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Abstract
In this paper, by using a technique of the first-order differential subordination, we find
several sufficient conditions for an analytic function p such that p(0) = 1 to satisfy
Re{eiβp(z)} > γ or | arg{p(z) – γ }| < δ for all z ∈ D, where β ∈ (–π /2,π /2),
γ ∈ [0, cosβ), δ ∈ (0, 1] and D := {z ∈C : |z| < 1}. The results obtained here will be
applied to find some conditions for spirallike functions and strongly starlike functions
in D.
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1 Introduction and definitions
For real numbers β , γ , and δ satisfying –π/2 < β < π/2, 0 ≤ γ < cosβ , and 0 < δ ≤ 1, define
two domains �γ (β) and �γ (δ) in C by

�γ (β) =
{

w ∈C : Re
(
e–iβw

)
> γ

}

and

�γ (δ) =
{

w ∈C :
∣∣arg(w – γ )

∣∣ <
π

2
δ

}
,

respectively. Then it clearly holds that

�γ (β) ∩ �γ (–β) ⊂ �γ

(
1 –

2
π

β

)
. (1.1)

Let D := {z ∈C : |z| < 1} be the open unit disk. Let H be the class of analytic functions in
D, and let H1 be the class of functions p ∈H with p(0) = 1. We introduce two subfamilies
Pγ (β) and Qγ (δ) of H1 defined as follows:

Pγ (β) =
{

p ∈H1 : p(z) ∈ �γ (β) for all z ∈ D
}
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and

Qγ (δ) =
{

p ∈H1 : p(z) ∈ �γ (δ) for all z ∈D
}

.

A function p in Pγ (0) is said to be a Carathéodory function of order γ in D. In particular,
P0(0) ≡P is the well-known class of Carathéodory functions. Also, a function p in P0(β)
is said to be a tilted Carathéodory function by angle β [27]. We note that

Pγ (β) ∩Pγ (–β) ⊂Qγ

(
1 –

2
π

β

)

holds, by (1.1).
Let A denote the class of functions f in H normalized by f (0) = 0 = f ′(0) – 1. And let S

be the subclass of A consisting of all univalent functions. Further we denote by S∗
γ (β) and

SS∗
γ (δ) the subclass of A consisting of β-spirallike functions of order γ [8, II, p. 89] (see

also [16, 24]) and strongly starlike functions of order δ and type γ [9]. That is, a function
f ∈A belongs to the class S∗

γ (β) if f satisfies

Re

{
e–iβ zf ′(z)

f (z)

}
> γ , z ∈D,

and belongs to the class SS∗
γ (δ) when f satisfies

∣∣∣∣arg

(
zf ′(z)
f (z)

– γ

)∣∣∣∣ <
π

2
δ, z ∈ D.

Thus we have

f ∈ S∗
γ (β) ⇐⇒ Jf ∈Pγ (β)

and

f ∈ SS∗
γ (δ) ⇐⇒ Jf ∈Qγ (δ),

where Jf (z) := zf ′(z)/f (z), z ∈ D. Note that S∗
γ (0) ≡ S∗(γ ) is the class of starlike functions

of order γ , and S∗
0 (β) ≡ SP(β) is the class of β-spirallike functions. It is well known [24]

(or [8, Vol. I, p. 149]) that S∗(γ ) and SP(β) are the subclasses of S . See [7, 12, 28] for
sufficient conditions for spirallike functions. We also note that SS∗

γ (δ) ⊂ S∗
γ (0) ⊂ S . Es-

pecially, SS∗
0(δ) ≡ SS∗(δ) which is the class of strongly starlike functions of order δ [4, 25].

Refer to [5, 6, 11, 13, 14, 17–20, 23, 26] for various sufficient conditions for strongly starlike
functions.

In the present paper we investigate new sufficient conditions for functions in Pγ (β) or
Qγ (δ). As direct consequences of these results, we will obtain several sufficient conditions
for spirallike functions or strongly starlike functions in D.

For analytic functions f and g , we say that f is subordinate to g , denoted by f ≺ g , if
there is an analytic function ω : D → D with |ω(z)| ≤ |z| such that f (z) = g(ω(z)). Further,
if g is univalent, then the definition of subordination f ≺ g simplifies to the conditions
f (0) = g(0) and f (D) ⊆ g(D) (see [21, p. 36]).
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Let D = {z ∈ C : |z| ≤ 1} and ∂D = {z ∈ C : |z| = 1} be the closure and boundary of D,
respectively. We denote by R the class of functions q that are analytic and injective on
D \ E(q), where

E(q) =
{
ζ : ζ ∈ ∂D and lim

z→ζ
q(z) = ∞

}
,

and are such that

q′(ζ ) �= 0
(
ζ ∈ ∂D \ E(q)

)
.

Furthermore, let the subclass of R for which q(0) = a be denoted by R(a). We recall the
following lemma which will be used for our results.

Lemma 1.1 ([15, p. 24]) Let q ∈R(a) and let

p(z) = a + anzn + · · · (n ≥ 1)

be an analytic function in D with p(0) = a. If p is not subordinate to q, then there exist points
z0 ∈ D and ζ0 ∈ ∂D \ E(q) for which

(i) p(z0) = q(ζ0);
(ii) z0p′(z0) = mζ0q′(ζ0) (m ≥ n ≥ 1).

2 Main results
Throughout this section, let β and γ be real numbers such that –π/2 < β < π/2 and 0 ≤
γ < cosβ unless we mention it. We define a function ϕβ ,γ : D →C by

ϕβ ,γ (z) =
1 + (eiβ – 2γ )eiβz

1 – z
. (2.1)

Then it is easy to check that the bilinear function ϕβ ,γ maps the unit disk D onto the half-
plane �γ (β). By using the function ϕβ ,γ we obtain the following results.

Theorem 2.1 Let α ∈ C with Re(α) ≥ 0. If p ∈H1 satisfies

∣∣∣∣p(z) + α
zp′(z)
p(z)

– 1
∣∣∣∣ < (cosβ – γ )

(
1 +

1
2

Re(α)
)∣∣p(z)

∣∣, z ∈D, (2.2)

then 1/p ∈Pγ (–β). That is, Re{eiβ/p(z)} > γ for all z ∈D.

Proof Let us define functions q and h : D→C by

q(z) =
eiβ

p(z)
(2.3)

and

h(z) = eiβϕ–β ,γ (z) =
eiβ + (e–iβ – 2γ )z

1 – z
, (2.4)
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where ϕβ ,γ is the function defined by (2.1). Then the functions q and h are analytic in D

with

q(0) = h(0) = eiβ ∈C and h(D) =
{

w ∈C : Re{w} > γ
}

.

Suppose now that q is not subordinate to h. Then, by Lemma 1.1, there exist points
z0 ∈ D and ζ0 ∈ ∂D \ {1} such that

q(z0) = h(ζ0) = γ + iρ (ρ ∈ R) and z0q′(z0) = mζ0h′(ζ0) = mσ (m ≥ 1), (2.5)

where

σ =
–ρ2 + 2ρ sinβ + 2γ cosβ – 1 – γ 2

2(cosβ – γ )
. (2.6)

Since γ < cosβ , we get σ < 0. Indeed, we have

2(cosβ – γ )σ = –(ρ – sinβ)2 – (cosβ – γ )2 ≤ –(cosβ – γ )2,

which implies that

σ ≤ –
1
2

(cosβ – γ ) < 0.

Using (2.3) and (2.5), we have

∣∣∣∣
p(z0) + α

z0p′(z0)
p(z0) – 1

p(z0)

∣∣∣∣ =
∣∣αz0q′(z0) + q(z0) – eiβ ∣∣

=
∣∣αmσ + γ + iρ – eiβ ∣∣. (2.7)

Let α = α1 + iα2 with α1 ≥ 0 and α2 ∈R. Then we have

∣∣αmσ + γ + iρ – eiβ ∣∣2

=
(
αmσ + γ + iρ – eiβ)(

αmσ + γ – iρ – e–iβ)

= |α|2m2σ 2 + (γ – cosβ)2 + 2α1mσ (γ – cosβ) + κ , (2.8)

where

κ = (ρ – sinβ)2 + 2α2mσ (ρ – sinβ).

Furthermore it is easy to see that

κ = (ρ – sinβ + mα2σ )2 – (mα2σ )2 ≥ –(mα2σ )2.
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Since m ≥ 1, from (2.8), we have

∣∣αmσ + γ + iρ – eiβ ∣∣2

≥ |α|2m2σ 2 + (γ – cosβ)2 + 2α1mσ (γ – cosβ) – α2
2m2σ 2

= α2
1m2σ 2 + (γ – cosβ)2 + 2α1mσ (γ – cosβ)

≥ α2
1σ

2 + (γ – cosβ)2 + 2α1σ (γ – cosβ)

= [α1σ + γ – cosβ]2. (2.9)

Since σ < 0, α1 ≥ 0, and cosβ > γ , inequality (2.9) implies

∣∣αmσ + γ + iρ – eiβ ∣∣ ≥ –α1σ + cosβ – γ . (2.10)

Furthermore, since σ ≤ –(cosβ – γ )/2, we have

–α1σ + cosβ – γ ≥ (cosβ – γ )
(

1 +
1
2
α1

)
. (2.11)

Finally, from (2.7), (2.10), and (2.11), we obtain

∣∣∣∣p(z0) + α
z0p′(z0)

p(z0)
– 1

∣∣∣∣ ≥ (cosβ – γ )
(

1 +
1
2
α1

)∣∣p(z0)
∣∣.

This inequality contradicts hypothesis (2.2). Therefore, we obtain q ≺ h in D and the in-
equality Re{eiβ/p(z)} > γ holds for all z ∈D. �

We remark that the hypothesis in Theorem 2.1 implies also 1/p ∈ Pγ (β). And we also
remark that Theorem 2.1 reduces the result [13] when α = 1.

By the above remark, taking γ = 1/2 in Theorem 2.1 gives the following corollary.

Corollary 2.1 Let α and β ∈ R with α ≥ 0 and β ∈ [0,π/3). If p ∈ H1 satisfies (2.2) with
γ = 1/2, then p(D) ⊂ �β , where

�β =
{

w ∈C :
∣∣e–iβw – 1

∣∣ < 1 and
∣∣eiβw – 1

∣∣ < 1
}

,

and we have Re{p(z)} > 0 for all z ∈D. Furthermore, if β �= 0, then | arg{p(z)}| < cotβ for all
z ∈D.

Taking p(z) = zf ′(z)/f (z), f ∈A, in Corollary 2.1 gives the following result.

Corollary 2.2 Let α ∈R with α ≥ 0. If β ∈ (0,π/3) and f ∈A satisfies

∣∣∣∣(1 – α)
zf ′(z)
f (z)

+ α

(
1 +

zf ′′(z)
f ′(z)

)
– 1

∣∣
∣∣ <

√
α + 1

(
cosβ –

1
2

)∣∣∣∣
zf ′(z)
f (z)

∣∣∣∣, z ∈D, (2.12)

then f ∈ SS∗
0(cotβ), i.e., f is strongly starlike of order 2(cotβ)/π in D. If f ∈ A satisfies

(2.12) with β = 0, then f ∈ S∗
0 (0), i.e., f is a starlike function in D.
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Example 2.1 Let a ∈ C be given, and let fa(z) = z/(1 – az), z ∈ D. Then a computation
shows that

1
2

∣∣∣∣
zf ′(z)
f (z)

+
zf ′′(z)
f ′(z)

– 1
∣∣∣∣ =

3|a||z|
2|1 – az| <

3|a|
2|1 – az| =

3|a|
2

∣∣∣∣
zf ′(z)
f (z)

∣∣∣∣, z ∈D.

Hence if

|a| <
√

6
3

(
cosβ –

1
2

)
, (2.13)

then inequality (2.12) with α = 1/2 holds. Thus, by Corollary 2.2 with α = 1/2, we conclude
that fa is strongly starlike of order 2(cotβ)/π in D provided inequality (2.13) holds.

Example 2.2 Let ga(z) = z/(1 – az)2, z ∈ D, with a ∈ C. Then a similar computation with
Example 2.1 and Corollary 2.2 gives that if a ∈C satisfies

2|a|(3 + 2|a|)
(1 – |a|)2 ≤

√
6

2

(
cosβ –

1
2

)
,

then ga is strongly starlike of order 2(cotβ)/π in D.

Theorem 2.2 Let α ∈ R with α ≥ 0. Assume that

(2λ + γ )| sinβ| < 2
√

�, (2.14)

where

� = λ(λ + cosβ)
(
–2γ cosβ + 1 + γ 2), (2.15)

with

λ =
α

2(cosβ – γ )
≥ 0.

Let p ∈H1 with γ e–iβ /∈ p(D). If

∣∣∣∣Im
{

p(z) +
αzp′(z)

p(z) – γ e–iβ + i(2λ + γ ) sinβ

}∣∣∣∣ < 2
√

�, z ∈D, (2.16)

then p ∈Pγ (–β). That is, Re{eiβp(z)} > γ for all z ∈D.

Proof We first note that, since p(0) = 1, (2.14) implies that inequality (2.16) is well-defined.
Next we define functions q and h by

q(z) = eiβp(z) (2.17)

and (2.4), respectively. If q is not subordinate to h, then there exist points z0 ∈ D and
ζ0 ∈ ∂D\{1} satisfying (2.5) with ρ ∈ R. We note that ρ �= 0. Indeed, if ρ = 0, then eiβp(z0) =
q(z0) = γ . Therefore we have p(z0) = γ e–iβ , which contradicts the condition γ e–iβ /∈ p(D).
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Simple computations give

p(z0) +
αz0p′(z0)

p(z0) – γ e–iβ

= e–iβq(z0) +
αz0q′(z0)
q(z0) – γ

= γ cosβ + ρ sinβ + i
(

ρ cosβ – γ sinβ –
αmσ

ρ

)
,

where σ is given by (2.6). Therefore we get

Im

{
p(z0) +

αz0p′(z0)
p(z0) – γ e–iβ + i(2λ + γ ) sinβ

}

= ρ cosβ –
αmσ

ρ
+ 2λ sinβ

= ρ cosβ + mλ

[
ρ – 2 sinβ +

–2γ cosβ + 1 + γ 2

ρ

]
+ 2λ sinβ . (2.18)

Assume that ρ > 0, and put

λ̃ = ρ – 2 sinβ +
–2γ cosβ + 1 + γ 2

ρ
.

Note that

–2γ cosβ + 1 + γ 2 = (γ – cosβ)2 + sin2 β ≥ 0

and

–2γ cosβ + 1 + γ 2 – sin2 β = (cosβ – γ )2 ≥ 0.

Since ρ > 0, these inequalities yield that

λ̃ ≥ 2
√

–2γ cosβ + 1 + γ 2 – 2 sinβ ≥ 0.

Therefore, since m ≥ 1 and λ ≥ 0, from (2.18), we obtain

Im

{
p(z0) +

αz0p′(z0)
p(z0) – γ e–iβ + i(2λ + γ ) sinβ

}

≥ ρ cosβ + λλ̃ + 2λ sinβ

= (cosβ + λ)ρ +
λ(–2γ cosβ + 1 + γ 2)

ρ

≥ 2
√

�, (2.19)

where � is given by (2.15). This contradicts condition (2.16).



Cho et al. Advances in Difference Equations        (2021) 2021:511 Page 8 of 12

Now assume that ρ < 0. From (2.18), we have

Im

{
p(z0) +

αz0p′(z0)
p(z0) – γ e–iβ + i(2λ + γ ) sinβ

}

= –
[
ρ̃ cosβ + mλ

(
ρ̃ + 2 sinβ +

–2γ cosβ + 1 + γ 2

ρ̃

)]
+ 2λ sinβ ,

where ρ̃ = –ρ > 0. A similar calculation with (2.19) gives us to get

Im

{
p(z0) +

αz0p′(z0)
p(z0) – γ e–iβ + i(2λ + γ ) sinβ

}
≤ –2

√
�,

where � is given by (2.15). This also contradicts condition (2.16). Therefore we get q ≺ h
in D, and the inequality Re{eiβp(z)} > γ , z ∈D, follows. �

We remark that Theorem 2.2 reduces the result [13] when α = 1.

Theorem 2.3 Let α ∈ C with Re(α) ≥ 0. Assume that �(α,β ,γ ) < cosβ , where

�(α,β ,γ ) =
sin2 β(γ + s)2

cosβ + s
+ γ 2 cosβ + s

(
2γ cosβ – 1 – γ 2), (2.20)

with

s =
Re(α)

2(cosβ – γ )
.

If p ∈H1 satisfies

Re
{

eiβ[(
p(z)

)2 + αzp′(z)
]}

> �(α,β ,γ ), z ∈D, (2.21)

then Re{eiβp(z)} > γ for all z ∈ D.

Proof We first note that, since p(0) = 1, the hypothesis �(α,β ,γ ) < cosβ implies that in-
equality (2.21) is well defined. Now we define the functions q and h by (2.17) and (2.4),
respectively. If q is not subordinate to h, then there exist points z0 ∈ D and ζ0 ∈ ∂D \ {1}
satisfying (2.5) with ρ ∈R.

Put α = α1 + iα2 with α1 ≥ 0 and α2 ∈ R. By (2.17) and (2.5), we obtain

eiβ[(
p(z0)

)2 + αz0p′(z0)
]

= eiβ[
e–2iβ(

q(z0)
)2 + αe–iβz0q′(z0)

]

= e–iβ (γ + iρ)2 + (α1 + iα2)mσ

=
(
γ 2 – ρ2) cosβ + 2γρ sinβ + mσα1

+ i
[
2γρ cosβ –

(
γ 2 – ρ2) sinβ + mσα2

]
.

Hence taking real parts in the above, and from σα1 ≤ 0 and m ≥ 1, we have

Re
{

eiβ[(
p(z0)

)2 + αz0p′(z0)
]}

=
(
γ 2 – ρ2) cosβ + 2γρ sinβ + mσα1

≤ (
γ 2 – ρ2) cosβ + 2γρ sinβ + σα1. (2.22)
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Now equation (2.6) gives

(
γ 2 – ρ2) cosβ + 2γρ sinβ + σα1 = –a2ρ

2 + a1ρ + a0, (2.23)

where

a2 = cosβ +
α1

2μ
, a1 =

(
2γ +

α1

μ

)
sinβ

and

a0 = γ 2 cosβ +
α1(2γ cosβ – 1 – γ 2)

2μ
,

with μ = cosβ – γ .
Clearly, a2 > 0. Thus we have

–a2ρ
2 + a1ρ + a0 ≤ a2

1
4a2

+ a0, ρ ∈ R. (2.24)

Consequently, by (2.22), (2.23), and (2.24), we obtain

Re
{

eiβ[(
p(z0)

)2 + αz0p′(z0)
]} ≤ a2

1
4a2

+ a0 = �(α,β ,γ ).

This contradicts (2.21). Therefore we obtain q ≺ h in D, and it follows that the inequality
Re{eiβp(z)} > γ holds for all z ∈D. �

Since the condition

∣∣arg(w – a secβ)
∣∣ <

π

2
– β

implies

Re
{

eiβw
}

> a and Re
{

e–iβw
}

> a,

for w ∈C, a ∈R and β ∈ (–π/2,π/2), by noting that �(α,β ,γ ) = �(α, –β ,γ ), the following
result can be obtained from Theorem 2.3.

Theorem 2.4 Let α ∈ C with Re(α) ≥ 0. Assume that �(α,β ,γ ) < cosβ , where � is given
by (2.20). If p ∈H1 satisfies

∣∣arg
{(

p(z)
)2 + αzp′(z) – �(α,β ,γ ) secβ

}∣∣ <
π

2
– β , z ∈D,

then

∣∣arg
(
p(z) – γ

)∣∣ <
π

2
– β , z ∈ D.

Taking α = 1 and p(z) = zf ′(z)/f (z), f ∈A, in Theorems 2.3 and 2.4 we have the following
corollary.
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Corollary 2.3 Assume that �(1,β ,γ ) < cosβ , where � is given by (2.20). If f ∈A satisfies

Re

{
eiβ

(
zf ′(z)
f (z)

)(
1 +

zf ′′(z)
f ′(z)

)}
> �(1,β ,γ ), z ∈D,

then f is a β-spirallike function of order γ in D. If f ∈A satisfies

∣∣∣∣arg

{(
zf ′(z)
f (z)

)(
1 +

zf ′′(z)
f ′(z)

)
– �(1,β ,γ ) secβ

}∣∣∣∣ <
π

2
– β , z ∈ D,

then f is strongly starlike of order 1 – (2/π )β and type γ in D.

Example 2.3 Let a ∈C, and define a function fa : D →C by fa(z) = z/(1 – az). Then, since
|z| < 1, we have

Re

{
eiβ

(
zf ′(z)
f (z)

)(
1 +

zf ′′(z)
f ′(z)

)
– cosβ

}

= Re

{
eiβ az(3 – az)

(1 – az)2

}
≥ –

|a||z||3 – az|
|1 – az|2 > –

|a|(3 + |a|)
(1 – |a|)2 ,

or, equivalently,

Re

{
eiβ

(
zf ′(z)
f (z)

)(
1 +

zf ′′(z)
f ′(z)

)}
> cosβ –

|a|(3 + |a|)
(1 – |a|)2 .

By Corollary 2.3, fa is a β-spirallike function of order γ provided

|a|(3 + |a|)
(1 – |a|)2 ≤ cosβ – �(1,β ,γ ),

where � is given by (2.20). In particular, if

|a| ≤ 1
76

(–239 + 3
√

6769) =: τ = 0.1029 · · · ,

then fa is (π/3)-spirallike function of order 1/3. Indeed, when β = π/3 and γ = 1/3, we
have cosβ – �(1,β ,γ ) = 25/63. Solving the inequality |a|(3 + |a|)/(1 – |a|)2 ≤ 25/63 gives
us to get |a| ≤ τ .

Example 2.4 Let a ∈ C be given, and let ga(z) = z/(1 – az)2, z ∈ D. Then, from a similar
computation with Example 2.3 and Corollary 2.3, we have that ga is a β-spirallike function
of order γ , if

1 + 4|a| + |a|2
(1 – |a|)2 ≤ cosβ – �(1,β ,γ ).

3 Concluding remarks and observations
In the present investigation, we have found several conditions for Carathéodory func-
tions by using a technique of the first-order differential subordination. In particular, one
can obtain conditions for Carathéodory functions of order γ (0 < γ ≤ 1) and for tilted
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Carathéodory functions by angle β (–π/2 < β < π/2). We have applied these results to ob-
tain new criteria for geometric properties such as spirallikeness and strongly starlikeness,
and several examples were given here.

We conclude this paper by remarking that the results here reduce the earlier conditions
[13] for Carathéodory functions. Also, as the examples in this paper show, the first-order
differential subordination with the conformal mapping ϕβ ,γ defined by (2.1) gives some
nice criteria for spirallike functions and strongly starlike functions. This observation will
indeed apply to any attempt to produce the conditions for other geometric properties such
as convexity, q-starlikeness, etc. [1–3, 10, 22, 29, 30].
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24. Špaček, L.: Contribution à la theorie des fonctions univalentes. Čas. Pěst. Mat. 62, 12–19 (1932)
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