3 is completely different from that of
[11, Theorem 4.2] due to the presence of generalized components y and q + 〈p,σ 〉 in l of
(4). Specifically, in contrast to [11, Theorem 4.2], in the proof of Theorem 3, the auxiliary
BSDE in terms of the value function has to be constructed, which together with the Itô–
Kunita formula, the DPP, and the precise estimates of BSDEs (including the linear BSDE
theory and the continuity of the value function) shows that the value function in (2) is the
viscosity solution to the SHJB equation in (3). We mention that such an extended analysis,
including the construction of the auxiliary BSDE and the application of the linear BSDE
theory, was not presented [11, Theorem 4.2].
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Regarding the statement in (f ), we provide different aspects of the classical utility max-
imization and European option-pricing problems studied in the literature (e.g., [12, 13,
20, 47, 48]). In particular, these two applications (see Propositions 3 and 4) consider the
case of recursive-type BSDE objective functionals with random coefficients, which have
not been studied in the existing literature.

1.2 Notation
Let X be a Banach space equipped with norm ‖ · ‖X. For s ∈ [0, T] and p ≥ 1, let
Lp(�,Fs;X) be the space of Fs-measurable X-valued random variables with E[‖ · ‖p

X
] < ∞.

Let Cp
F (X) be the set of {Fs}s≥0-adapted X-valued continuous random processes with

‖ ·‖Cp
F (X) := ‖ sups∈[0,T] ‖ ·‖X‖Lp(�,F ;X) < ∞. We denote by Lp

F (X) the set of {Fs}s≥0-adapted

X-valued random processes with ‖ · ‖Lp
F (X) := ‖(

∫ T
0 ‖ · ‖p

X
ds)

1
p ‖Lp(�,F ;X) < ∞. When p = 2

and X = R
n, we have ‖ · ‖C2

F (Rn) = E[sups∈[0,T] | · |2] and ‖ · ‖L2
F (Rn) = E[

∫ T
0 | · |2 ds]. Note

that L∞
F (X) = C∞

F (X) is the set of {Fs}s≥0-adapted X-valued random processes, which are
essentially bounded. Note also that both (Lp

F (X),‖ · ‖Lp
F (X)) and (Cp

F (X),‖ · ‖Cp
F (X)) are

Banach spaces [18].
Let Ck(Rn;Rm), k ≥ 0, be the set of Rm-valued continuous functions on R

n such that
f ∈ Ck(Rn;Rm) is up to kth-order differentiable in R

n, which are continuous and bounded.
This is a Banach space with the supremum norm [51]. We let Ck(Rn) := Ck(Rn;R). Then,
f ∈ C2

F (C2(Rn)) is a stochastic process such that for each s ∈ [0, T], (f , Df , D2f ) exist
and are continuous and bounded on R

n, and for each x ∈ R
n (f , Df , D2f ) are {Fs}s≥0-

adapted (R,Rn,Sn)-valued continuous stochastic processes with ‖ · ‖C2
F (R) < ∞. Note that

L2
F (C2(Rn)) and L∞

F (C2(Rn)) can be defined similarly. Let (W k,q(Rn),‖ · ‖k,q) be the usual
Sobolev space for real-valued functions on R

n (in the sense of weak derivatives in R
n) [51].

Let Hk := W k,2 with ‖ · ‖k := ‖ · ‖k,2. (W k,q(Rn),‖ · ‖k,q) is a Banach space and (Hk ,‖ · ‖k) is a
Hilbert space [51]. Then, L2

F (Hk(Rn)) is the set of {Fs}s≥0-adapted Hk(Rn)-valued random
processes with norm ‖ · ‖L2

F (Hk (Rn)) = E[
∫ T

0 ‖ · ‖2
k ds]. That is, for f ∈L2

F (Hk(Rn)), the weak
derivatives of f up to kth-order are {Fs}s≥0-adapted stochastic processes, which belong to
L2
F .
In various places, an exact value of constant C can vary from line to line, which depends

on (H.1) and (H.2) (and other parameters) below but independent of a specific choice of
control. Moreover, in our paper, the essential supremum (denoted by ess sup) and the es-
sential infimum (denoted by ess inf) are taken with respect to an indexed family of random
variables; see the precise idea in [52, Appendix A] and [20, Chap. 10.6].4

2 Stochastic optimal control with random coefficients
In this section, we consider the stochastic optimal control problem with random coeffi-
cients. The objective functional is the recursive type captured by the backward stochastic
differential equation (BSDE) with random coefficients. We prove the DPP, the continuity
property of the value function, and the verification theorem. We also consider the indefi-
nite LQ problem as an application of the verification theorem.

4Specifically, given a family of R-valued random variables νl with l ∈ H, a random variable ν is said to be ess infl∈H νl if (i)
ν ≤ νl , P-a.s., for any l ∈ H and (ii) if there is another random variable ν ′ such that ν ′ ≤ νl , P-a.s., for any l ∈ H, then ν ′ ≤ ν ,
P-a.s. Note that ess supl∈H νl = –ess infl∈H(–νl).
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2.1 Problem statement
The stochastic differential equation (SDE) is given by

⎧
⎨

⎩

dxt,a;u
s = f (s, xt,a;u

s , us) ds + σ (s, xt,a;u
s , us) dBs,

xt,a;u
t = a,

(5)

where f and σ are the coefficients in (1) and (3). Note that (xt,a;u
s )s∈[t,T] is the R

n-valued
(forward) state process with the initial condition xt,a;u

t = a and (us)s∈[t,T] is the U-valued
control process with the control space U . The space of admissible controls is defined by
Ut,T := L2

F (U).
We introduce the backward SDE (BSDE) given by

⎧
⎨

⎩

dyt,a;u
s = –l(s, xt,a;u

s , us, yt,a;u
s , zt,a;u

s ) ds + zt,a;u
s dBs,

yt,a;u
T = m(xt,a;u

T ),
(6)

where l and m are the coefficients in (1) and (3). The pair (yt,a;u
s , zt,a;u

s )s∈[t,T] is the (R,R1×r)-
valued backward process. yt,a;u

T = m(xt,a;u
T ) is the terminal condition that is FT -measurable.

As stated in (2) and (3), f : � × [0, T] × R
n × U → R

n, σ : � × [0, T] × R
n × U → R

n×r ,
l : � × [0, T] ×R

n × U ×R×R
1×r →R, and m : � ×R

n →R are random coefficients of
(5) and (6), where U is the control space that is a nonempty compact subset of Rm. Note
that (5) and (6) constitute a forward–backward SDE with random coefficients, where the
BSDE is coupled with the forward SDE in (4).

The assumptions for (5) and (6) are given as follows:
(H.1) For ζ = f ,σ , ζ is P×B(Rn) ×B(U)-measurable, where B(·) is the Borel

σ -algebra. For almost all ω ∈ �, ζ is (uniformly) continuous in (s, u) ∈ [0, T] × U
and Lipschitz continuous in x ∈R

n with the Lipschitz constant L.
(H.2) l and m are P×B(Rn) ×B(U) ×B(R) ×B(R1×r) and P×B(Rn) measurable,

respectively. For almost all ω ∈ �, l is (uniformly) continuous in (s, u) ∈ [0, T] × U
and Lipschitz continuous in (x, y, z) ∈R

n ×R×R
1×r with the Lipschitz constant

L. For almost all ω ∈ �, m is Lipschitz continuous in x ∈R
n with L.

Remark 1 We should mention that in (5) and (6), the coefficients f , σ , l and m are allowed
to be random, which are just measurable with respect to ω ∈ �. In particular, unlike the
path-dependent stochastic control problems and differential games in [53–59], there are
no specific assumptions for the coefficients with respect to ω ∈ � and there is no specified
topology on �.

We have the following lemma. The proof can be found in [18, Chaps. 1 and 7], [13,
Chaps. 3, 4 and 8], [20].

Lemma 1 Assume that (H.1) and (H.2) hold. Then, for t ∈ [0, T], s, l ∈ [t, T], l ≤ s, u ∈ Ut,T ,
and a, a′ ∈ L2(�,Ft ;Rn), the following results hold:

(i) (5) admits a unique (strong) solution in C2
F (Rn). Moreover, for p ≥ 1,

(xt,a;u
s )s∈[l,T] = (xt,xt,a;u

l ;u
s )s∈[l,T] and there exists a constant C > 0, dependent on L, T

and p, such that (P-almost surely (a.s.))

EFt

[
max

s∈[t,T]

∣
∣xt,a;u

s
∣
∣p

]
≤ C

(
1 + |a|p),
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EFt

[∣
∣xt,a;u

s – xt,a;u
l

∣
∣p] ≤ C

(
1 + |a|p)(s – l)

p
2 ,

EFt

[
max

s∈[t,T]

∣
∣xt,a;u

s – xt,a′ ;u
s

∣
∣p

]
≤ C

∣
∣a – a′∣∣p;

(ii) (6) admits a unique solution (yt,a;u
s , zt,a;u

s )s∈[t,T] ∈ C2
F (R) ×L2

F (R1×r). Furthermore,
for p ≥ 2, there exists a constant C > 0, dependent on L, p and T , such that (P-a.s.)

EFt

[

max
s∈[t,T]

∣
∣yt,a;u

s
∣
∣p +

(∫ T

t

∣
∣zt,a;u

s
∣
∣2 ds

) p
2
]

≤ C
(
1 + |a|p),

EFt

[∣
∣yt,a;u

s – yt,a;u
t

∣
∣p] ≤ C

(
1 + |a|p)(t – s)

p
2 ,

EFt

[
max

s∈[t,T]

∣
∣yt,a;u

s – yt,a′ ;u
s

∣
∣p

]
≤ C

∣
∣a – a′∣∣p;

(iii) Suppose that (ỹt,a;u
s , z̃t,a;u

s )s∈[t,T] ∈ C2
F (R) ×L2

F (R1×r) is the solution of (6), where
ỹt,a;u

T = m(xt,a;u
T ) + ε and ε > 0. Then, there exists a constant C > 0, dependent on L

and T , such that EFt [maxs∈[t,T] |yt,a;u
s – ỹt,a;u

s |2] < Cε. Assume that
(̂yt,a;u

s , ẑt,a;u
s )s∈[t,T] ∈ C2

F (R) ×L2
F (R1×r) is the solution of (6) with l̂ and m̂, where

l ≥ l̂ and m ≥ m̂, P-a.s. Then, yt,a;u
s ≥ ŷt,a;u

s for s ∈ [t, T], P-a.s.

The objective functional is a recursive type given by

J(t, a; u) = yt,a;u
t = EFt

[
yt,a;u

t
]
. (7)

Then, the stochastic optimal control problem considered in this paper can be stated as
follows:

ess inf
u∈Ut,T

J(t, a; u), subject to (3). (P)

Remark 2 When l in (6) does not depend on y and z, the objective functional J in (7) can
be simplified as follows:

J(t, a; u) = EFt

[∫ T

t
l
(
s, xt,a;u

s , us
)

ds + m
(
xt,a;u

T
)
]

.

This is a special case of (P), which was considered in [1, 11].

For t ∈ [0, T] and a ∈ L2(�,Ft ;Rn), the value function of (P) is defined by

V (t, a) = ess inf
u∈Ut,T

J(t, a; u), P-a.s. (8)

Note that from Lemma 1, (P) is well posed; hence, (8) is the well-defined value function.
If the coefficients in (5) and (6) are not dependent on ω ∈ �, then the problem above
corresponds to stochastic optimal control with deterministic coefficients, which has been
studied in various aspects in the literature; see [17, 18, 20] and the references therein.
Unlike the case of deterministic coefficients, the value function in (8) is a random field.
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Remark 3 We mention that the purpose of choosing stochastic optimal controller de-
sign is to broaden its potential applications. Specifically, there are various applications of
stochastic control problems in finance, economics, science, and engineering. Then, these
applications can be studied in different aspects using the approaches of this paper, which
allows capturing more practical situations including the general dynamic behavior of the
objective functional and the random parameter variations due to imprecisions (see the
detailed discussion in Sect. 1).

2.2 Dynamic programming principle and verification theorem
This subsection provides the continuity property of (8). We show that (8) satisfies the
DPP, which is the recursive-type value iteration algorithm to solve (P). Then, we prove the
verification theorem for (P).

We first state the following result due to Lemma 1:

Lemma 2 Assume that (H.1) and (H.2) hold. Then, there exists a constant C > 0 such that
for a, a′ ∈R

n,

∣
∣V (t, a) – V

(
t, a′)∣∣ ≤ C

∣
∣a – a′∣∣,

∣
∣V (t, a)

∣
∣ ≤ C

(
1 + |a|), P-a.s.

The backward semigroup operator associated with the BSDE is defined as follows: for
t, t + τ ∈ [0, T] with t < t + τ ,

	t,a;u
s,t+τ [b] := ȳt,a;u

s , s ∈ [t, t + τ ], (9)

where (ȳt,a;u
s , z̄t,a;u

s )s∈[t,t+τ ] is the solution of the following BSDE on [t, t + τ ]:

dȳt,a;u
s = –l

(
s, xt,a;u

s , us, ȳt,a;u
s , z̄t,a;u

s
)

ds + z̄t,a;u
s dBs,

ȳt,a;u
t+τ = b.

Here, b ∈ L2(�,Ft+τ ;R). Obviously, when b = yt,a;u
t+τ (note that yt,a;u

t+τ ∈ L2(�,Ft+τ ;R)), we
have yt,a;u

t = ȳt,a;u
t = 	

t,a;u
t,t+τ [yt,a;u

t+τ ], P-a.s.

Remark 4 By (9) and (i) of Lemma 1, the objective functional in (7) can be rewritten as
follows:

J(t, a; u) = 	
t,a;u
t,T

[
m

(
xt,a;u

T
)]

= 	t,a;u
t,t+τ

[
yt,a;u

t+τ

]
= 	t,a;u

t,t+τ

[
J
(
t + τ , xt,a;u

t+τ ; u
)]

.

We now state the DPP for (P).

Theorem 1 Suppose that (H.1) and (H.2) hold. Then, the value function in (8) satisfies
the following dynamic programming principle (DPP): for t, t + τ ∈ [0, T] with t < t + τ and
a ∈ L2(�,Ft ;Rn),

V (t, a) = ess inf
u∈Ut,t+τ

	t,a;u
t,t+τ

[
V

(
t + τ , xt,a;u

t+τ

)]
, P-a.s.
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Proof Note that in view of Lemma 1, the FBSDE in (5) and (6) admit a unique solution of
(xt,a;u

s , yt,a;u
s , zt,a;u

s )s∈[t,T] ∈ C2
F (Rn) × C2

F (R) ×L2
F (R1×r).

Let

V ′(t, a) := ess inf
u∈Ut,t+τ

	t,a;u
t,t+τ

[
V

(
t + τ , xt,a;u

t+τ

)]
, P-a.s.

We show that V ′(t, a) ≤ V (t, a) and V ′(t, a) ≥ V (t, a).
First, note from (7) and Remark 4 that

V (t, a) = ess inf
u∈Ut,T

	t,a;u
t,t+τ

[
J
(
t + τ , xt,a;u

t+τ ; u
)]

≥ ess inf
u∈Ut,t+τ

	t,a;u
t,t+τ

[
V

(
t + τ , xt,a;u

t+τ

)]
= V ′(t, a),

where the inequality follows from (8) and (iii) of Lemma 1. This implies that V (t, a) ≥
V ′(t, a).

We now prove V (t, a) ≤ V ′(t, a). By Lemma 2 and (ii) of Lemma 1, for each ε > 0, there
exists δ > 0 such that whenever |x – x̂| < δ, it holds that for all u ∈ Ut+τ ,T ,

∣
∣V (t + τ , x) – V (t + τ , x̂)

∣
∣ +

∣
∣J(t + τ , x; u) – J(t + τ , x̂; u)

∣
∣ < ε. (10)

Denote {Dj}j≥1 by the (disjoint) Borel partition of R
n having the diameter of δ, i.e.,

diam(Dj) < δ. This is equivalently saying that Dj is Borel measurable, i.e., Dj ∈ B(Rn), with
⋃

j≥1 Dj = R
n and Dj ∩ Dl = φ for j 
= l. By definition, for x, x̂ ∈ Dj, we have |x – x̂| < δ. For

each j, choose x(j) ∈ Dj. Then, by the measurable selection theorem in [11, Theorem A.1]
(see also [60, 61]), there exists u(j) ∈ Ut+τ ,T such that J(t + τ , x(j); u(j)) ≤ V (t + τ , x(j)) + ε.
Hence, by (10), for any x ∈ Dj,

J
(
t + τ , x; u(j)) – V (t + τ , x) (11)

≤ ∣
∣J

(
t + τ , x; u(j)) – J

(
t + τ , x(j); u(j))∣∣

+
∣
∣J

(
t + τ , x(j); u(j)) – V

(
t + τ , x(j))∣∣ +

∣
∣V

(
t + τ , x(j)) – V (t + τ , x)

∣
∣ ≤ 3ε.

For any u′′ ∈ Ut,t+τ , we define

ũs :=

⎧
⎨

⎩

u′′
s , s ∈ [t, t + τ ),

∑
j≥1 u(j)

s 1Dj (x
t,a;u′′
t+τ ), s ∈ [t + τ , T],

where 1 is the indicator function. Clearly, ũ ∈ Ut,T . Let u′
s :=

∑
j≥1 u(j)

s 1Dj (x
t,a;u
t+τ ). Then, by

Remark 4,

V (t, a) ≤ J(t, a; ũ) (12)

= 	t,a;u′′
t,t+τ

[
J
(
t + τ , xt,a;u′′

t+τ ; u′)] ≤ 	t,a;u′′
t,t+τ

[
V

(
t + τ , xt,a;u′′

t+τ

)]
+ 3ε,

where the second inequality is due to (11) and (iii) of Lemma 1. Then, (12) and the def-
inition of V ′, together with the arbitrariness of ε, imply that (after taking the essential
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infimum) we can obtain V (t, a) ≤ V ′(t, a). This shows that V (t, a) = V ′(t, a); thus complet-
ing the proof. �

We now state the continuity property of (8) in t ∈ [0, T].

Proposition 1 Suppose that (H.1) and (H.2) hold. Then, (8) is continuous in t ∈ [0, T].
Specifically, there exists a constant C > 0 such that for a ∈ R

n and t, t + τ ∈ [0, T] with
t < t + τ ,

∣
∣V (t + τ , a) – V (t, a)

∣
∣ ≤ C

(
1 + |a|)τ 1

2 , P-a.s.

Proof It is necessary to prove that

–C
(
1 + |a|)τ 1

2 ≤ V (t, a) – V (t + τ , a) ≤ C
(
1 + |a|)τ 1

2 , P-a.s.

Below, it is shown that V (t, a) – V (t + τ , a) ≤ C(1 + |a|)τ 1
2 .

In view of Theorem 1, for each ε > 0, there exists u′ ∈ Ut,t+τ such that

∣
∣V (t, a) – 	t,a;u′

t,t+τ

[
V

(
t + τ , xt,a;u′

t+τ

)]∣
∣ ≤ ε, P-a.s.

This implies that

V (t, a) – V (t + τ , a) ≤ I(1) + I(2) + ε, P-a.s.,

where

I(1) := 	t,a;u′
t,t+τ

[
V

(
t + τ , xt,a;u′

t+τ

)]
– 	t,a;u′

t,t+τ

[
V (t + τ , a)

]
,

I(2) := 	t,a;u′
t,t+τ

[
V (t + τ , a)

]
– V (t + τ , a).

From (i) of Lemma 1, Lemma 2, and Jensen’s inequality, (P-a.s.)

∣
∣I(1)∣∣ ≤ CE

[∣
∣V

(
t + τ , xt,a;u′

t+τ

)
– V (t + τ , a)

∣
∣2|Ft

] 1
2

≤ CE
[∣
∣xt,a;u′

t+τ – a
∣
∣2|Ft

] 1
2 ≤ C

(
1 + |a|)τ 1

2 . (13)

Moreover, from the definition of 	 and the terminal condition of 	 in I(2), we use Lemma 1
and (H.2) to obtain

∣
∣I(2)∣∣ =

∣
∣
∣
∣EFt

[∫ t+τ

t
l
(
s, xt,a;u′

s , u′
s, ȳt,a;u′

s , z̄t,a;u′
s

)
ds

]∣
∣
∣
∣

≤ τ
1
2 EFt

[∫ t+τ

t
|l(s, xt,a;u′

s , u′
s, ȳt,a;u′

s , z̄t,a;u′
s |2)ds

] 1
2

≤ Cτ
1
2 EFt

[∫ t+τ

t

[
1 +

∣
∣xt,a;u′

s
∣
∣2 +

∣
∣ȳt,a;u′

s
∣
∣2 +

∣
∣z̄t,a;u′

s
∣
∣2]ds

]

≤ C
(
1 + |a|)τ 1

2 , P-a.s. (14)
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Note that (13) and (14) lead to

V (t, a) – V (t + τ , a) ≤ C
(
1 + |a|)τ 1

2 + ε, P-a.s.

Hence, the arbitrariness of ε implies V (t, a) – V (t + τ , a) ≤ C(1 + |a|)τ 1/2, P-a.s. The other
inequality can be proven in a similar way. This completes the proof. �

From Lemma 2 and Proposition 1, the following result holds:

Corollary 1 Assume that (H.1) and (H.2) hold. Then, the value function in (8) is continu-
ous on [0, T] ×R

n. Specifically, for a, a′ ∈R
n and t, t + τ ∈ [0, T] with t < t + τ ,

∣
∣V

(
t + τ , a′) – V (t, a)

∣
∣ ≤ C

(∣
∣a – a′∣∣ +

(
1 + |a| +

∣
∣a′∣∣)τ

1
2
)
, P-a.s.

We now state the verification theorem for (P).

Theorem 2 Assume that (H.1) and (H.2) hold. Suppose that the pair (V , q) ∈
L∞
F (C2(Rn)) × L2

F (C2(Rn;R1×r)) is the solution to the SHJB equation in (3). Then, for
t ∈ [0, T], x ∈ L2(�,Ft ;Rn) and u ∈ Ut,T , V (t, x) ≤ J(t, x; u), P-.a.s. Furthermore, assume
that ûs ∈ U with û := (̂us)s∈[t,T] ∈ Ut,T is the minimizer of the Hamiltonian in (3) for
s ∈ [t, T], P-.a.s. Then, for t ∈ [0, T] and x ∈ L2(�,Ft ;Rn), we have V (t, x) = J(t, x; û), P-
.a.s. and û ∈ Ut,T is the corresponding optimal control.

Proof Suppose that (V , q) ∈ L∞
F (C2(Rn)) × L2

F (C2(Rn;R1×r)) is the solution of (3). Let
(xt,x;̂u

s )s∈[t,T] be the state trajectory generated by û ∈ Ut,T with xt,x;̂u
t = x ∈ L2(�,Ft ;Rn). Note

that V (T , xt,x;̂u
T ) = m(xt,x;̂u

T ) and V (t, xt,x;̂u
t ) = V (t, x), P-a.s.

By using the Itô–Kunita formula [62] and the SHJB in (3), we have (P-a.s.)

V
(
T , xt,x;̂u

T
)

= V (t, x) +
∫ T

t

〈
DV

(
s, xt,x;̂u

s
)
, f

(
s, xt,x;̂u

s , ûs
)〉

ds

+
1
2

∫ T

t
Tr

(
σσ�(

s, xt,x;̂u
s , ûs

)
D2V

(
s, xt,x;̂u

s
))

ds

+
∫ T

t
Tr

(
σ
(
s, xt,x;̂u

s , ûs
)
Dq

(
s, xt,x;̂u

s
))

ds

+
∫ T

t

〈
DV

(
s, xt,x;̂u

s
)
,σ

(
s, xt,x;̂u

s , ûs
)〉

dBs

–
∫ T

t
H

(
s, xt,x;̂u

s ,
(
V , DV , D2V , q, Dq

)(
s, xt,x;̂u

s
))

ds

+
∫ T

t
q
(
s, xt,x;̂u

s
)

dBs

= V (t, x) –
∫ T

t
l
(
s, xt,x;̂u

s , ûs, V
(
s, xt,x;̂u

s
)
,

〈
DV

(
s, xt,x;̂u

s
)
,σ

(
s, xt,x;̂u

s , ûs
)〉

+ q
(
s, xt,x;̂u

s
))

ds

+
∫ T

t

[〈
DV

(
s, xt,x;̂u

s
)
,σ

(
s, xt,x;̂u

s , ûs
)〉

+ q
(
s, xt,x;̂u

s
)]

dBs.
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Let (yt,x;̂u
s , zt,x;̂u

s )s∈[t,T] be the BSDE in (6) with û ∈ Ut,T . Let ŷû
s := V (s, xt,x;̂u

s ) – yt,x;̂u
s and ẑû

s :=
〈DV (s, xt,x;̂u

s ),σ (s, xt,x;̂u
s , ûs)〉 + q(s, xt,x;̂u

s ) – zt,x;̂u
s . Note that ŷû

T = 0, P-a.s. Then, we have

d̂yû
s = –

[
l
(
s, xt,x;̂u

s , ûs, V
(
s, xt,x;̂u

s
)
,
〈
DV

(
s, xt,x;̂u

s
)
,σ

(
s, xt,x;̂u

s , ûs
)〉

+ q
(
s, xt,x;̂u

s
))

– l
(
s, xt,x;̂u

s , ûs, yt,x;̂u
s , zt,x;̂u

s
)]

ds + ẑû
s dBs

= –
[
A(1)

s ŷû
s + A(2)

s ẑû
s
]

ds + ẑû
s dBs, (15)

where A(1) and A(2) are bounded coefficients (independent of ŷ and ẑ) due to (H.1) and
(H.2). Since (15) is a linear BSDE, in view of [13, Proposition 4.1.2], we have ŷû

s = 0 for
s ∈ [t, T], P-a.s. Hence, it holds that V (t, xt,x;̂u

t ) = V (t, x) = yt,x;̂u
t = J(t, x; û), P-a.s.

On the other hand, for any u ∈ Ut,T , by using the approach analogous to that above
and (iii) of Lemma 1, we can show that ŷu

s ≤ 0 for s ∈ [t, T], P-a.s., which implies that
V (t, xt,x;u

t ) = V (t, x) ≤ yt,x;u
t = J(t, x; u), P-a.s. Note that the equality can be achieved when

u = û ∈ Ut,T . This shows that for any u ∈ Ut,T and x ∈ L2(�,Ft ;Rn), we have

J(t, x; u) = yt,x;u
t ≥ yt,x;̂u

t = J(t, x; û) = V (t, x), P-a.s.,

where the last equality follows from the definition of the value function V in (8). This
completes the proof of the theorem. �

Remark 5 In Sect. 3, we show the existence and uniqueness of the viscosity solution to the
SHJB equation in (3). Furthermore, in the appendix, the existence and uniqueness of the
weak solution to (3) is shown via the Sobolev-space technique.

2.3 General indefinite linear–quadratic problem with random coefficients
This subsection considers the general indefinite linear–quadratic (LQ) problem of (P) as
an application of Theorem 2. For notational simplicity, we assume that r = 1, i.e., the one-
dimensional Brownian motion.

The LQ problem in this subsection is referred to as (LQ-P) with

⎧
⎪⎪⎨

⎪⎪⎩

f (s, x, u) = Asx + Fsu, σ (s, x, u) = Csx + Esu,

l(s, x, u, y, z) = 1
2 [〈x, Qsx〉 + 〈u, Rsu〉 + y] + z,

m(x) = 1
2 〈x, Mx〉,

(16)

where A, F , C, E, Q, R are {Fs}s≥0-adapted continuous stochastic processes with ap-
propriate dimensions, which are uniformly bounded in ω ∈ � (they belong to L∞

F ) and
M ∈ L∞(�,FT ;Sn). We assume that Q, R, M are symmetric matrices, which need not be
definite matrices.5 When l in (16) is independent of y and z, (LQ-P) is reduced to the
simplified LQ problem (with random coefficients) studied in [25, 26, 43–45] and the ref-
erences therein.

5In order to apply the verification theorem in Theorem 2 to (LQ-P), we take x ∈ X and u ∈ U in (16) (particularly for l and m
in (16)), where U and X need to be restricted to appropriate sufficiently large compact subsets of Rm and R

n , respectively;
see [19, Chap. 6] for a related discussion. Then clearly, (16) satisfies (H.1) and (H.2).
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From (4), the Hamiltonian can be written as (s argument is suppressed)

H(s, x, y, p, P, q, P̄) (17)

= ess inf
u

{

〈p, Ax + Fu〉 +
1
2
[〈x, Qx〉 + 〈u, Ru〉] +

1
2

y + q + 〈p, Cx + Eu〉

+
1
2
〈
Cx + Eu, P(Cx + Eu)

〉
+ 〈Cx + Eu, P̄〉

}

.

Assume that Rs + E�
s PEs is (uniformly) positive-definite for almost all ω ∈ � and s ∈ [0, T].

Then, we can easily see that H in (17) admits a unique minimizer, which can be written as
follows:

û = –
(
R + E�PE

)–1[F�p + E�p + E�PCx + E�P̄
]
x. (18)

By substituting (18) into (17), the SHJB in (3) is obtained by

⎧
⎪⎪⎨

⎪⎪⎩

dV (s, x) = –H(s, x, (V , DV , D2V , q, Dq)(s, x)) ds + q(s, x) dBs,

(s, x) ∈ [0, T) ×R
n,

V (T , x) = 1
2 x�Mx, x ∈R

n,

(19)

where (s argument is suppressed)

H(s, x, y, p, P, q, P̄) (20)

= x�A�p +
1
2

x�Qx +
1
2

y + x�C�p +
1
2

x�C�PCx + x�C�P̄ + q

–
1
2
[
F�p + E�p + E�PCx + E�P̄

]�(
R + E�PE

)–1

× [
F�p + E�p + E�PCx + E�P̄

]
.

In view of the verification theorem in Theorem 2, we need to seek for the solution of (19)
to solve (LQ-P).

We conjecture that the general solutions for (19) are quadratic in x, i.e.,

V (s, x) =
1
2

x��sx, q(s, x) =
1
2

x��̄sx, (21)

where it is assumed that �, �̄ are {Fs}s≥0-adapted symmetric n × n-valued bounded
stochastic processes with �T = M, i.e., (�, �̄) ∈ L∞

F (Sn) × L2
F (Sn). Under this assump-

tion, V and q in (21) are smooth, i.e., (V , q) ∈ L∞
F (C2(Rn)) × L2

F (C2(Rn;R1×r)), where
DV (s, x) = �sx and Dq(s, x) = �̄sx are well defined. Then, by substituting (21) into (20),
we can easily see that the SHJB equation in (19) admits a unique smooth solution if the
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following stochastic Riccati differential equation (SRDE) admits a unique solution:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d�s = –[A�
s �s + �sAs + Qs + �s + C�

s �sCs

+ �̄s + C�
s �s + �sCs + C�

s �̄s + �̄sCs

– [F�
s �s + E�

s �s + E�
s �sCs + E�

s �̄s]�(Rs + E�
s �sEs)–1

× [F�
s �s + E�

s �s + E�
s �sCs + E�

s �̄s]] ds + �̄s dBs,

�T = M.

(22)

Note that (22) is a symmetric n × n-valued stochastic process. Here, the solution of the
SRDE in (22) is defined by the adapted pair (�, �̄) ∈ L∞

F (Sn) × L2
F (Sn), which can be

viewed as a matrix-valued BSDE with random coefficients.
By substituting (21) into (18), from Theorem 2, the optimal control for (LQ-P) can be

obtained by

ûs = –
(
Rs + E�

s �sEs
)–1[F�

s �s + E�
s �s + E�

s �sCs + E�
s �̄s

]
xt,a;̂u

s , (23)

provided that Rs + E�
s �sEs is (uniformly) positive-definite for almost all ω ∈ � and s ∈

[0, T].6

In summary, by applying the verification theorem in Theorem 2, we have the following
result:

Proposition 2 Suppose that the pair (�, �̄) ∈L∞
F (Sn)×L2

F (Sn) is the solution of the SRDE
in (22) and that Rs + E�

s �sEs is (uniformly) positive-definite for almost all ω ∈ � and
s ∈ [0, T]. Then, for x ∈ L2(�,Ft ;Rn), V (t, x) = 1

2 〈x,�tx〉 is the value function of (LQ-P)
(equivalently, V (t, x) = 1

2 〈x,�tx〉 is the optimal cost), and (23) is the corresponding optimal
control.

Remark 6 The solvability of the SRDE in (22) is an open problem. When l does not depend
on y and z, the solvability of the corresponding SRDEs has been discussed extensively in
the literature; see [25, 26, 43–45] and the references therein. Moreover, we can consider
the case of jump-diffusion models as in [63].

3 Viscosity solution of SHJB equation
This section introduces the notion of viscosity solutions for the SHJB equation in (3).
Then, we show the existence of the viscosity solution for (3), i.e., the value function in (8)
is the viscosity solution to (3). The uniqueness of the viscosity solution is also discussed
under additional parameter assumptions.

3.1 Definition of viscosity solution
We note that the solution of (3) is the pair of {Fs}s≥0-adapted random fields (V , q). Due to
the nonanticipativity of these two independent unknown components, it is inconvenient
to define the notion of viscosity solutions for (3) by directly using the pair (V , q). Instead,
we introduce a class of random fields, by which the pair (V , q) can be characterized.

6This holds when Rs and �s are (uniformly) positive-definite for almost all ω ∈ � and s ∈ [0, T ].
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Definition 1 The random field φ : � × [0, T] × R
n → R is said to be a class of S2

F , i.e.,
φ ∈ S2

F , if φ ∈ C2
F (C(Rn))∩L2

F (C2(Rn)) and there exists the pair ( 6sφ, 6ωφ) ∈L2
F (C(Rn))×

L2
F (C1(Rn;R1×r)) such that for any t ∈ [0, T] and x ∈ R

n, φ satisfies the following decom-
position:

φ(t, x) = φ(T , x) –
∫ T

t
6sφ(s, x) ds –

∫ T

t
6ωφ(s, x) dBs, P-a.s.

In Definition 1, ( 6sφ, 6ωφ) ∈ L2
F (C(Rn)) × L2

F (C1(Rn;R1×r)) are two differential oper-
ators, which can be viewed as weak derivatives of φ with respect to time and sample
variables. Similar notions of weak derivatives for Itô-type stochastic processes can be
found in [64–66]. In fact, from the Doob–Meyer decomposition, the pair ( 6sφ, 6ωφ) ∈
L2
F (C(Rn)) × L2

F (C1(Rn;R1×r)) can be defined uniquely. Note that if φ is deterministic,
then 6ωφ = 0 and 6tφ corresponds to the classical partial derivative of φ with respect to
the time variable. 6ωφ is also closely related to the Malliavin derivative if φ is smooth
enough. We also mention that ( 6sφ, 6ωφ) in Definition 1 is different from the notion of
path derivatives for path-dependent stochastic processes in functional Itô-calculus.

Suppose that the value function V satisfies Definition 1, i.e., V ∈ S2
F . Then, to solve the

SHJB equation in (3), we have 6ωV (s, x) = q(s, x). Hence, with Definition 1, it is easy to see
that finding the pair (V , q) for the solution of (3) is equivalent to finding V such that

⎧
⎪⎪⎨

⎪⎪⎩

– 6tV (s, x) = H(s, x, (V , DV , D2V , 6ωV , D 6ωV )(s, x)),

(s, x) ∈ [0, T) ×R
n,

V (T , x) = m(x), x ∈R
n.

(24)

In fact, the conversion from (3) to (24) via Definition 1 is a key step to define the notion
of viscosity solutions.

Let Bδ(x) be the Euclidean ball centered in x ∈ R
n with radius δ > 0. For δ > 0, V ∈

C2
F (C(Rn)), κ ∈ [0, T], �κ ∈ Fκ with P(�κ ) > 0, and η ∈ L2(�κ ,Fκ ;Rn), the semijets are

defined as follows:

A–
δ

[
V (κ ,η);�κ

]
:=

{
χ ∈ L2

F : 0 =
(
χ (κ ,η) – V (κ ,η)

)
1�κ

= inf
κ ′∈[κ ,T]

EFκ

[
ess inf
η′∈Bδ (η)

{
χ

(
κ ′,η′) – V

(
κ ′,η′)}]1�κ ,P-a.s.

}
,

A+
δ

[
V (κ ,η);�κ

]
:=

{
χ ∈ L2

F : 0 =
(
χ (κ ,η) – V (κ ,η)

)
1�κ

= sup
κ ′∈[κ ,T]

EFκ

[
ess sup
η′∈Bδ (η)

{
χ

(
κ ′,η′) – V

(
κ ′,η′)}]1�κ ,P-a.s.

}
.

Then, the definition of viscosity solutions is given as follows. We modify the notion given
in [11].

Definition 2
(i) The random field V : � × [0, T] ×R

n →R with V ∈ C2(C(Rn)) is said to be a
viscosity subsolution of the SHJB equation in (3), if W (T , x) ≤ m(x) for x ∈R

n,
P-a.s., and for δ > 0, κ ∈ [0, T], �κ ∈Fκ with P(�κ ) > 0, η ∈ L2(�κ ,Fκ ;Rn) and any
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ψ ∈A–
δ [V (κ ,η);�κ ], it holds that (P-a.s. in �κ )

ess lim inf
(t,x)→(κ ,η)

EFκ

[
6tψ(t, x) + H

(
t, x,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t, x)

)] ≥ 0;

(ii) The random field V : � × [0, T] ×R
n →R with V ∈ C2(C(Rn)) is said to be a

viscosity supersolution of the SHJB equation in (3), if W (T , x) ≥ m(x) for x ∈R
n,

P-a.s., and for δ > 0, κ ∈ [0, T], �κ ∈Fκ with P(�κ ) > 0, η ∈ L2(�κ ,Fκ ;Rn) and any
ψ ∈A+

δ [V (κ ,η);�κ ], it holds that (P-a.s. in �κ )

ess lim sup
(t,x)→(κ ,η)

EFκ

[
6tψ(t, x) + H

(
t, x,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t, x)

)] ≤ 0;

(iii) The random field V : � × [0, T] ×R
n →R with V ∈ C2(C(Rn)) is said to be a

viscosity solution of the SHJB equation in (3) if it is both a viscosity subsolution and
a supersolution of (3).

Remark 7
(1) If the coefficients in (3) are deterministic (they do not depend on ω ∈ �), then q = 0

and (3) is reduced to the deterministic HJB equation given by

⎧
⎨

⎩

– ∂
∂s V (s, x) = H(s, x, (V , DV , D2V , 0, 0)(s, x)), (s, x) ∈ [0, T) ×R

n,

V (T , x) = m(x), x ∈ R
n.

In this case, Definition 2 becomes equivalent to the classical one in [46]. Various
results on viscosity solutions for classical (deterministic) HJB equations can be
found in [17, 18, 20] and the references therein.

(2) When the coefficients are deterministic and dependent on the paths of x and B, (3)
becomes the path-dependent HJB equation. This is a class of infinite-dimensional
(deterministic) HJB equations. For path-dependent HJB equations, different notions
of viscosity solutions were defined in [53–59]. Unlike the path-dependent case, in
[53, 54, 56, 58], Definition 2 does not include the nonlinear expectation.

3.2 Existence and uniqueness of viscosity solution of (3)
We state the following existence result:

Theorem 3 Suppose that (H.1) and (H.2) hold. Then, the value function in (8) is a viscosity
solution to the SHJB equation in (3).

Proof We first prove that (8) is a viscosity supersolution.
In view of (H.1), (H.2) and Corollary 1, V ∈ C2(C(Rn)). Also, from (8), V (T , x) = m(x),

P-a.s. Then, from (ii) of Definition 2, for δ > 0, κ ∈ [0, T], �κ ∈ Fκ with P(�κ ) > 0, η ∈
L2(�κ ,Fκ ;Rn) and any ψ ∈A+

δ [V (κ ,η);�κ ], we need to show that (P-a.s. in �κ )

ess lim sup
(t,x)→(κ ,η)

EFκ

[
6tψ(t, x) + H

(
t, x,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t, x)

)] ≤ 0.
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Suppose that V is not a viscosity supersolution, i.e., there exist θ > 0, δ̄ > 0 with δ̄ ∈ (0, δ),
and �′ ∈Fκ with �′ ⊂ �κ and P(�′) > 0 such that for P-a.s. in �′, we have

ess sup
(t,x)∈[κ ,κ+δ̄)×Bδ̄ (η)

EFκ

[
6tψ(t, x) (25)

+ H
(
t, x,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t, x)

)] ≥ θ > 0.

Let

H ′(t, x, u, y, p, P, q, Q)

:= 6tψ(t, x) +
〈
p, f (t, x, u)

〉
+ l

(
t, x, u, y, q +

〈
p,σ (t, x, u)

〉)

+
1
2

Tr
(
σσ�(t, x, u)P

)
+ Tr

(
σ (t, x, u)Q

)
.

Note that

ess inf
u∈U

H ′(t, x, u, y, p, P, q, Q) = 6tψ(t, x) + H(t, x, y, p, P, q, Q).

Then, for (25), in view of (H.1), (H.2) and the measurable selection theorem (see [11, The-
orem A.1] and [60, 61]), there exists u′

t ∈ U with (u′
t)t∈[κ ,T] ∈ Uκ ,T such that (P-a.s. in �′)

sup
t∈[κ ,(κ+δ̄)∧T)

H ′(t,η, u′
t ,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t,η)

) ≥ θ

2
. (26)

Let κ̂ := inf{s > κ : xκ ,η;u′
s /∈ Bδ̄/2(η)} and τ ∈ (0, δ̄/4) with small τ . Then, we have {κ̂ <

κ + τ } ⊆ {maxr∈[κ ,κ+τ ] |xκ ,η;u′
r – η| > δ̄

2 }, which, together with Markov’s inequality and (i) of
Lemma 1, implies (P-a.s.)

P(κ̂ < κ + τ ) ≤ P

(

max
r∈[κ ,κ+τ ]

∣
∣xκ ,η;u′

r – η
∣
∣ >

δ̄

2

)

(27)

≤ C
64
δ̄6

E

[
max

r∈[κ ,κ+τ ]

∣
∣xκ ,η;u′

r – η
∣
∣6

]
≤ C

64
δ̄6

(
1 + |η|6)τ 3.

On the other hand, from the DPP in Theorem 1, we have

V (κ ,η) = ess inf
u∈Uκ ,κ̄

	
κ ,η;u
κ ,κ̄

[
V

(
κ̄ , xκ ,η;u

κ̄

)]
, P-a.s.,

where κ̄ := κ + τ ∧ κ̂ . Hence,

V (κ ,η) ≤ 	
κ ,η;u′
κ ,κ̄

[
V

(
κ̄ , xκ ,η;u′

κ̄

)]
, P-a.s., (28)

where, in view of the definition of 	, 	 satisfies

dȳt,η;u′
s = –l

(
s, xt,η;uε

s , u′
s, ȳt,η;u′

s , z̄t,η;u′
s

)
ds + z̄t,η;u′

s dBs, s ∈ [κ , κ̄),

ȳκ ,η;u′
κ̄ = V

(
κ̄ , xt,η;u′

κ̄

)
.
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Recall that

H ′(s, x, u′
s,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(s, x)

)

= 6tψ(t, x) +
〈
Dψ(s, x), f

(
s, x, u′

s
)〉

+ l
(
s, x, u′

s,ψ(s, x), D 6ωψ(s, x) +
〈
Dψ(s, x),σ

(
s, x, u′

s
)〉)

+
1
2

Tr
(
σσ�(

s, x, u′
s
)
D2ψ(s, x)

)
+ Tr

(
σ
(
s, x, u′

s
)

6ωψ(s, x)
)
.

Then, by using the Itô–Kunita formula, we have (P-a.s.)

dψ
(
s, xt,η;u′

s
)

= H ′(s, xt,η;u′
s , u′

s,
(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)(
s, xt,η;u′

s
))

ds

– l
(
s, xt,η;u′

s , u′
s,ψ

(
s, xt,η;u′

s
)
,

D 6ωψ
(
s, xt,η;u′

s
)

+
〈
Dψ

(
s, xt,η;u′

s
)
,σ

(
s, xt,η;u′

s , u′
s
)〉)

ds

+ 6ωψ
(
s, xt,η;u′

s
)

dBs +
〈
Dψ

(
s, xt,η;u′

s
)
,σ

(
s, xt,η;u′

s , u′
s
)〉

dBs.

Let

ŷt,η;u′
s := ȳt,η;u′

s – ψ
(
s, xt,η;u′

s
)
,

ẑt,η;u′
s := z̄t,η;u′

s –
(
ψ

(
s, xt,η;u′

s
)

+
〈
Dψ

(
s, xt,η;u′

s
)
,σ

(
s, xt,η;u′

s , u′
s
)〉)

.

Hence, we have

d̂yt,η;u′
s = – H ′(s, xt,η;u′

s , u′
s,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)(
s, xt,η;u′

s
))

ds (29)

+ l
(
s, xt,η;u′

s , u′
s,ψ

(
s, xt,η;uε

s
)
,

D 6ωψ
(
s, xt,η;u′

s
)

+
〈
Dψ

(
s, xt,η;u′

s
)
,σ

(
s, xt,η;u′

s , u′
s
)〉)

ds

– l
(
s, xt,η;u′

s , u′
s, ȳt,η;u′

s , z̄t,η;u′
s

)
ds

– 6ωψ
(
s, xt,η;u′

s
)

dBs –
〈
Dψ

(
s, xt,η;u′

s
)
,σ

(
s, xt,η;u′

s , u′
s
)〉

dBs

+ z̄t,η;u′
s dBs

= – H ′(s, xt,η;u′
s , u′

s,
(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)(
s, xt,η;u′

s
))

ds

– F (1)
s ŷt,η;u′

s ds – F (2)
s ẑt,η;u′

s ds + ẑt,η;u′
s dBs,

where the second equality follows from (H.1) and (H.2). Note that F (1) and F (2) are bounded
processes due to (H.1) and (H.2).

We can easily see that (29) is a linear BSDE, for which the explicit unique solution can
be written as follows: [13, Proposition 4.1.2] (P-a.s.)

ŷκ ,η;u′
κ =EFκ

[

ŷt,η;u′
κ̄ Zκ̄ +

∫ κ̄

κ

Zr (30)

× H ′(r, xκ ,η;u′
r , uε

r ,
(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)(
r, xt,η;u′

r
))

dr
]

,
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where Z is the scalar-valued state transition process given by

dZr = ZrF (1)
r dr + ZrF (2)

r dBr , Zκ = 1.

From (ii) of Definition 2 and (28), we have (P-a.s.)

0 = V (κ ,η) – ψ(κ ,η) ≤ 	
κ ,η;u′
κ ,κ̄

[
V

(
κ̄ , xκ ,η;u′

κ̄

)]
– ψ(κ ,η),

which, together with (30), implies that

EFκ

[∫ κ̄

κ

H ′(r, xκ ,η;u′
r , u′

r ,
(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)(
r, xκ ,η;u′

r
))

dr
]

≤ I(1) + I(2), P-a.s.,

where

I(1) := EFκ

[
ŷκ ,η;u′
κ̄ Zκ̄

]

I(2) := EFκ

[∫ κ̄

κ

(1 + Zr),

× H ′(r, xκ ,η;u′
r , u′

r ,
(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)(
r, xκ ,η;u′

r
))

dr
]

.

Since Z is a linear SDE, from (i) of Lemma 1, Lemma 2 and (27),

∣
∣I(1)∣∣ ≤ CP(κ̄ < κ + τ )

1
2 EFκ

[|Zκ̄ |2
] 1

2 ≤ C
32
δ̄3

(
1 + |η|6) 1

2 τ
3
2 , P-a.s.,

and due to (H.1), (H.2) and (i) of Lemma 1,

∣
∣I(2)∣∣ ≤ Cτ 2 + CτEFκ

[
max

r∈[κ ,(κ+τ )∧T]
|1 – Zr|

]
≤ Cτ 2 + Cτ

3
2 , P-a.s.

The estimates obtained above imply that

1
τ
EFκ

[∫ κ̄

κ

H ′(r, xκ ,η;u′
r , u′

r ,
(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)(
r, xκ ,η;u′

r
))

dr
]

≤ Cτ + C
32
δ̄3

(
1 + |η|6) 1

2 τ
1
2 + Cτ

1
2 , P-a.s.,

and for small τ (or as τ ↓ 0), with (26), we have (P-a.s. in �′)

0 <
θ

2
≤ sup

t∈[κ ,(κ+τ )∧T)
H ′(t,η, u′

t ,
(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t,η)

) ≤ 0.

This leads to a contradiction; hence, V is a viscosity supersolution of (3).
For the proof of the viscosity-subsolution property, similar to the proof for the viscosity

supersolution, if V is not a viscosity subsolution, then there exist θ > 0, δ̄ > 0 with δ̄ ∈ (0, δ),
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and �′ ∈Fκ with �′ ⊂ �κ and P(�′) > 0 such that for P-a.s. in �′, we have

ess inf
(t,x)∈[κ ,κ+δ̄)×Bδ̄ (η)

EFκ

[
6tψ(t, x)

+ H
(
t, x,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t, x)

)] ≤ –θ < 0.

As in (26), there exists u′
t ∈ U with (u′

t)t∈[κ ,T] ∈ Uκ ,T such that (P-a.s. in �′)

inf
t∈[κ ,(κ+δ̄)∧T)

H ′(t,η, u′
t ,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t,η)

) ≤ –
θ

2
< 0.

Then, by using the Itô–Kunita formula and following the approach analogous to that for
the viscosity-supersolution case, we can show that

0 ≤ 1
τ
EFκ

[∫ κ̄

κ

H ′(r, xκ ,η;u′
r , u′

r ,
(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)(
r, xκ ,η;u′

r
))

dr
]

+ C
32
δ̄3

(
1 + |η|6) 1

2 τ
1
2 + Cτ

1
2 , P-a.s.,

and for small τ (or as τ ↓ 0), we have (P-a.s. in �′)

0 ≤ inf
t∈[κ ,(κ+τ )∧T)

H ′(t,η, u′
t ,

(
ψ , Dψ , D2ψ , 6ωψ , D 6ωψ

)
(t,η)

) ≤ –
θ

2
< 0,

which leads to a contradiction. This shows that V is a viscosity subsolution. This completes
the proof of the theorem. �

We now discuss the uniqueness of the viscosity solution. It is assumed that
(H.3) in (4), l does not depend on q + 〈p,σ 〉 (equivalently z in (6)). Moreover, for

k > 2n + 2 and any u ∈ U0,T , we have f (·, ·, u),σ (·, ·, u) ∈L∞
F (W k,∞(Rn)),

l(·, ·, u, y) ∈L2
F (Hk(Rn)), and m ∈ L2(�,FT ; Hk(Rn)).

The first uniqueness result states that the value function is the maximal-viscosity solution
[11, Theorem 5.2].

Theorem 4 Suppose that (H.1)–(H.3) hold. Assume that v is the viscosity solution of (3)
with v+ ∈ C2(C(Rn)), where v+ denotes the nonnegative part of v. Then, for s ∈ [0, T] and
x ∈R

n, we have v(s, x) ≤ V (s, x), P-a.s., where V is the value function of (P) defined in (8).

Remark 8 In [11, Theorem 5.2], although the running cost l (f in [11]) does not depend
on both y and q + 〈p,σ 〉, we can easily extend the proof of [11, Theorem 5.2] to the case
when it depends on y. In fact, in the proof of [11, Theorem 5.2], the modified Feynman–
Kac formula for SPDEs (see [6, Theorem 4.3]), together with the optimal stopping theory,
is applied to construct an appropriate test function ψ , where the regularity with respect
to y is not required. However, when the running cost depends on q + 〈p,σ 〉 as in (4), the
Feynman–Kac formula needs a high regularity with respect to this term, which has not
been solved in the literature. We will address the general uniqueness problem in the near
future.

We introduce the superparabolicity assumption:
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(H.4) Assume that B = [B(1) B(2)], where B(1) and B(1) are mutually independent r1- and
r2-dimensional Brownian motions (r = r1 + r2), respectively, where {F (1)

s }s≥0 is the
filtration generated by B(1). Let σ = [σ (1) σ (2)] be the corresponding diffusion part
(note that σ (1) is n × r1). m is F (1)

T -measurable, and l, f are F (1)
s -measurable.

l, m ≥ 0 for all (ω, s, x, u, y) ∈ � × [0, T] ×R
n × U ×R, P-a.s. σ is not random, i.e.,

it does not depend explicitly on ω ∈ �. For (s, x, u, w) ∈ [0, T] ×R
n × U ×R

n,
there exists C > 0 such that

∑n
i,j=1

∑r2
k=1(σ (2))ik(σ (2))jkwiwj ≥ C|w|2, where the

superscript i indicates the ith component of the vector.
Based on [11, Theorem 5.6], we have the second uniqueness result:

Theorem 5 Assume that (H.1)–(H.4) hold. Then, the value function in (8) is the unique
viscosity solution of the SHJB equation in (3), which is F (1)

t -measurable for t ∈ [0, T] and
x ∈R

n.

Remark 9 The proof in [11, Theorem 5.6] relies on approximating the coefficients in (3)
via the density argument and the existence and uniqueness of the viscosity solution for
parabolic PDEs with the approximated coefficients for a small time interval. As noted in
Remark 8, the proof of [11, Theorem 5.6] can easily be extended to the case when l depends
on y. See also [11, Remark 5.2] for the discussion on (H.4).

Remark 10 By Theorem 5, the value function in (8) can be characterized using the (vis-
cosity) solution of the SHJB equation in (3).

4 Applications
In this section, we consider two different applications of (P) in Sect. 2; the utility-
maximization problem and the European option-pricing problem.

4.1 Utility maximization with random coefficients
The first application is the utility-maximization problem with random coefficients for the
investor, which can be viewed as an extension of the case with deterministic coefficients
studied in the literature (e.g., [20, 47, 48]).

We consider the financial market, where the nonrisky (risk-free) asset is with the unit
price, i.e., x(0)

t = 1 for t ∈ [0, T]. The dynamics of the (R-valued) risky asset (stock) satisfies
the SDE given by

⎧
⎨

⎩

dx(1)
s = rsx(1)

s ds + σsx(1)
s dBs,

x(1)
t = a,

(31)

where r is the stock appreciation rate and σ is the volatility, which are continuous, bounded
and {Fs}s≥0-adapted stochastic processes. Let μ be the interest rate of borrowing and/or
lending money, which is a continuous, bounded and {Fs}s≥0-adapted stochastic process.

According to [20, 48] (see [20, Chap. 2.4]), under the assumption that (i) the stock pro-
cesses are continuously traded over [0, T], (ii) there are no other expenses such as taxes
and transaction costs, and (iii) the market satisfies the self-financing condition, based on
x(0)

t and (31), and by introducing the portfolio strategy u, the (R-valued) wealth process of
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the investor can be described by the following SDE:

⎧
⎨

⎩

dXt,X;u
s = (rs – μs)us ds + μsXt,X;u

s ds + σsus dBs,

Xt,X;u
t = X.

(32)

We introduce the following recursive-type BSDE objective functional capturing the util-
ity of the agent:

dyt,X;u
s = zt,X;u

s dBs, yt,X;u
T = m

(
Xt,X;u

T
)
. (33)

Then, our problem corresponds to the maximization of the utility over the admissible
portfolio strategy u ∈ Ut,T subject to the wealth process in (32), i.e.,

ess sup
u∈Ut,T

JU(t, X; u), (34)

where

JU(t, X; u) = yt,X;u
t = EFt

[
m

(
Xt,X;u

T
)]

.

Note that this is a special case of (P) in Sect. 2 and is an extension of the utility-
maximization problem with deterministic coefficients studied in [20, 47, 48]. We can easily
check that (32) and (33) hold (H.1)–(H.3) and have unique solutions from Lemma 1.

The corresponding SHJB equation can be obtained by

⎧
⎪⎪⎨

⎪⎪⎩

dV (s, X) = –H(s, X, (V , DV , D2V , q, Dq)(s, X)) ds + q(s, X) dBs,

(s, X) ∈ [0, T) ×R,

V (T , X) = m(X),

(35)

where

H(s, X, y, p, P, q, Q) = ess sup
u∈U

{
〈
p, (r – μ)u + μX

〉
+ σuQ +

1
2

(σu)2P
}

. (36)

Note that (36) attains the maximum, provided that P < 0,

u∗ = –
(r – μ)p + σQ

σ 2P
. (37)

By substituting (37) into (36), the SHJB equation in (35) becomes

⎧
⎪⎪⎨

⎪⎪⎩

dV (s, X) = –H ′(s, X, (V , DV , D2V , q, Dq)(s, X)) ds + q(s, X) dBs,

(s, X) ∈ [0, T) ×R,

V (T , X) = m(X),

(38)

where

H ′(s, X, y, p, P, q, Q) = –
((r – μ)p + σQ)2

σ 2P
+ pμX.
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In summary, from the verification theorem in Theorem 2, we state the following result.

Proposition 3 Suppose that the pair (V , q) ∈L∞
F (C2(R))×L2

F (C2(R)) is the solution to the
SHJB equation in (38), where DV (s, X) < 0 for all (s, X) ∈ [0, T]×R. Then, the corresponding
optimal investment strategy of the utility-maximum problem in (34) can be written as

u∗
s = –

(rs – μs)DV (s, Xt,X;u∗
s ) + σsDq(s, Xt,X;u∗

s )
σ 2

s D2V (s, Xt,X;u∗
s )

. (39)

Moreover, the optimal utility of the agent is given by

ess sup
u∈Ut,T

JU
(
t, X; u∗) = yt,X;u∗

t = V (t, X).

Remark 11 In view of Proposition 3, (39) is the optimal investment strategy for the utility-
maximization problem, which can be obtained using the solution of the SHJB equation in
(38). Note that the SHJB equation in (38) admits a unique viscosity solution from Theo-
rems 3–5 (or the weak solution from Theorem 6.1). Then, we may apply numerical tech-
niques of SPDEs (see [37, 38, 67] and the references therein) to characterize the solution
of (38).

4.2 European option pricing with random coefficients
The second example we consider is the (recursive-type) European option-pricing problem
with random coefficients, which can be viewed as an extension of the case with determin-
istic coefficients studied in the literature (e.g., [12, 13, 20]).

Recall the risky asset (stock) process (x(1)
s )s∈[t,T] in (31). For the European option-pricing

problem, the wealth process in (32) becomes the BSDE given by

⎧
⎨

⎩

dXt,a;u
s = (rs – μs)us ds + μsXt,a;u

s ds + σsus dBs,

Xt,a;u
T = m(x(1)

T ),
(40)

where x(1)
T is the terminal value of the risky asset (stock) process in (31) and m(x(1)

T ) captures
an FT -measurable contingent claim determined by the stock process. Assume that there
exists π such that rs – μs = σsπs. This is called the risk-premium process. Then, (40) can
be rewritten as the BSDE form as follows:

⎧
⎨

⎩

dyt,a;u
s = –[πszt,a;u

s + μsyt,a;u
s ] ds + zt,a;u

s dBs,

yt,a;u
T = m(x(1)

T ).
(41)

In other words, in (41), a European contingent claim m(x(1)
T ) settled at time T is FT -

measurable. It can be thought of as a contract that pays m(x(1)
T ) at maturity T . Then,

the European option-pricing problem is to find u∗ ∈ Ut,T such that the initial wealth
JE(t, a; u∗) = yt,a;u∗

t achieves the contingent claim m(x(1)
T ) subject to (31) and (41). Note that

unlike the utility-maximization problem in (34), the wealth process in (41) is the BSDE
with random coefficients, which is the recursive-type objective functional. We can eas-
ily see that the European option-pricing problem in (31) and (41) is a special case of (P),
which holds (H.1) and (H.2).
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Note that in view of (ii) of Lemma 1, the wealth process in (41) admits a unique solution
of (yt,a;u

s , zt,a;u
s )s∈[t,T] ∈ C2

F (R) ×L2
F (R), and by Theorem 2, its solution can be obtained by

solving the following SHJB equation:

⎧
⎪⎪⎨

⎪⎪⎩

dV (s, a) = –H(s, a, (V , DV , D2V , q, Dq)(s, a)) ds + q(s, a) dBs,

(s, a) ∈ [0, T) ×R,

V (T , a) = m(a),

(42)

where

H(s, a, y, p, P, q, Q) = 〈p, ra〉 +
1
2
σ 2a2P + σaQ + μy + πq + πpσa.

Based on the analysis given above, the proof of Theorem 2, and [6, Theorem 4.3], we state
the following result.

Proposition 4 Suppose that the pair (V , q) ∈L∞
F (C2(R))×L2

F (C2(R)) is the solution to the
SHJB equation in (42). Then, the optimal portfolio strategy of the European option-pricing
problem can be written as

u∗
s = σ –1

s
(
q
(
s, x(1)

s
)

+ DV
(
s, x(1)

s
)
σsx(1)

s
)
. (43)

The solution of (41) is given by

yt,a;u∗
s = V

(
t, x(1)

s
)
, zt,a;u∗

s = σsu∗
s , s ∈ [t, T],

and the optimal initial wealth of the European option-pricing problem is

JE
(
t, a; u∗) = yt,a;u∗

t = V (t, a).

Remark 12 A similar argument to Remark 11 can be applied to Proposition 4. In particular,
from Proposition 4, (43) is the optimal portfolio strategy for the European option-pricing
problem, which achieves the corresponding contingent claim for the investor. Note that
(43) is obtained using the solution of the SHJB equation in (42), which can be characterized
by applying numerical techniques of SPDEs (see [37, 38, 67] and the references therein).

5 Conclusions
We have considered the stochastic optimal control problem with random coefficients un-
der the recursive-type objective functional captured by the BSDE. Due to the recursive-
type BSDE objective functional with random coefficients, the problem in this paper intro-
duces several technical intricacies, which do not appear in the existing literature. Using
the backward semigroup associated with the recursive-type objective functional and the
estimates of BSDEs, we have shown the DPP for the value function as well as its continuity.
Then, by using the Itô–Kunita formula and the estimates of BSDEs, we have obtained the
verification theorem, which constitutes the sufficient condition for optimality and char-
acterizes the value function, provided that the solution of the SHJB equation exists. Fur-
thermore, we have studied the existence and uniqueness of the solution to the SHJB equa-
tion under two different weak-solution concepts. First, under appropriate assumptions,
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we have shown the existence and uniqueness of the weak solution via the Sobolev-space
technique, which requires converting the SHJB equation to a class of backward stochastic
evolution equations. Secondly, we have proven that the value function is the viscosity solu-
tion to the SHJB equation by constructing the auxiliary BSDE in terms of the value func-
tion, and using the DPP and the precise estimates of BSDEs (including the linear BSDE
theory and the continuity of the value function). For applications, we have considered the
linear–quadratic problem, the utility-maximization problem, and the European option-
pricing problem. In contrast to the existing literature, each problem is formulated by the
generalized recursive-type objective functional and is subject to random coefficients. By
applying the theoretical results of this paper, we have obtained the explicit optimal solu-
tion for each problem in terms of the solution of the corresponding SHJB equation.

There are several interesting future research problems:
(1) One important problem is the uniqueness of the viscosity solution for the SHJB

equation in (3) without additional parameter assumptions. This requires us to
obtain the generalized Feynman–Kac formula between BSDEs and SPDEs;

(2) We can also consider the case of fully coupled forward–backward SDEs, where f
and σ in (5) are also dependent on the BSDE. This will induce a more complicated
SHJB equation with an additional algebraic equation; see [68, 69] for the
deterministic coefficients case;

(3) The (existence and uniqueness) solvability of the SRDE in (22) needs to be studied,
which requires the extension of techniques in [25, 43–45];

(4) Applications to various mathematical finance problems are also an interesting
avenue to pursue.

Appendix: Existence and uniqueness of the weak solution to the SHJB
equation
In this appendix, we show the existence and uniqueness of the (weak) solution to the SHJB
equation in (3) using the Sobolev-space approach. For simplicity, we consider the one-
dimensional Brownian motion case (r = 1).

Recall that (W k,q(Rn),‖ · ‖k,q) is the Sobolev space for real-valued functions on R
n (in

the sense of weak derivatives in R
n) and Hk := W k,2 with ‖ · ‖k := ‖ · ‖k,2.7 Also, L2(Rn) is

the (Hilbert) space of square-integrable real-valued functions on R
n and L2

F (Hk(Rn)) is
the set of {Fs}s≥0-adapted Hk(Rn)-valued random processes with norm ‖ · ‖L2

F (Hk (Rn)) =
E[

∫ T
0 ‖ · ‖2

k ds].8 We identify L2(Rn) with its dual space. Then, we have

H1(
R

n) ⊂ L2(
R

n) ⊂ H–1(
R

n),

where H–1(Rn) is the dual space of H1(Rn). Define (H1(Rn), L2(Rn), H–1(Rn)) =: (V,H,V′)
[51, 70]. Let L2(V;V′) be the space of bounded operators from V to V

′. Note that ‖ · ‖V =
‖ · ‖1. Let 〈·, ·〉V,V′ be the duality pairing between V and V

′. Let 〈·, ·〉H be the inner product
on H, and ‖ · ‖H := 〈·, ·〉1/2

H
the norm defined on H.

7Note that (Wk,q(Rn),‖ · ‖k,q) is a Banach space and (Hk ,‖ · ‖k ) is a Hilbert space [51].
8For f ∈ L2

F (Hk (Rn)), the weak derivatives of f up to kth-order are {Fs}s≥0-adapted stochastic processes, which belong to
L2

F .
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We consider the following BSDE:

⎧
⎨

⎩

dYs = –[AsYs + ψ(s,Zs) + ψ̂(s,Ys,Zs)] ds + Zs dBs,

YT = η,
(A.1)

where the coefficients are defined by

A : [0, T] × � → L2(
V,V′), ψ : [0, T] × � ×H →V

′,

ψ̂ : [0, T] × � ×V×H →H ⊂V
′, η : � →H ⊂V

′.

The BSDE in (A.1) can be viewed as a class of backward stochastic evolution equations
[6, 71]. It is assumed that

(A) A, ψ and ψ̂ are {Fs}s≥0-adapted stochastic processes in L2
F . A is bounded for

(s,ω) ∈ [0, T] × � and for any v ∈V, 〈Asv, v〉V,V′ ≥ 0. For z1, z2 ∈H and y ∈V, there
exists a constant K > 0 such that

〈
ψ(s, z1) – ψ(s, z2), y

〉

V,V′ ≤ K‖z1 – z2‖H〈2Asy, y〉1/2
V,V′ .

ψ̂ is Lipschitz continuous in (y, z) ∈ V×H. η is FT -measurable.
Then, in view of [71, Theorem 4.1] (see also [1, Lemma 4.2]), we have the following result:

Lemma 6.1 Suppose that (A) holds. Then, (A.1) admits a unique solution of (Ys,Zs)s∈[0,T] ∈
L2
F (V) ×L2

F (H).

Below, the existence and uniqueness of the weak solution to the SHJB equation in (3) is
shown. We assume that

(B) σ is independent of u, and l(s, x, u, y, z) = l(s, x, u, y) + z. For almost all ω ∈ �, f , l, m
and σ are continuous in (x, u) ∈R

n × U and bounded on R
n. For almost all ω ∈ �

and (s, u) ∈ [0, T] × U , f , l, m and σ are continuously differentiable in x, which are
bounded on R

n and continuous in s ∈ [0, T].
We define

〈Asζ ,β〉V,V′ := –
1
2

∫

Rn

〈
σσ�(s, x)Dζ (x), Dβ(x)

〉
dx, ∀ζ ,β ∈V,

〈
ψ(s,γ ),β

〉

V,V′ := –
∫

Rn

〈
γ (x)σ (s, x), Dβ(x)

〉
dx, ∀γ ∈H,β ∈V,

and for γ ∈H and ζ ∈V,

ψ̂(s, ζ ,γ ) := inf
u∈U

{〈
Dζ (x), f (s, x, u)

〉
+ l(s, x, u, ζ )

}
+

〈
Dζ (x),σ (s, x)

〉

– γ (x)
n∑

i=1

∂xiσ (t, x) + γ (x) –
1
2

n∑

i,j=1

∂xi

(
σσ�(s, x)

)

ij∂xjζ (x),

where ∂xi is the partial derivative with respect to xi with x = [x1 · · · xn]� ∈ R
n and

(σσ�(s, x))ij denotes the ith-row and jth-column elements of σσ�.
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Clearly, under (B), it can be easily verified that A, ψ and ψ̂ satisfy the conditions for the
coefficients of the BSDE in (A.1) and (A). Also, by using the integration by parts formula,
for any ζ ,β ∈V and γ ∈H, we can show that

〈
Asζ + ψ(s,γ ) + ψ̂(s, ζ ,γ ),β

〉

V,V′ (A.2)

=
〈
H

(
s, x,

(
ζ , Dζ , D2ζ ,γ , Dγ

)
(x)

)
,β

〉

H

=
∫

Rn
H

(
s, x,

(
ζ , Dζ , D2ζ ,γ , Dγ

)
(x)

)
β(x) dx, P-a.s.

Now, the weak solution of the SHJB equation is defined as follows [1–3, 5, 6]:

Definition 6.1 The pair (V , q) ∈L2
F (V) ×L2

F (H) is said to be a weak solution to the SHJB
equation in (3) if for each β ∈V, the pair (V , q) satisfies

∫

Rn
V (t, x)β(s) dx

=
∫

Rn
m(x)β(x) dx –

∫ T

t

∫

Rn
q(s, x)β(x) dx dBs

+
∫ T

t

∫

Rn
H

(
s, x,

(
V , DV , D2V , q, Dq

)
(s, x)

)
β(x) dx ds, t ∈ [0, T],P-a.s.

Note that if there is a smooth (classical) solution of the SHJB equation in (3), it is also a
weak solution in the sense of Definition 6.1. Based on Lemma 6.1 and the analysis given
above (particularly (A.2)), the existence and uniqueness of the weak solution to (3) in the
sense of Definition 1 can be stated as follows:

Theorem 6.1 Assume that (B) holds. Then, the pair (V , q) ∈ L2
F (V) ×L2

F (H) is a unique
weak solution of the SHJB equation in (3).
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