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Abstract
The mathematical model has become an important means to study tumor treatment
and has developed with the discovery of medical phenomena. In this paper, we
establish a delayed tumor model, in which the Allee effect is considered. Different
from the previous similar tumor models, this model is mainly studied from the point
of view of stability and co-dimension two bifurcations, and some nontrivial
phenomena and conclusions are obtained. By calculation, there are at most two
positive equilibria in the system, and their stability is investigated. Based on these, we
find that the system undergoes Bautin bifurcation, zero-Hopf bifurcation, and
Hopf–Hopf bifurcation with time delay and tumor growth rate as bifurcation
parameters. The interesting thing is that there is a Zero-Hopf bifurcation, which is not
common in tumor models, making abundant dynamic phenomena appear in the
system. By using the bifurcation theory of functional differential equations, we
calculate the normal form of these Co-dimension two bifurcations. Finally, with the
aid of MATLAB package DDE-BIFTOOL, some numerical simulations have been
performed to support our theoretical results. In particular, we obtain the bifurcation
diagram of the system in the two parameter plane and divide its regions according to
the bifurcation curves. Meanwhile, the phenomena of multistability and periodic
coexistence of some regions can be also demonstrated. Combined with the
simulation results, we can know that when the tumor growth rate and the delay of
immune cell apoptosis are small, the tumor may tend to be stable, and vice versa.

Keywords: Allee effect; Bautin bifurcation; Zero-Hopf bifurcation; Hopf–Hopf
bifurcation

1 Introduction
Cancer, also known as malignant tumor, grows fast and is very difficult to cure, which
seriously affects people’s life and health [1–4]. In recent years, with the vigorous develop-
ment of biomathematics and interdisciplinary, it has become a new research trend to solve
the related problems in biomedical field by establishing mathematical models. Therefore,
many scholars have devoted themselves to the study of tumor models and made remark-
able achievements, including tumor-immune and various types of tumor models, such as
melanoma model, autoimmune disease model, hepatitis B model, and so on [5–7]. Most
of them study the model from the perspective of stability and bifurcation, and consider the
delay [8, 9] and other effects in the model. For example, the authors in reference [10] stud-
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ied the symmetric-breaking bifurcation properties of a tumor model with delay and free
boundary. In [11], a three-dimensional ordinary differential equation model is established
to explore the growth law of tumor cells, and its bifurcation and multistability are studied.
These models have different definitions of tumor growth, most of which are exponential
growth and logistic growth. However, many scholars have pointed out that the Allee effect
exists not only in the macro population entities but also in the growth of tumors [12–17].
Therefore, considering the delay of apoptosis of immune cells and the Allee effect of tumor
cell growth, the following functional differential equation model is established:

⎧
⎨

⎩

dx
dt = α

y
y+b – dx(t – τ ),

dy
dt = ry(1 – y

k )(y – m) – βxy,
(1)

where x, y represent the number of human immune cells and tumor cells at time t respec-
tively. α, b, and d stand for the growth rate, semi-saturation constant, and apoptosis rate
of immune cells respectively, and the delay of apoptosis is expressed by τ . r, β represent
the growth rate and apoptosis rate of tumor cells respectively. The maximum carrying ca-
pacity of tumor cells in human body is defined as k, and m is Allee threshold. In particular,
inspired by [18–20], we use α

y
y+b instead of the usual immune cells growth term αy, whose

growth is independent of tumor cells, and for the apoptosis of tumor cells, we follow the
models in [19, 21].

Although many scholars have studied models similar to (1), most of them stop at co-
dimension one bifurcations, and there is less research on co-dimension two bifurcations.
Co-dimension two bifurcations are usually accompanied by abundant dynamic phenom-
ena, especially when there are multiple codimension two bifurcations in a model. There-
fore, this paper focuses on some interesting dynamic phenomena of model (1) from the
perspective of high co-dimension bifurcations.

The rest of this paper is organized as follows. In Sect. 2, we analyze the existence and
stability of positive equilibria of system (1). Hopf bifurcation and Bautin bifurcation are
investigated in Sect. 3, and the key values required for Bautin bifurcation analysis are cal-
culated. We study the existence and normal form of zero-Hopf bifurcation in Sect. 4. In
Sect. 5, we analyze another co-dimension two bifurcation, namely Hopf–Hopf bifurcation.
To support our theoretical analysis, the two-parameter bifurcation diagram is obtained in
Sect. 6, and given the bifurcation diagram, we give some numerical simulations for differ-
ent parameters. Finally, a brief conclusion and expectation section completes the paper.

2 Existence and stability of positive equilibria
It is obvious that system (1) has a zero equilibrium E0 = (0, 0) and no boundary equilibrium.
Considering the positive equilibrium E∗(x∗, y∗), one satisfies

⎧
⎨

⎩

α
y∗

y∗+b – dx∗ = 0,

ry∗(1 – y∗
k )(y∗ – m) – βx∗y∗ = 0.

(2)

After sorting out equation (2), we can get the following result:

(
y∗ + b

)(
y∗ – k

)(
y∗ – m

)
+

kαβ

dr
y∗ = 0.
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Let

f
(
y∗) =

(
y∗ + b

)(
y∗ – k

)(
y∗ – m

)
+

kαβ

dr
y∗, (3)

and for convenience, we give the derivative of (3)

f ′(y∗) = 3
(
y∗)2 + 2(b – k – m)y∗ + km +

kαβ

dr
– b(k + m). (4)

The two zeros of function (4) are

y∗
1 =

–2(b – k – m) –
√

�

6
, y∗

2 =
–2(b – k – m) +

√
�

6
,

where

� = 4(b – k – m)2 – 12
[

km +
kαβ

dr
– b(k + m)

]

.

Using some basic knowledge of quadratic function, we have the following.

Theorem 2.1 For system (1).
(1) If y∗

1 > 0, � > 0, and f (y∗
2) < 0 all hold, then function (3) has two different zeros, that

is, system (1) has two different positive equilibria, denoted by E1(x1, y1) and E2(x2, y2).
(2) If y∗

1 > 0, � > 0, and f (y∗
2) = 0 are all satisfied, then there is a unique zero for function

(3), and the corresponding equilibrium of system (1) is denoted by E3(x3, y3).

Without loss of generality, this paper focuses on the stability of positive equilibrium E2.
The linearization of system (1) at this equilibrium is actually

⎧
⎨

⎩

dx
dt = a12y – dx(t – τ ),
dy
dt = a22y – a21x,

(5)

where

a12 = α
b

(y2 + b)2 , a21 = βy2,

a22 = r
[(

1 –
2y2

k

)

(y2 – m) +
(

y2 –
y2

2
k

)]

– βx2.

Thus, the characteristic equation of the system can be easily obtained as follows:

λ2 – a22λ + (dλ – a22d)e–λτ + a12a21 = 0. (6)

When τ = 0, equation (6) becomes

λ2 + (d – a22)λ + a12a21 – a22d = 0,
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and according to the Routh–Hurwitz criterion, all roots of the characteristic equation have
negative real parts when d > a22 and a12a21 > a22d hold. That is to say, in this case, the
positive equilibrium E2 is locally asymptotically stable.

When τ > 0, suppose that λ1,2 = ±iω are the roots of equation (6), and take it into the
equation

–ω2 – ia22ω + (idω – a22d)(cosωτ – i sinωτ ) + a12a21 = 0. (7)

Separating the real and imaginary parts of (7), we can get

⎧
⎨

⎩

dω sinωτ – a22 d cosωτ = ω2 – a12a21,

dω cosωτ + a22 d sinωτ = a22ω.
(8)

By squaring both sides of (8) and adding the two equations, the following result can be
obtained:

ω4 +
(
a2

22 – 2a12a21 – d2)ω2 + a2
11a2

21 – a2
22d2 = 0. (9)

Let v = ω2, and equation (9) is now

v2 + η1v + η2 = 0, (10)

and the corresponding two roots are expressed as

v1 =
–η1 +

√
η1 – 4η2

2
, v2 =

–η1 –
√

η1 – 4η2

2
.

It is easy to see that when η1 – 4η2 > 0 and – η1
2 > 0 hold, equation (10) has positive roots,

and without loss of generality, suppose that v1 and v2 are positive roots. Accordingly, equa-
tion (9) has two positive solutions ω1 = √v1 and ω2 = √v2, and the corresponding critical
value of time delay is

τ (j)
n =

⎧
⎨

⎩

1
ωn

[arccos{ a12a21a22
(a2

22+w2)d } + 2jπ ], cosωτ > 0,
1

ωn
[π – arccos{ a12a21a22

(a2
22+w2)d } + 2jπ ], cosωτ < 0,

where n = 1, 2 and j = 1, 2, 3, . . . . Defining τ0 = min{τ (j)
n }, the corresponding ωn is ω0. Let

λ = ξ (τ ) + iω(τ ) be the root of equation (6), where ξ and ω satisfy ξ (τ0) = 0 and ω(τ0) = ω0,
respectively. Differentiating both sides of the characteristic equation (6) with respect to λ

gives

2λ
dλ

dτ
– a22

dλ

dτ
+ de–λτ dλ

dτ
– dλe–λτ

[
dλ

dτ
τ + λ

]

+ a22de–λτ

[
dλ

dτ
τ + λ

]

= 0,

and then we have

[
dλ

dτ

]–1

=
(2λ – a22)eλτ

λ(dλ – a22d)
+

d
λ(dλ – a22d)

–
τ

λ
.
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Obviously, the transversality condition sign [ dλ
dτ

]
τ=τ0

�= 0 if and only if a2
22 + 2ω2

0 – d2 –
2a12a21 �= 0, where

sign

[
dλ

dτ

]

τ=τ0

= sign

[

Re

(
dλ

dτ

)]–1

= sign

{

Re

[
(2λ – a22)eλτ + d

λ(dλ – a22d)

]}

= sign

{

Re

[
(2iω0 – a22)(cos iω0 + i sin iω0) + d

iω0(idω0 – a22d)

]}

= sign

[
a2

22 + 2ω2
0 – d2 – 2a12a21

d2(ω2
0 + a2

22)

]

.

Theorem 2.2 The positive equilibrium E2 is locally asymptotically stable(unstable) when
τ ∈ (0, τ0) (τ > τ0), and system (1) undergoes Hopf bifurcation at positive equilibrium E2

when τ = τ0 and a2
22 + 2ω2

0 – d2 – 2a12a21 �= 0.

3 Bautin bifurcation
When the first Lyapunov coefficient is equal to 0, the Hopf bifurcation may degenerate
and Bautin bifurcation occurs. In this section, Bautin bifurcation is investigated at positive
equilibrium E2 with τ and r as bifurcation parameters. Next, according to the research in
[22–24], the properties of Hopf bifurcation and Bautin bifurcation are studied. Let (τ0, r0)
be the Bautin bifurcation point for bifurcation analysis. After scaling t → t

τ
and introduc-

ing μ = τ – τ0, ς = r – r0, u1 = x(t) – x2, u2(t) = y(t) – y2, system (1) can be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇1(t) = (τ0 + μ){a12u2(t) – du1(t – 1)

– a13u2
2(t) + a14u3

2(t) + h.o.t},
u̇2(t) = (τ0 + μ){a21u1(t) + a∗

22u2(t) + a23u2
2(t)

– βu1(t)u2(t) – a24u3
2(t)},

(11)

where

a13 =
αb

(y2 + b)3 , a14 =
αb

(y2 + b)4 ,

a∗
22 = (r0 + ς )

[(

1 –
2y2

k

)

(y2 – m) +
(

y2 –
y2

2
k

)]

– βx2,

a23 = (r0 + ς )
[(

1 +
m
k

)

–
3
k

y2

]

, a24 =
r0 + ς

k
.

The above system (11) is transformed into a functional differential equation on the phase
space C = C([–1, 0],R2)

u̇(t) = L(μ,ς )ut + F(μ,ς , ut),

where u(t) = (u1(t), u2(t))T ∈R
2, L : C →R

2, ut = u(t +θ ), θ ∈ [–1, 0], and F : R2 ×C →R
2.

For ϕ(θ ) = (ϕ1(θ ),ϕ2(θ )) ∈ C, we have

L(μ,ς )ϕ = B1ϕ(0) + B2ϕ(–1).
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where

B1 = τ0

(
0 a12

a21 a∗
22

)

, B2 = τ0

(
–d 0
0 0

)

,

and

F(μ,ς ,ϕ) =

(
μ(a12ϕ2(0) – dϕ1(0))

μ(a21ϕ1(0) – a∗
22ϕ2(0)) + τ0ςa∗

22ϕ2(0)

)

+

(
(τ0 + μ){–a13ϕ

2
2 (0) + a14ϕ

3
2 (0) + h.o.t}

(τ0 + μ){a23ϕ
2
2 (0) – βϕ1(0)ϕ2(0) + a24ϕ

3
2 (0)}

)

.

By the Riesz representation theorem, there exists bounded variation functions η(θ ,μ,ς )
in θ ∈ [–1, 0] such that

L(μ,ς )ϕ =
∫ 0

–1
dη(θ ,μ,ς )ϕ(θ ), for ϕ ∈ C[–1, 0].

In fact, η(θ ,μ,ς ) can be

dη(θ ,μ,ς ) = B1δ(θ ) + B2δ(θ + 1),

where δ is the Dirac delta function. Now define operator

A(μ,ς )ϕ =

⎧
⎨

⎩

dϕ(θ )
dθ

, for θ ∈ [–1, 0),
∫ 0

–1 dη(θ ,μ,ς )ϕ(θ ), for θ = 0,

and

R(μ,ς )ϕ =

⎧
⎨

⎩

0, for θ ∈ [–1, 0),

F(μ,ς , θ ), for θ = 0.

System (11) is equivalent to the following abstract ordinary differential equation:

u̇t = A(μ)ut + R(μ)ut ,

where ut = u(t + θ ), θ ∈ [–1, 0]. The adjoint operator A∗ of A is

A∗(μ,ς )ψ =

⎧
⎨

⎩

– dψ(s)
ds , for s ∈ (0, 1],

∫ 0
–1 ψ(–s) dη(s,μ,ς ), for s = 0.

For ϕ ∈ C[–1, 0] and ψ ∈ C[0, 1], define the bilinear form

〈
ψ(s),ϕ(θ )

〉
= ψ̄(0)ϕ(0) –

∫ 0

–1

∫ θ

0
ψ̄(ξ – θ ) dη(θ )ϕ(ξ ) dξ ,
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where η(θ ) = η(θ , 0, 0). It is easy to show 〈ψ , Aϕ〉 = 〈A∗ψ ,ϕ〉. Let q(θ ) be the eigenvector
corresponding to eigenvalue iω0 of A(0, 0) and q∗(s) be the eigenvector corresponding to
eigenvalue –iω0 of A∗, namely

A(0, 0)q(θ ) = iω0q(θ ), A∗q∗(s) = –iω0q∗(s).

By simple calculation, we have

q(θ ) = (1, q1)T eiω0θ , q∗(s) = D
(
1, q∗

1
)T eiω0s,

where

q1 =
iω0 – deiω0τ0

a12
, q∗

1 =
–iω0 – de–iω0τ0

a12
,

D̄ =
1

1 + q̄∗
1q1 – dτ0e–iω0τ0

.

Defining z(t) = 〈q∗, ut〉 and W (μ,ς )(t, θ ) = ut(θ ) – 2 Re[z(t)q(θ )], on the center manifold C0,
we have

W (μ,ς )(t, θ ) = W (μ,ς )(z(t), z̄(t), θ
)

and

W (μ,ς )(z(t), z̄(t), θ
)

= W (μ,ς )
20 (θ )

z2

2
+ W (μ,ς )

11 (θ )zz̄

+ W (μ,ς )
02 (θ )

z̄2

2
+ W (μ,ς )

30 (θ )
z3

6
+ · · · .

For convenience, rewriting W (μ,ς )
ij as Wij, this is W (μ,ς )

ij = (W (1)
ij , W (2)

ij ), i + j ≥ 2, we have

ż(t) =
〈
q∗, u̇t

〉
=
〈
q∗, Aut + Rut

〉

=
〈
A∗q∗, ut

〉
+
〈
q∗, Rut

〉

= iω0z + q̄∗(0)F
(
0, W (μ,ς )(t, θ ) + 2 Re

[
z(t)q(0)

])

= iω0z + g(z, z̄),

where

g(z, z̄) =
∑

i+j≥2

gij
1

i!j!
ziz̄j. (12)

Moreover, one obtains

g(z, z̄) = q̄∗(0)F(z, z̄)

= (τ0 + μ)D
(
1q̄∗

1
)
(

–a13u2
2(0) + a14u2

2(0) + h.o.t
a23u2

2(0) – βu1(0)u2(0) – a24u2
2(0)

)

. (13)
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The expression of ut(θ ) = (u1t(θ ), u2t(θ ))T is easy to get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1(0) = z + z̄ + W (1)
20 (0) z2

2

+ W (1)
11 (0)zz̄ + W (1)

02 (0) z̄2

2 + · · · ,

u2(0) = q1z + q̄1z̄ + W (2)
20 (0) z2

2

+ W (2)
11 (0)zz̄ + W (2)

02 (0) z̄2

2 + · · · .

(14)

Substituting (14) into (13), then comparing the coefficient with (12), we can get

g21 = 2(M1G210 – M2G211), g02 = 2
(
M1q̄2

1 – M2q̄1
)
,

g20 = 2
(
M1q2

1 – M2q1
)
,

g11 = M1q1q̄1 – βq̄∗
1D(q1 + q̄1)(τ0 + μ), g12 = 2(M1G120 – M2G121),

g40 = 12(2M1G400 – M2G401), g31 = 3(2M1G310 – M2G311),

g13 = 3(2M1G130 – M2G131), g32 = 6(2M1G320 – M2G321),

g22 = 4(M1G220 – M2G221),

g03 = 6M1q̄1W (2)
02 – 6M2

(
q̄1W (1)

02 (0)
2

+ W (2)
02 (0)

)

,

g30 = 6M1q1W (2)
20 (0) – 6M2

(
q1W (1)

20 (0)
2

+ W (2)
20 (0)

)

,

where

M2 = βq̄∗
1D(τ0 + μ), M1 = (τ0 + μ)

[
D(a14 – a13) + Dq̄∗

1(a23 – a24)
]
,

G210 = q̄1W (2)
20 (0) + 2q1W (2)

11 (0), G120 = q1W (2)
02 (0) + 2q̄1W (2)

11 (0),

G400 =
q1W (2)

30
3

+
(W (2)

20 )
2

4
, G310 = q1W (2)

21 (0) +
q̄1W (2)

30 (0)
3

,

G130 = q̄1W (2)
12 (0) +

q1W (2)
03 (0)
3

, G221 = W (1)
11 (0)W (2)

11 (0) +
H2

2
,

G311 =
q̄1W (1)

30 (0) + W (2)
30 (0)

3
+ q1W (1)

21 (0) + W (2)
21 (0),

G401 =
q1W (1)

30 (0) + W (2)
30 (0)

3
+

W (1)
20 (0)W (2)

20 (0)
2

,

G121 =
q̄1W (1)

02 (0) + W (2)
02 (0)

2
+ q̄1W (1)

11 (0) + W (2)
11 (0),

G211 =
q̄1W (1)

20 (0) + W (2)
20 (0)

2
+ q1W (1)

11 (0) + W (2)
11 (0),

G131 =
q1W (1)

03 (0) + W (2)
03 (0)

3
+ q̄1W (1)

12 (0) + W (2)
12 (0),

G320 = W (2)
21 (0)W (2)

11 (0) +
2q̄1W (2)

31 (0) + W (2)
30 (0)W (2)

02 (0)
6

,
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G321 = W (1)
21 (0)W (2)

11 (0) + W (2)
21 (0)W (1)

11 (0) +
q̄1W (1)

31 (0) + W (2)
31 (0)

3
+

H1

6
,

G220 = q̄1W (2)
21 (0) + q1W (2)

12 (0) +
(
W (2)

11 (0)
)2

+
W (2)

20 (0)W (2)
02 (0)

2
,

and

H1 = W (1)
30 (0)W (2)

02 (0) + W (2)
30 (0)W (1)

02 (0),

H2 = q̄1W (1)
21 (0) + q1W (1)

12 (0) + W (2)
21 (0) + W (2)

12 (0)

+ W (1)
20 (0)W (2)

02 (0) + W (1)
02 (0)W (2)

20 (0).

Furthermore, the calculation results show that

μ2 = –
Re[C1(0)]
Re[λ′(τ0)]

, β2 = 2 Re C1(0),

where

C1(0) =
i

2ω0

(

g20g11 – 2|g11|2 –
1
3
|g02|2

)

+
g21

2
.

The sign of μ2 reveals the direction of the Hopf bifurcation and β2 the stability of periodic
solutions, so we have the following.

Theorem 3.1 If μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical(subcritical)
and the bifurcating periodic solutions on the center manifold are stable(unstable) if β2 < 0
(β2 > 0).

Next, to illustrate the existence of Bautin bifurcation, we need to calculate the first Lya-
punov coefficient and the second Lyapunov coefficient as follows:

l1(μ,ς ) =
1

2ω0

[

Re g21 –
1
ω0

Im(g20g11)
]

and

12l2(0, 0) =
1
ω0

Re g32 +
1
ω2

0
Im

[

g20ḡ31 – g11(4g31 + 3ḡ22)–
1
3

g02(g40 + ḡ13) – g30g12

]

+
1
ω3

0
Re

[

g20ḡ11(3g12 – ḡ30) + g20g02

(

ḡ12 –
1
3

g30

)

+
1
3

g20ḡ02g30 + g11ḡ02

(
5
3

ḡ30 + 3g12

)]

+
1
ω3

0
Re

[
1
3

g11g02ḡ03 – 4g11
2 g30

]

+
3
ω3

0
Im(g20g11) Im g21

+
1
ω4

0
Im
[
g11ḡ02(ḡ2

20 – 3ḡ20g11 – 4g2
11
]

+
1
ω4

0
Im(g20g11)

[
3 Re(g20g11) – 2|g02|2

]
.
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For the transversality condition, obviously, if ∂l1(μ,ς )
∂ς

�= 0, then the map (μ,ς ) → ( ξ (μ)
ω(μ) ,

l1(μ,ς )) at (μ,ς ) = (0, 0) is

⎛

⎝

∂
ξ (μ)
ω(μ)
∂μ

∂
ξ (μ)
ω(μ)
∂ς

∂l1(μ,ς )
∂μ

∂l1(μ,ς )
∂ς

⎞

⎠ �= 0.

Theorem 3.2 If l1(0, 0) = 0, ∂l1(μ,ς )
∂ς

�= 0 and l2(0, 0) �= 0 are all satisfied, then system (1)
undergoes Bautin bifurcation at the critical point (τ0, r0).

4 Zero-Hopf bifurcation
When the characteristic equation (6) has a simple zero root and a pair of pure imaginary
roots and the other roots have negative real parts, the zero-Hopf bifurcation [25–27]will
appear in system (1). With the emergence of zero-Hopf bifurcation, the dynamic phenom-
ena of coexistence of periodic solutions and multistability are produced. Then, we study
the existence of zero-Hopf bifurcation and calculate its normal form.

4.1 Existence of zero-Hopf bifurcation
To find the existence of zero-Hopf bifurcation, we need to study equation (6). Let

G(λ, τ ) = λ2 – a22λ + (dλ – a22d)e–λτ + a12a21. (15)

For (15), we have the following.

Theorem 4.1 When d = a12a21
a22

and a2
22 – a12a21 < 0 hold, the function has a simple zero

point for all τ ≥ 0.

Proof For (15), if d = a12a21
a22

, then we have

G(0, τ ) = a12a21 – a22d = 0

and

∂G(0, τ )
∂λ

= –a22 + τa12a21 + d.

Due to a2
22 – a12a21 < 0, then ∂G(0,τ )

∂λ
|d= a12a21

a22
= 0 if and only if τ = a2

22–a12a21
a22

< 0. So (15) has
a simple zero point for all τ ≥ 0. Namely, λ = 0 is a simple zero eigenvalue for all τ ≥ 0. �

For τ = 0, if d = a12a21
a22

and a2
22 – a12a21 < 0 are satisfied, the characteristic equation be-

comes

λ(λ + d – a22) = λ

(

λ +
a12a21 – a2

22
a2

22

)

= 0. (16)

Apparently, all roots of (16) are

λ1 = 0, λ2 =
a2

22 – a12a21

a2
22

< 0.
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Lemma 4.1 For τ = 0, if d = a12a21
a22

and a2
22 – a12a21 < 0 hold, then (15) has a simple zero

root and the other root with negative part.

Following Sect. 2, we have the following.

Lemma 4.2 For τ > 0, if d = a12a21
a22

holds, then (15) has a simple zero root and a pair of
purely imaginary roots ±iω0 at τ = τ0, and the other roots of (15) have negative real parts.
Therefore, system (1) undergoes a zero-Hopf bifurcation around the nontrivial equilibrium
E2 at (τ , r) = (τ0, r0).

4.2 Normal form of zero-Hopf bifurcation
Still denote a zero-Hopf point by (τ0, r0), and use the previous symbol μ = τ – τ0, ς = r – r0.
In this case, the eigenvalues of A(0, 0) are iω0τ0 and 0, and their corresponding eigenvec-
tors are ϕ1(θ ) = (1,ρ)T eiωτ0θ , ϕ2(θ ) = (1,υ)T . For the adjoint operator A∗, the eigenvalues
of A∗ are –iω0τ0 and 0, and their corresponding eigenvectors are ψ1(θ ) = K1(1,σ )eiω0τ0s,
ψ2(θ ) = K2(1, c), where according to

B1ϕ1(0) + B2ϕ1(–1) = iω0τ0ϕ1(0),

(B1 + B2)

(
1
υ

)

= 0,

and

ψ1(0)B1 + ψ1(1)B2 = –iω0τ0ψ1(0),

(1, c)(B1 + B2) = 0,

we have

ρ =
de–iω0τ0 + iω0

a12
, υ =

d
a12

, σ =
deiω0τ0 – iω0

a12
, c =

d
a21

.

It is easy to verify 〈ψ2,ϕ1〉 = 〈ψ1,ϕ2〉 = 0, and by

〈ψ̄1,ϕ1〉 = K̄1

[

(1, σ̄ )

(
1
ρ

)

+
∫ 0

–1
(1, σ̄ )e–iω0τ0(ζ+1)B2

(
1
ρ

)

eiω0τ0ζ dζ

]

= K̄1
[
1 + σ̄ ρ + dτ0e–iω0τ0

]
= 1,

〈ψ2,ϕ2〉 = K2

[(

1,
d

a21

)(
1
d

a12

)

+
∫ 0

–1

(

1,
d

a21

)

B2

(
1
d

a12

)

dζ

]

= K2

[

1 +
d2

a21a12
+ dτ0

]

= 1,

we have

K1 =
1

1 + σ̄ ρ + dτ0e–iω0τ0
, K2 =

a21a12

(1 + dτ0)a21a12 + d2 .
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Let � = (ϕ1, ϕ̄1,ϕ2), � = (ψ̄1,ψ1,ψ2) with �̇ = �J , �̇ = –J� , 〈� ,�〉 = 1, where J =
diag(iω0τ0, –iω0τ0, 0). Furthermore, we set � = {0, iω0, –iω0}, and P is the generalized
eigenspace associated with � and P∗ is the space adjoint with P. Then, C can be decom-
posed as C = P ⊕ Q, where

Q =
{
ϕ ∈ C : 〈ψ ,ϕ〉 = 0, for all ψ ∈ P∗}.

Let u = �x + y with x ∈ C3, y ∈ Q and

�(0) =

⎛

⎜
⎝

K̄1 K̄1σ̄

K1 K1σ

K2 υK2

⎞

⎟
⎠ .

System (11) can be decomposed into

⎧
⎨

⎩

ẋ = Jx + �(0)F(�x + y,μ),

ẏ = AQy + (1 – π )X0F(�x + y,μ),
(17)

namely

⎧
⎨

⎩

ẋ = Jx + 1
2! f

1
2 (x, y,μ,ς ) + 1

3! f
2

2 (x, y,μ,ς ) + h.o.t,

ẏ = AQy + 1
2! f

2
2 (x, y,μ,ς ) + 1

3! f
2

3 (x, y,μ,ς ) + h.o.t,
(18)

where we focus on f 1
2 (x, y,μ,ς )

f 1
2 (x, y,μ,ς ) =

⎛

⎜
⎝

K̄1F1
2 (x, y,μ,ς ) + K̄1σ̄F2

2 (x, y,μ,ς )
K1F1

2 (x, y,μ,ς ) + K1σ̄F2
2 (x, y,μ,ς )

K2F1
2 (x, y,μ,ς ) + υK2F2

2 (x, y,μ,ς )

⎞

⎟
⎠ ,

and

1
2

F1
2 = μa12

(
iω0x1 – iω0x2 + y2(0)

)

– μd
(
e–iω0τ0 x1 + eiω0τ0 x2 + x3 + y1(–1)

)

– a13(τ0 + μ)
(
iω0x1 – iω0x2 + y2(0)

)2,

1
2

F2
2 = μa21

(
x1 + x2 + x3 + y1(0)

)

+ μ(r0 + ς )a∗
22
(
iω0x1 – iω0x2 + y2(0)

)

– β(τ0 + μ)
(
x1 + x2 + x3

+ y1(0)
)(

iω0x1 – iω0x2 + y2(0)
)

+ (r0 + ς )(τ0 + μ)a23
(
iω0x1 – iω0x2 + y2(0)

)2.
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Defining M2 to be the operator in V 5
2 (R3 × Kerπ ) with values in the same space by

⎧
⎨

⎩

M2(p, h) = (M1
2p, M2

2h),

M1
2(p,μ,ς ) = Dxp(x,μ,ς )Jx – Jp(x,μ,ς ),

and on the center manifold, (18) can be transformed into the following normal form:

ẋ = Jx +
1
2

g1
2 (x, 0,μ,ς ) + h.o.t, (19)

where

g1
2 (x, 0,μ,ς ) = Pr ojIm(M1

2)f
1

2 (x, 0,μ,ς ) +
∣
∣(μ,ς )

∣
∣2

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(h10μ + h11ς )x1 + (h12 + h13)x2
1

+ h15x2
3 + h.o.t

(h̄10μ + h̄11ς )x2 + (h̄12 + h̄13)x2
2

– (2h̄12 + h̄14)x1x2 + h.o.t
h21μx3 + h22x2x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

h10 =
(
ia12ω0 – de–iω0τ0 + σ̄

(
a21 + iω0r0a∗

22
))

K̄ ,

h11 = τ0a∗
22σ̄ K̄1,

h12 = (a13 – σ̄ r0a23)τ0K̄1ω
2
0,

h13 = iβω0K̄1σ̄ ,

h14 = –τ0ω
2
0a23K̄1σ̄ ,

h15 = (r0a23σ̄ – a13 – β)τ0K̄1,

h21 = 0,

h22 = iβτ0ω0υK2.

Equation (19) is rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = iω0τ0x1 + (h10μ + h11ς )x1 + (h12 + h13)x2
1

+ h15x3
2 + h.o.t,

ẋ2 = –iω0τ0x2 + (h̄10μ + h̄11ς )x2 + (h̄12 + h̄13)x2
2

– (2h̄12 + h̄14)x1x2 + h.o.t,

ẋ3 = h21μx3 + h22x2x3 + h.o.t.

(20)

Carrying out the following coordinate transformation:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = r cos θ – ir sin θ ,

x2 = r cos θ + ir sin θ ,

x3 = w,
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and equation (20) becomes

⎧
⎪⎪⎨

⎪⎪⎩

ṙ = g10r + g20r2 + g02w2 + h.o.t,

ẇ = g01w + g11rw + h.o.t,

θ̇ = –ωτ0 – [Im{h̄10}μ + Im{h̄11}ς ] + h.o.t,

where

g10 = Re{h10}μ + Re{h11}ς ,

g20 = 3h12 + h14 + Re{h13},
g01 = 0, g11 = Re{h22}, g02 = h15.

Omitting the third equation of (20), we get the quadratic truncated normal form of zero-
Hopf bifurcation

⎧
⎨

⎩

ṙ = g10r + g11r2 + h.o.t,

ẇ = g20w + g21rw + h.o.t.

Two quantities that distinguish the bifurcation are

s = g20g02, θ =
g11

g20
.

5 Hopf–Hopf bifurcation
From the point of view of bifurcation diagram, when two Hopf bifurcation curves inter-
sect, a Hopf–Hopf bifurcation may occur at these intersections. Theoretically, in this sit-
uation, the characteristic equation (6) has two pairs of simple pure imaginary eigenvalues,
denoted as ±iω1 and ±iω2, and the other eigenvalues have strictly negative real parts [28–
31]. In the following, we use the methods in [32] to analyze the Hopf–Hopf bifurcation.

Suppose that the eigenvectors corresponding to A(0, 0) and A∗ are p1, p2, p∗
1, p∗

2, respec-
tively, and satisfy

A(0, 0)p1 = iω1p1, A(0, 0)p2 = iω2p2,

A∗p∗
1 = –iω1p∗

1, A∗p∗
2 = –iω2p∗

2,

then

p1(θ ) = (1,γ1)T eiω1θ , p∗
1(s) = D1

(
1,γ ∗

1
)T eiω1s,

p2(θ ) = (1,γ2)T eiω2θ , p∗
2(s) = D2

(
1,γ ∗

2
)T eiω2s,

where

γ1 =
iω1 – deiω1τ0

a12
, γ ∗

1 =
–iω1 – de–iω1τ0

a12
,

γ2 =
iω2 – deiω2τ0

a12
, γ ∗

2 =
–iω2 – de–iω2τ0

a12
,
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D̄1 =
1

1 + γ̄ ∗
1 γ1 – dτ0e–iω1τ0

, D̄2 =
1

1 + γ̄ ∗
2 γ2 – dτ0e–iω2τ0

,

and

〈
p∗

1, p1
〉

=
〈
p∗

2, p2
〉

= 1,
〈
p∗

1, p2
〉

=
〈
p∗

2, p1
〉

= 0.

Continuing to use the disturbance μ = τ – τ0, ς = r – r0, then, on the center manifold,
we have

ẋ1(t) =
〈
p∗

1, u̇t
〉

=
〈
p∗

1, Aut + Rut
〉

= iω1x1(t) + p̄∗
1(0)F

(
0, W (μ,ς )(t, θ )+2 Re

[
x1(t)p1(0) + x2(t)p2(0)

])

= iω1x1(t) + g1(x1(t), x̄1(t),μ,ς
)
,

ẋ2(t) =
〈
p∗

2, u̇t
〉

=
〈
p∗

2, Aut + Rut
〉

= iω2x1(t) + p̄∗
2(0)F

(
0, W (μ,ς )(t, θ )+2 Re

[
x1(t)p1(0) + x2(t)p2(0)

])

= iω2x1(t) + g2(x2(t), x̄2(t),μ,ς
)
,

where g1 and g2 are in the form of

gj(xj(t), x̄j(t),μ,ς
)

=
∑

l+s+r+k≥1

1
l!s!r!k!

gj
lsrk(μ,ς )xl

1x̄s
1xr

2z̄k
2,

j = 1, 2.

The third-order normal form near a Hopf–Hopf point is given by

⎧
⎨

⎩

ẋ1 = iω1 + e2100x1|x1|2 + e1011x1|x2|2 + h.o.t,

ẋ2 = iω2 + e1100x2|x1|2 + e0021x2|x2|2 + h.o.t.
(21)

Similarly, the key quantities to determine the bifurcation are

θ (0) =
Re e1011

Re e0021
, δ(0) =

Re e1110

Re e2100
.

Remark 5.1 Here, we do not give the specific expressions of e2100, e1011 and e1100, e0021 in
(21), and the calculation process can refer to the introduction of Hopf–Hopf bifurcation
in reference [32].

6 Simulations
In this section, we perform some simulations to support the theoretical results about co-
dimension two bifurcations in system (1). The simulations are divided into two parts,
one for Bautin and zero-Hopf bifurcations, and the other for the Hopf–Hopf bifurcation.
Moreover, the phenomena of multistability and periodic coexistence are also simulated.
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Figure 1 Bifurcation diagram of system (1) in τ – r plane. Bifurcation curves: H (violet) Hopf; FD (orange) Fold;
LPC (green) Limit point of cycles; TB (cyan) Torus. Special points: GH1 and GH2 (Bautin); ZH(zero-Hopf )

6.1 Simulations of Bautin and zero-Hopf bifurcations
We take τ and r as bifurcation parameters to obtain the bifurcation diagram of system (1).
Many papers [33, 34] have given the parameter values of this kind of tumor model. After
analysis, the values of other parameters are as follows:

α = 0.2499, b = 9.92, d = 0.2, k = 10, m = 0.45, β = 0.6.

By using DDE-BIFTOOL [35–37], the τ – r plane bifurcation diagram is shown in Fig. 1.
From the diagram, we can see that there are two Bautin points and one zero-Hopf point
of system (1), corresponding to GH1, GH2, and ZH respectively. In fact, for GH1, some
calculations demonstrate τ = 4.84628, r = 0.10548, and the first Lyapunov coefficient
Re l1(0, 0) ≈ 0, the second Lyapunov coefficient Re l2(0, 0) = 0.019362 > 0. Similarly, for
GH2, we have τ = 5.65348, r = 0.10914 and Re l1(0, 0) ≈ 0, Re l2(0, 0) = –0.0091855 > 0,
and at the top right of the point, the Hopf bifurcation is supercritical, and the bottom left
of this point, the Hopf bifurcation is subcritical. At ZH, τ = 5.0408, r = 0.09749, it is easy
to verify that the content of Lemma 4.2 can be satisfied; moreover, we have s = 0.00062874,
θ = –0.6416. Meanwhile the limit point of cycles, marked green, originating from Bautin
bifurcation and the torus bifurcation, marked cyan, originating from the zero-Hopf bifur-
cation are also drawn.

Due to the appearance of these bifurcation curves, the τ – r plane is divided into 11
regions, as shown in Fig. 1, labeled I–XI. Next, we take different values of (τ , r) in these re-
gions for numerical simulations. Using Matlab function DDE23, the simulation results are
shown in Fig. 2, Fig. 3, and Fig. 4, and the black dot in the graph represents the initial value
of the solution. Specifically, there are a stable periodic solution for the system in region I
and coexistence of two unstable periodic solutions in region IX(see Fig. 2). Figure 3 shows
the coexistence of two unstable periodic solutions in region II, one of which is eventually
stable to the origin, which reveals that immune cells and tumor cells go to apoptosis to-
gether, an unstable periodic solution and an asymptotically stable solution in region III,
and shows two opposite phenomena, one of which is asymptotically stable, and the other
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Figure 2 Trajectories of system (1) with different parameters and initializations in regions (I and IX ) of Fig. 1,
where the (τ , r) of I, IX are (5, 0.1) and (5.15, 0.0975), respectively. (a)The initial values of the variable are
(0.6001, 5.1389) and (0.2333, 2.159), and they finally stabilize to periodic solutions with large amplitude and
small amplitude respectively. (b)The initial value of the variable is (0.25526, 2.5469). In fact, it is similar to (a),
but the periodic solution fluctuates many times before it is stable. (c) and (d) have the same initial values
(0.2797, 2.862) and (0.286326, 3.04507). (c) Coexistence of two unstable solutions. (d)With the increase of time,
it finally stabilizes to the origin

is unstable, corresponding to regions IV and X, respectively. An asymptotically stable so-
lution and an unstable periodic solution are obtained in region V, an asymptotically stable
solution appearing in region VII, and an unstable periodic solution and an asymptotically
stable solution showing in region VII, two stable periodic solutions coexisting in region
VIII(see Fig. 4). Finally, for region XI, after calculation, we find that there is no positive
equilibrium in this region, so the simulation is not carried out.

In a conclusion, in general, the larger the values of τ and r, that is, the closer the values
of (τ , r) in Fig. 1 to the upper right regions, the more likely the solutions to be unstable,
such as regions III, IV and V, VII(Although there may be stable solutions in a small range
of positive equilibrium). On the contrary, when τ and r are small, the solutions are asymp-
totically stable or periodically stable, such as regions I, II, and VIII. Therefore, if the tumor
cell proliferation rate and the delay of immune cell apoptosis are small, it is conducive to
the tumor in a stable state.

6.2 Simulation of Hopf–Hopf bifurcation
For Hopf–Hopf bifurcation, we simply give a numerical example to illustrate the existence
of Hopf–Hopf bifurcation and draw a bifurcation diagram near the bifurcation point, as
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Figure 3 Trajectories of system (1) with different parameters and initializations in regions (II–IV and X ) of
Fig. 1. For convenience, parameter values are given directly at the label of the graph. (a)Two unstable periodic
solutions coexist with the initial value (0.2932, 1.5887) and (0.3601, 4.038), respectively, one of which is stable
to the origin. (b)An unstable periodic solution with the initial value (0.2233, 2.1588) and an asymptotically
stable solution with the initial value (0.1265, 1.2177). (c) and (d) have opposite phenomena, one which is
asymptotically stable with the initial value (0.3034, 5.555), and the other is unstable with the initial value
(0.4632, 5.5445)

shown in Fig. 5. The two Hopf bifurcation curves intersect, and the Hopf–Hopf bifurcation
is generated at the intersection. Meanwhile, the two torus bifurcation curves originating
from the bifurcation point are also given in Fig. 5. The parameter values of this example
are as follows: α = 0.7599, b = 6.92, d = 0.85, k = 10, m = 0.15, β = 0.45. At the Hopf–
Hopf point, we can calculate τ = 10.734, r = 0.055996. Furthermore, two quantities that
characterize the bifurcation are θ (0) = 4.6571, δ(0) = 0.061712. Following [32], the periodic
phenomena in different regions (D1 – D6) near the Hopf–Hopf point can be observed.

In fact, system (1) has more than one Hopf–Hopf bifurcation. With the increase of time
delay, more Hopf–Hopf points appear in the two-parameter plane τ – r, so more complex
phenomena of periodic solutions and chaos will exist in the system.

7 Conclusion and discussion
Co-dimension two bifurcations are a common bifurcation phenomenon in delay differ-
ential equations, which leads to complex dynamic behavior of the system. In this paper,
a delayed tumor model is established, and the Allee effect is considered in this model.
It is found that there are at most two positive equilibria in the system, and the stability
condition of the equilibria is given. Due to the time delay and Allee effect, the system
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Figure 4 Trajectories of system (1) with different parameters and initializations in regions (V–VIII) of Fig. 1.
(a)An asymptotically stable solution with the initial value (0.256326, 2.74507) and an unstable periodic
solution with the initial value (0.032247, 1.0489). (b)An asymptotically stable solution with the initial value
(0.30326, 5.5545). (c)Similarly to (a), an asymptotically stable solution with the initial value (0.472656, 7.07979)
and an unstable periodic solution with the initial value (0.58869, 7.1607). (d)Two stable periodic solutions
coexist with the initial values (0.306325, 5.545) and (0.380326, 4.505), respectively

has abundant co-dimension two bifurcations, accompanied by multistability and periodic
coexistence. Particularly, after adding Allee effect, the system changes from a single equi-
librium to two different positive equilibria, which is an important reason for the appear-
ance of coexistence, and the time-delay also makes the original two-dimensional ordinary
differential equation more complex, such as the emergence of zero-Hopf bifurcation and
Hopf–Hopf bifurcation. We calculate the normal form of Bautin bifurcation, zero-Hopf
bifurcation, and Hopf–Hopf bifurcation of the system. For Bautin bifurcation and zero-
Hopf bifurcation, the two-parameter bifurcation diagram is also given in numerical ex-
periments in Sect. 6. By the simulation of different regions, the multistability and periodic
coexistence are demonstrated. For Hopf–Hopf bifurcation, we only perform a numerical
example. In fact, there are stable periodic solutions and chaos near the Hopf–Hopf bifur-
cation point.

To conclude, this paper analyzes the stability and bifurcations of a tumor model. The
theoretical and simulation results are of biological significance, which is helpful for the
future tumor research at the theoretical level. More specifically, the time-delay and growth
rate of tumor cells play a key role in the development of tumor, which is conducive to our
further research in the future.
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Figure 5 Bifurcation diagram of the Hopf–Hopf point. H-1 and H-2 represent two Hopf bifurcation curves,
and their intersection is the Hopf–Hopf bifurcation. There are two torus bifurcation curves originating from
the Hopf–Hopf point, TB-1 and TB-2. τ – r plane is divided into six regions, defined as D1 – D6
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