
Özçelik et al. Advances in Difference Equations        (2021) 2021:508 
https://doi.org/10.1186/s13662-021-03666-5

R E S E A R C H Open Access

Approximation properties of a new family of
Gamma operators and their applications
Reyhan Özçelik1, Emrah Evren Kara1*, Fuat Usta1 and Khursheed J. Ansari2

*Correspondence:
eevrenkara@duzce.edu.tr
1Department of Mathematics,
Faculty of Science and Arts, Düzce
University, 81160, Düzce, Turkey
Full list of author information is
available at the end of the article

Abstract
The present paper introduces a new modification of Gamma operators that protects
polynomials in the sense of the Bohman–Korovkin theorem. In order to examine their
approximation behaviours, the approximation properties of the newly introduced
operators such as Voronovskaya-type theorems, rate of convergence, weighted
approximation, and pointwise estimates are presented. Finally, we present some
numerical examples to verify that the newly constructed operators are an
approximation procedure.
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1 Introduction
Approximation theory is one of the key topics within the framework of mathematical anal-
ysis and have been studied by a number of mathematicians. The emergence of this theory
dates back to the 19th century. Approximation theory has become increasingly important
in the scientific community as it sheds light on scientific problems in many other fields
such as engineering. One of the first studies of this topic was by the Russian mathemati-
cian P.L. Chebyshev in 1853. While Chebyshev was working on the process of transforming
the linear motion of the steam machine into the circular motion of a wheel, and there was
no prior study on the existence of the approximation with polynomials, he was looking
for a m-degree polynomial that gave the best approximation to an arbitrary continuous
function given in a closed interval. With this study of Chebyshev, the best-approximation
problem, which has an important place in the theory of approximation, gained meaning.
Then, the German mathematician K. Weierstrass made a huge improvement in this field,
proving his own name-bearing Weierstrass approximation theory, in 1885. This theorem
proved the existence of a sequence of polynomials {Pm(x)} that converges uniformly in the
interval [a, b] from the compact interval [a, b] to every uniformly continuous function. As
the proof of the Weierstrass theorem is so long and complex, a number of mathematicians
have dealt with the proof of this theorem in different ways to make it simpler and more
understandable [16]. One of the most important proofs of the Weierstrass theorem was
given by Bernstein [2] in 1912. Thus, the famous Bernstein operator, whose importance
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is increasing day-by-day, emerged. This was the first step in approximation with positive
linear operators. In the following years, positive linear operators were widely used to ap-
proximate continuous functions within a closed interval. The Voronovskaya theorem was
first introduced by Voronovskaya in 1932 [19] to prove this theorem for Bernstein poly-
nomials, which became the focus of a number of scientific studies. The results obtained
in this way later attracted the attention of a number of mathematicians and were used in
the construction of different types of positive linear operators. Subsequently, the question
arose as to what are the necessary conditions for the sequence {Ln} to converge properly to
a continuous function. In 1952, Bohman [4] and in 1953 Korovkin [8] found the answer to
this question independently. Their theorems show that a positive linear operator sequence
can converge to the identity operator under certain conditions. In addition to these, some
new operators have been introduced in the literature that led to studies on positive lin-
ear operators. One of these, by King [7] in 2003, generalised the Bernstein operator to
preserve the function e2(x) = x2. In this study, King investigated the approximation prop-
erties of modified operators and proved that generalised operators have an approximation
at least as good as classical Bernstein operators. The interested reader can be referred for
instance to [6, 11–13, 15].

In the light of these developments, Lupaş and Müller [10] introduced the Gamma opera-
tor, which is one of the operators commonly used in approximation of unknown functions.
In more detail, the general Gamma operator is introduced as follows:

Tn(g, x) =
xn+1

�(n + 1)

∫ ∞

0
e–xvvng

(
n
v

)
dv, ∀x ∈R

+ := (0,∞), n ∈N. (1.1)

Then, other workers introduced various Gamma-type operators in the literature, [1, 3,
17, 18, 20]. The main purpose of this article is to present a new modification of Gamma-
type operators, and provide their approximation properties. Finally, we will show that the
newly defined operators are successful with some numerical examples.

The rest of this manuscript is constructed as follows. In Sect. 2, the new modification
of the Gamma operators is introduced, along with fixing the polynomials. In Sect. 3, the
Voronovskaya-type theorem of the new version of Gamma operators is examined, while
in Sect. 4 the weighted approximation is reviewed. The rates of convergence are given in
Sect. 5, while pointwise estimates are given in Sect. 6. Illustrative examples are discussed
in Sect. 7, and in Sect. 8, we conclude the paper.

2 A new family of Gamma operators
In this section, a new modification of the Gamma-type operators and their fundamen-
tal approximation properties will be introduced. Throughout the article, ek(y) = yk and
ϕx,k(y) = (y – x)k x ∈ (0,∞), k ∈N will be used as polynomial functions. On the other hand,
let Cb(R+) be the space of all real-valued uniformly continuous and bounded functions on
R

+ endowed with the norm ‖g‖ = sup{|g| : x ∈ R
+}.

The modified version of the classic Gamma operator that we are going to use is as fol-
lows:

T ∗
n (g, x) =

xn

�(n + 1)

∫ ∞

0
e–xv1/n

g
(

n
v1/n

)
dv, ∀x ∈R

+, n ∈N. (2.1)
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It is clear that the newly introduced modified operator is positive and linear. On the
other hand, the following equalities are readily obtained:

(1) T ∗
n (e0(y), x) = e0(x),

(2) T ∗
n (e1(y), x) = n

n–1 e1(x),
(3) T ∗

n (e2(y), x) = n2

(n–1)(n–2) e2(x),
(4) T ∗

n (e3(y), x) = n3

(n–1)(n–2)(n–3) e3(x),
(5) T ∗

n (e4(y), x) = n4

(n–1)(n–2)(n–3)(n–4) e4(x).
As a result, we say that the newly introduced operators are an approximation procedure
according to the Bohman–Korovkin theorem since the polynomials are preserved both in
the limit case and directly. More generally, we present the following lemma without proof.

Lemma 1 Let x ∈R
+ and k ∈N. In the circumstances, we have the following equality that

is valid for k ∈ Z
+:

T ∗
n

(
ek(y), x

)
=

nk�(n – k)
�(n)

ek(x).

Lemma 2 Let g ∈ Cb(R+). Then, we have
∥∥T ∗

n (g)
∥∥ ≤ ‖g‖.

Proof Using the definition of the newly introduced Gamma operators and the values ob-
tained above, the following inequality is readily obtained.

∥∥T ∗
n (g)

∥∥ ≤ xn

�(n + 1)

∫ ∞

0
e–xv1/n

∣∣∣∣g
(

n
v1/n

)∣∣∣∣dv

≤ ‖g‖ xn

�(n + 1)

∫ ∞

0
e–xv1/n

dv

= ‖g‖T ∗
n

(
e0(y), x

)

= ‖g‖,

which completes the proof. �

Now, we can present the central moments of the newly constructed operator that will
be used in the main theorems of the paper as follows.

Lemma 3 Let x ∈R
+. In the circumstances, we obtained the following equalities for central

moments:
(1) T ∗

n (ϕx,0(y), x) = e0(x),
(2) T ∗

n (ϕx,1(y), x) = [ 1
n–1 ]e1(x),

(3) T ∗
n (ϕx,2(y), x) = [ n+2

(n–1)(n–2) ]e2(x),
(4) T ∗

n (ϕx,3(y), x) = [ 7n+6
(n–1)(n–2)(n–3) ]e3(x),

(5) T ∗
n (ϕx,4(y), x) = [ 3n2+46n+24

(n–1)(n–2)(n–3)(n–4) ]e4(x).

Theorem 1 Let g ∈ Cb(R+). Then, we have

lim
n→∞T ∗

n (g, x) = g(x),

for uniformly in each compact subsets of R+.
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Proof With the aid of Lemma 1, one can easily obtain the following equality:

lim
n→∞T ∗

n
(
ek(y), x

)
= ek(x),

for uniformly in each compact subset of R+ for k = 0, 1, 2. Then, according to the result of
the Bohmans–Korovkin theorem, we deduce the limn→∞ T ∗

n (g, x) = g(x) for uniformly in
each compact subset of R+. This completes the proof of the theorem. �

3 Transferring the asymptotic formula
One of the fundamental challenges in approximation theory is the calculation of the rate
of convergence of positive linear operators to the test functions. For this purpose, we will
present and prove the Voronovskaya-type theorem to determine the asymptotic behaviour
of newly constructed operators utilising well-recognised Taylor expansion.

Theorem 2 Let g be bounded and integrable on the interval x ∈ R
+, g ′ and g ′′ exist at a

fixed point x ∈ R
+, in this circumstance the following limit holds:

lim
n→∞ n

[
T ∗

n (g, x) – g(x)
]

= xg ′(x) +
1
2

x2g ′′(x).

Proof First, starting with the well-recognised Taylor formula at y = x of function g , we
readily deduce that

g(y) = g(x) + g ′(x)(y – x) +
1
2

g ′′(x)(y – x)2 + ψ(y, x)(y – x)2, (3.1)

where

ψ(y, x) =
g ′′(ξ ) – g ′′(x)

2

such that ξ lying between, x and y and

lim
y→x

ψ(y, x) = 0.

If we apply the new operator (T ∗
n )n≥1 to the inequality (3.1), we easily obtained that,

T ∗
n (g, x) = g(x) + g ′(x)T ∗

n
(
(y – x), x

)
+

1
2

g ′′(x)T ∗
n

(
(y – x)2, x

)
+ T ∗

n
(
ψ(y, x)(y – x)2, x

)
.

Multiplying each side of the equation here by n will result in the following equality:

n
[
T ∗

n (g, x) – g(x)
]

= g ′(x)nT ∗
n

(
(y – x), x

)
+

1
2

g ′′(x)nT ∗
n

(
(y – x)2, x

)

+ nT ∗
n

(
ψ(y, x)(y – x)2, x

)
.

If one states this expression in the limit case, we deduce that

lim
n→∞ n

[
T ∗

n (g, x) – g(x)
]

= g ′(x) lim
n→∞ nT ∗

n
(
(y – x), x

)
+

1
2

g ′′(x) lim
n→∞ nT ∗

n
(
(y – x)2, x

)

+ lim
n→∞ nT ∗

n
(
ψ(y, x)(y – x)2, x

)
.
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As a consequence of our previous calculations in Lemma 3, the following two expressions
can be easily obtained:

lim
n→∞ nT ∗

n
(
(y – x), x

)
= x, and lim

n→∞ nT ∗
n

(
(y – x)2, x

)
= x2.

Then, the following is obtained when we replace the information we have obtained above:

lim
n→∞ n

[
T ∗

n (g, x) – g(x)
]

= xf ′(x) +
1
2

x2g ′′(x) + lim
n→∞ nT ∗

n
(
ψ(y, x)ϕx,2(y), x

)
. (3.2)

Finally, if we show,

lim
n→∞ nT ∗

n
(
ψ(y, x)ϕx,2(y), x

)
,

equals zero, we can conclude the proof. Hence, by applying the well-known Cauchy–
Schwarz inequality, we obtain

nT ∗
n

(
ψ(y, x)ϕx,2(y), x

) ≤
√

n2T ∗
n

(
ψ2(y, x), x

)√
T ∗

n
(
ϕx,4(y), x

)
. (3.3)

Then, with the help of the Korovkin theorem, we can deduce that,

lim
n→∞T ∗

n
(
ψ2(y, x), x

)
= ψ2(x, x) = 0, (3.4)

since ψ2(x, x) = 0 and ψ2(·, x) is continuous at y ∈ R
+ and bounded as y → ∞ and as

T ∗
n (ϕx,4(y), x) = O(n–2). As a result, by substituting (3.3) and (3.4) into (3.2), the proof is

completed. �

4 Weighted approximation
After the computation of asymptotic formulae of the introduced operator, we can now
provide the Korovkin-type theorem for a weighted approximation. For this purpose, we
benefit from the results presented by Gadjiev in [5].

Initially, set σ (x) = 1 + x2 as a weight function that is continuous on R and the
lim|x|→∞ σ (x) = ∞, σ (x) ≥ 1 for all x ∈ R

+. Then, we shall denote by C(R+) the set of
all R+ → R functions that are continuous. Then let us consider the following weighted
spaces. For all x ∈ R

+, the weighted space of real-valued functions g described on R with
the property |g(x)| ≤ Mgσ (x), where Mg is a constant depending on the function f defined
as

Bσ

(
R

+)
=

{
g : R+ →R :

∣∣g(x)
∣∣ ≤ Mgσ (x), x ∈R

+}
,

and

Cσ

(
R

+)
=

{
g ∈ Bσ

(
R

+)
: g is continuous on R

}
= C

(
R

+) ∩ Bσ

(
R

+)
.

These spaces are normed spaces with

‖g‖σ = sup
x∈R+

|g(x)|
σ (x)

.
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Since σ is a weight function, Bσ (R+) and Cσ (R+) spaces are called weighted spaces. Ad-
ditionally, if we set that κg is a constant dependent on the function g , we can define the
following subspace:

Cκ
σ

(
R

+)
=

{
g ∈ Cσ

(
R

+)
: lim|x|→∞

g(x)
σ (x)

= κg exists and it is finite
}

.

which is a subspace of space Cσ (R+). Now, we can provide the following lemma for the
new operators.

Lemma 4 Let g ∈ Cσ (R+). Then, the following inequality holds

∥∥T ∗
n (g)

∥∥
σ

≤ C‖g‖σ ,

for the modified operator T ∗
n (g), which means that the sequence of the modified Gamma

operators T ∗
n (g) is an approximation process from Cσ (R+) to Cσ (R+).

Proof This lemma can be readily proven by using the definition of operators and the re-
sults of Lemma 3. Thus, the desired result has been obtained. �

Now, we can present and prove the main theorem of this section by following Gadjiev’s
technique for an unbounded interval.

Theorem 3 Let g ∈ Cκ
σ (R+). Then, the following equality holds:

lim
n→∞

∥∥T ∗
n (g) – g

∥∥
σ

= 0,

for the modified Gamma operators.

Proof Utilising Gadjiev’s [5] theorem, it suffices to demonstrate that limn→∞ ‖T ∗
n (ek) –

ek‖σ = 0 holds for k = 0, 1, 2. It is clear that the equation for k = 0, which is T ∗
n (e0(y)) = e0(x)

is initially provided. Secondly, using the result of Lemma 3 for k = 1, we readily deduce
that,

∥∥T ∗
n (e1) – e1

∥∥
σ

= sup
x∈R+

|T ∗
n (e1) – e1|

1 + x2

= sup
x∈R+

| n
n–1 x – x|
1 + x2

≤
∣∣∣∣ 1
n – 1

∣∣∣∣ sup
x∈R+

x
1 + x2

≤
∣∣∣∣ 1
n – 1

∣∣∣∣.

If we take the limit of the above findings, one can readily express that limn→∞ ‖T ∗
n (e1) –

e1‖σ = 0 as limn→∞ | 1
n–1 | = 0. Finally, we need to find an upper bound of limn→∞ ‖T ∗

n (e2) –
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e2‖σ . For that, we have,

∥∥T ∗
n (e2) – e2

∥∥σ = sup
x∈R+

|T ∗
n (e2) – e2|

1 + x2

= sup
x∈R+

| n2

(n–1)(n–2) x2 – x2|
1 + x2

≤
∣∣∣∣ 3n – 2
n2 – 3n + 2

∣∣∣∣ sup
x∈R+

x2

1 + x2

≤
∣∣∣∣ 3n – 2
n2 – 3n + 2

∣∣∣∣,

is obtained in a similar way. In the limit case, we have the desired results, which concludes
the proof. �

5 Rate of convergence
In this section, we provide the convergence rate of the modified Gamma operator in terms
of the modulus of continuity. Here, for the closed interval [0, x0], x0 ≥ 0, we denote the
standard modulus of continuity of g by ωx0 (g, δ) and it can be defined as follows:

ωx0 (g, δ) = sup
|y–x|≤δ;x,y∈[0,x0]

∣∣g(y) – g(x)
∣∣.

It is obvious that the modulus of continuity ωx0 (g, δ) → 0 as δ → 0 for the function
g ∈ Cb[0,∞). Let us show the corresponding rate of convergence theorem for the newly
constructed Gamma operator (T ∗

n )n≥1. Now, we can provide the main theorem of this
section.

Theorem 4 Let ωx0+1(g, δ) be the modulus of continuity on the finite interval [0, x0 + 1] ⊂
[0,∞) for x0 > 0 and g ∈ Cb[0,∞). In the circumstances, the following inequality holds:

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ 3Mg

(
n + 2

(n – 1)(n – 2)

)
x2

0(1 + x0)2 + 2ωx0+1

(
g,

√
n + 2

(n – 1)(n – 2)
x2

0

)
,

where Mg is fixed just depending on g .

Proof Now, let g ∈ Cb[0,∞), 0 ≤ x ≤ x0 and y > x0 + 1. then, we can deduce that

∣∣g(y) – g(x)
∣∣ ≤ ∣∣g(y)

∣∣ +
∣∣g(x)

∣∣
≤ Mg

(
σ (y) + σ (x)

)

= Mg
(
2 + y2 + x2)

= Mg
(
(y – x)2 + 2x(y – x) + 2 + 2x2)

≤ Mg
(
(y – x)2 + 2x(y – x)2 + 2(y – x)2 + 2x2(y – x)2)

= Mg(y – x)2(2x2 + 2x + 3
)

≤ Mg(y – x)2(3x2
0 + 6x0 + 3

)

= 3Mg(y – x)2(1 + x0)2
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for y – x > 1. Then, again let g ∈ Cb[0,∞), 0 ≤ x ≤ x0. In the circumstances, the following
inequality holds:

∣∣g(y) – g(x)
∣∣ ≤ ωx0+1

(
g, |y – x|)

≤ ωx0+1(g, δ)
(

1 +
1
δ
|y – x|

)
,

for y ≤ x0 + 1. As a consequences, from the above inequalities, we deduce that

∣∣g(y) – g(x)
∣∣ ≤ 3Mg(y – x)2(1 + x0)2 + ωx0+1(g, δ)

(
1 +

1
δ
|y – x|

)
, (5.1)

for 0 ≤ x ≤ x0 and 0 ≤ y < ∞. Applying T ∗
n and the Cauchy–Schwarz inequality to (5.1),

we obtain

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ 3MgT ∗
n

(
(y – x)2, x

)
(1 + x0)2 + ωx0+1(g, δ)

(
1 +

1
δ

√
T ∗

n
(
(y – x)2, x

))

≤ 3Mg

(
n + 2

(n – 1)(n – 2)

)
x2

0(1 + x0)2 + 2ωx0+1

(
g,

√
n + 2

(n – 1)(n – 2)
x2

0

)
,

by choosing δ =
√

n+2
(n–1)(n–2) x2

0, which completes the proof. �

6 Pointwise estimates
In this section, let us examine some pointwise estimates of the rates of convergence of
the newly defined Gamma operators. First, the local approximation and the relationship
between the local smoothness of g are given. For that, let us describe the following. Let
s ∈ (0, 1] and Q ⊂ [0,∞). In the circumstances, a function g ∈ Cb[0,∞) can be said LipMg (s)
on Q if the following condition holds:

∣∣g(y) – g(x)
∣∣ ≤ Mg,s|y – x|s, y ∈ [0,∞) and x ∈ Q,

where Mg,s is fixed just depending on g and s.

Theorem 5 Let g ∈ Cb[0,∞) ∩ LipMg(s) such that s ∈ (0, 1] and Q ⊂ [0,∞) given as above.
In the circumstances, we have the following inequality:

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ Mg,s

[(
n + 2

(n – 1)(n – 2)
e2(x)

)s/2

+ 2
(
d(x, Q)

)s
]

, x ∈ (0,∞),

where Mg,s is defined as above and d(x, Q) is the distance between x and Q described as

d(x, Q) = inf
{|y – x|, y ∈ Q

}
.

Proof Let us describe the closure of the set Q as Q. Then, one can say that there exists at
least one point y0 ∈ Q such that

d(x, Q) = |x – y0|.
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Then, utilising the monotonicity properties of (T ∗
n )n≥1, we deduce that

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ T ∗
n

(∣∣g(y) – g(y0)
∣∣, x

)
+ T ∗

n
(∣∣g(x) – g(y0)

∣∣, x
)

≤ Mg,s
[
T ∗

n
(|y – y0|s, x

)
+ |x – y0|s

]

≤ Mg,s
[
T ∗

n
(|y – x|s, x

)
+ 2|x – y0|s

]
.

In the circumstances, with the help of the Hölder inequality, we obtain the following result:

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ Mg,s
[(
T ∗

n
(|y – x|2, x

))s/2 + 2
(
d(x, Q)

)s]

= Mg,s

[(
n + 2

(n – 1)(n – 2)
e2(x)

)s/2

+ 2
(
d(x, Q)

)s
]

,

which finalises the proof. �

Let us now calculate the local direct estimate of the new modification of Gamma oper-
ators. For this purpose, we need to review the Lipschitz-type maximal function of order s
given in [9], that is

ω̃s(g, x) = sup
0≤y<∞,y
=x

|g(y) – g(x)|
|y – x|s ,

where s ∈ (0, 1] and x ∈ (0,∞). Now, we can present and prove the theorem.

Theorem 6 Let g ∈ Cb[0,∞) and s ∈ (0, 1], then the following inequality holds:

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ ω̃s(g, x)T ∗
n

(
n + 2

(n – 1)(n – 2)
e2(x)

)s/2

,

for x ∈ (0,∞).

Proof Thanks to the definitions of ω̃s(g, x) given above and a well-recognised Hölder in-
equality, we deduce that,

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ T ∗
n

(∣∣g(y) – g(x)
∣∣, x

)

≤ ω̃s(g, x)T ∗
n

(|y – x|s, x
)

≤ ω̃s(g, x)T ∗
n

(|y – x|2, x
)s/2

≤ ω̃s(g, x)T ∗
n

(
n + 2

(n – 1)(n – 2)
e2(x)

)s/2

,

thus, the desired result is obtained. �

Finally, let us consider the following Lipschitz-type space with two parameters, α,β > 0,
such that

Lipα,β
M (s) =

(
g ∈ C[0,∞) :

∣∣g(y) – g(x)
∣∣ ≤ M

|y – x|s
(ax2 + bx + y)s/2 , x, y ∈ (0,∞)

)
,

introduced in [14], where s ∈ (0, 1] and M is a positive constant.
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Theorem 7 Let us consider g ∈ Lipα,β
M (s) and x ∈ (0,∞). Then we have

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ M
[ n+2

(n–1)(n–2) e2(x)
ax2 + bx

]s/2

,

where α,β > 0.

Proof The proof of this inequality is shown in two steps. First, we take s = 1, that is,

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ T ∗
n

(∣∣g(y) – g(x)
∣∣, x

)

≤ MT ∗
n

( |y – x|√
ax2 + bx + y

, x
)

≤ M√
ax2 + bx

T ∗
n

(|y – x|, x
)
,

g ∈ Lipα,β
M (1) and x ∈ (0,∞). Here, applying the Cauchy–Schwarz inequality, we deduce

that,

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ M√
ax2 + bx

[
T ∗

n
(|y – x|2, x

)]1/2 ≤ M
[ n+2

(n–1)(n–2) e2(x)
ax2 + bx

]1/2

,

which confirms the proof of the theorem for s = 1. Then, let us consider s ∈ (0, 1). For
g ∈ Lipα,β

M (s) and x ∈ (0,∞) we obtain that

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ M
(ax2 + bx)s/2 T

∗
n

(|y – x|s, x
)
.

With the help of Hölder inequalities, we obtain the following inequality:

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ M
(ax2 + bx)s/2 T

∗
n

(|y – x|s, x
) ≤ M

(ax2 + bx)s/2

(
T ∗

n
(|y – x|, x

))s.

Finally, applying the Cauchy–Schwarz inequality, we have,

∣∣T ∗
n (g, x) – g(x)

∣∣ ≤ M
(ax2 + bx)s/2

(
T ∗

n
(|y – x|2, x

))s/2 ≤ M
[ n+2

(n–1)(n–2) e2(x)
ax2 + bx

]s/2

,

which completes the proof. �

7 Numerical examples
As applications, we give some numerical examples to verify the approximation properties
of the newly defined Gamma operators in one dimension. In our examples, we compare
new modifications of the Gamma operators with its classical correspondence. All of the
calculations are performed on an Intel Core i7 personal laptop by running a code imple-
mented by MATLAB 9.7.0.114230202 (R2019b) software. In order to clarify the accuracy
and efficiency of the modified Gamma operators, the values of approximations are com-
pared with the values of a test function by plotting them on the same figures.
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Figure 1 Tn(g, x) and Tn(g, x) approximation of test function g(x) = xe–4x on an equally spaced evaluation grid
of [1, 2.5] with n = 15

7.1 Example 1
As a first example, we approximate the function g : [1, 2.5] →R such that

g(x) = xe–4x,

for n = 15. Figure 1 shows that the newly defined Gamma operators approximate better in
comparison with the classical correspondence for this interval. Of course, it is not possible
to say that the newly defined operator is better than the existing operator under all circum-
stances. However, as can be seen in the examples, the new operator performed better in
these selected specific cases.

7.2 Example 2
As a second example, we consider the test function g : [1, 2.5] →R such that

g(x) = cos(x)e–3x,

for n = 15. Similarly, Fig. 2 demonstrates that the introduced modified Gamma operators
approximate better in comparison with the standard correspondence for this interval.

8 Concluding remarks
In this manuscript, a new modification of Gamma operators has been introduced and the
fundamental properties of them have been analysed. For this purpose, we benefitted from
different type function spaces. Finally, we provide a couple of numerical experiments to
show the approximation properties of the newly defined operator.
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Figure 2 Tn(g, x) and Tn(g, x) approximation of test function g(x) = cos(x)e–3x on an equally spaced evaluation
grid of [1, 2.5] with n = 15
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