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Abstract
In this paper, we introduce poly-central factorial sequences and poly-central Bell
polynomials arising from the polyexponential functions, reducing them to central
factorials and central Bell polynomials of the second kind respectively when k = 1. We
also show some relations: between poly-central factorial sequences and power of x;
between poly-central Bell polynomials and power of x; between poly-central Bell
polynomials and the poly-Bell polynomials; between poly-central Bell polynomials
and higher order type 2 Bernoulli polynomials of second kind; recurrence formula of
poly-central Bell polynomials.
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1 Introduction
The central factorial numbers of the first and second kinds consist of the same kind of reci-
procity as the corresponding polynomials for the Stirling numbers of the first and second
kinds [20]. They have appeared in many different contexts as follows: the approximation
theory [2], algebraic geometry [6, 20], and spectral theory of differential operators [7, 18].
The poly-exponential functions were reconsidered by Kim [9] in view of an inverse to the
polylogarithm functions which were first studied by Hardy [8]. Kim et al. showed that the
degenerate Daehee numbers of order k expressed the degenerate polyexponential func-
tions in [13]. Furthermore, recently, Kim and Kim introduced the poly-Bell polynomials
and the poly-Lah–Bell polynomials arising from polyexponential functions respectively in
[16, 17]. With this in mind, we introduce poly-central factorial sequences and poly-central
Bell polynomials arising from the polyexponential functions, reducing them to central fac-
torials and central Bell polynomials of the second kind respectively when k = 1. We also
show some relations: between poly-central factorial sequences and power of x; between
poly-central Bell polynomials and power of x; between poly-central Bell polynomials and
the poly-Bell polynomials; between poly-central Bell polynomials and higher order type 2
Bernoulli polynomials of second kind; recurrence formula of poly-central Bell polynomi-
als.
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First, definitions and preliminary properties required in this paper are introduced.
The central factorial x[n] is defined by

x[0] = 1,

x[n] = x
(

x +
n
2

– 1
)(

x +
n
2

– 2
)

) · · ·
(

x –
n
2

+ 1
)

, (n ≥ 1), (see [1, 3, 10, 11, 19]).
(1)

The central factorial x[n] is given by the generating function

∞∑
n=0

x[n] tn

n!
=

(
t
2

+
√

1 +
t2

4

)2x

(see [10, 11, 19]). (2)

For any nonnegative integer n, the central factorial numbers of the first kind are given
by

x[n] =
n∑

l=0

t(n, l)xl (see [20]). (3)

By (3), we easily get

1
l!

(
2 log

(
t
2

+
√

1 +
t2

4

))l

=
∞∑
n=l

t(n, l)
tn

n!
(see [10, 11, 19]), (4)

where t ∈C with |t| < 1.
Let f (t) = 2 log( t

2 +
√

1 + t2
4 ). Then

f –1(t) = e
t
2 – e– t

2 , (5)

which is the compositional inverse of the function f (t).
From (4) and (5), the central factorial numbers of the second kind are given by

1
l!
(
e

t
2 – e– t

2
)l =

∞∑
n=l

T(n, l)
tn

n!
(see [10, 11, 19]). (6)

Riordan showed that the central factorial numbers of the second kind T(n, k) are the
coefficients in the expansion of xn in terms of central factorials given by

xn =
n∑

l=0

T(n, l)x[l] (n ≥ l ≥ 0), (see [19]). (7)

Kim and Kim introduced the central Bell polynomials B(c)
n (x) defined by

B(c)
n (x) =

n∑
k=0

xkT(n, k), (n ≥ 0), (see [11]), (8)
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and the central Bell numbers B(c)
n by B(c)

n (1), so that

B(c)
n =

n∑
k=0

T(n, k), (n ≥ 0).

From (6) and (8), we note that the generating function for the central Bell polynomials
is

ex(e
t
2 –e– t

2 ) =
∞∑

n=0

B(c)
n (x)

tn

n!
(see [11]), (9)

where B(c)
n (x) =

∑n
k=0 T(n, k)xk are the central polynomials Bell polynomials and B(c)

n =
B(c)

n (1) are the central Bell numbers.
For n ≥ 0, the Stirling numbers of the first kind S1(n, l) are the coefficients of xl in

(x)n =
n∑

l=0

S1(n, l)xl (see [3, 5, 15]). (10)

From (10), it is easy to see that

1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1(n, k)
tn

n!
. (11)

In the inverse expression to (10), for n ≥ 0, the nth power of x can be expressed in terms
of the Stirling numbers of the second kind S2(n, l) as follows:

xn =
n∑

l=0

S2(n, l)(x)l (see [3, 5, 15]). (12)

From (12), it is easy to see that

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
. (13)

The nth Bell number Bn (n ≥ 0) is the number of ways to partition a set with n elements
into nonempty subsets. The Bell polynomials are natural extensions of the Bell numbers
as follows:

beln(x) =
n∑

k=0

S2(n, k)xn. (14)

It is well known that the generating function of the Bell polynomials is given by

ex(et–1) =
∞∑

n=0

beln(x)
tn

n!
(see [3, 5, 16]). (15)

Now, as well established within academia, the ordinary Bernoulli polynomials bn(x) and
the Euler polynomials En(x), (n ∈ N ∪ {0}) are respectively defined by their generating
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functions as follows (see [3, 5]):

(
t

et – 1

)
ext =

∞∑
n=0

bn(x)
tn

n!
,

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
. (16)

When x = 0, bn = bn(0) and En = En(0) are respectively called the Bernoulli numbers and
the Euler numbers.

For r ∈ R, the type 2 Bernoulli polynomials of the second kind with order r are defined
by the generating function

(
(1 + t) – (1 + t)–1

2 log(1 + t)

)r

(1 + t)x =
∞∑

n=0

b∗(r)
n (x)

tn

n!
(see [12]). (17)

When x = 0, b∗(r)
n (0) are called the type 2 Bernoulli numbers of the second kind order r.

Kim and Kim introduced the modified polyexponential function as

Jk(x) =
∞∑

n=1

xn

(n – 1)!nk (k ∈ Z), (see [9, 14]). (18)

When k = 1, we see that Ei1(x) = ex – 1.
Recently, the poly-Bell polynomials were introduced by

1 + Jk
(
x
(
et – 1

))
=

∞∑
n=0

bel(k)
n (x)

tn

n!
(see [16]), (19)

and bel(k)
0 (x) = 1.

When k = 1, from (15), we note that

1 + J1
(
x
(
et – 1

))
= 1 +

∞∑
n=1

(x(et – 1))n

(n – 1)!n

= exp
(
x
(
et – 1

))
=

∞∑
n=0

beln(x)
tn

n!
.

(20)

From (20), we have

bel(1)
n (x) = beln(x).

2 Poly-central factorial sequences and poly-central-Bell polynomials
In this section, we define poly-central factorial sequences and poly-central-Bell polyno-
mials respectively by using the degenerate polylogarithm functions and give explicit ex-
pressions and recurrence formula of poly-central Bell polynomials.

First, we consider the poly-central factorial sequences x[n](k), which are derived from the
polyexponential function to be

1 + Jk

(
2x log

(
t
2

+
√

1 +
t2

4

))
=

∞∑
n=0

x[n](k) tn

n!
and x[0](k) = 1. (21)
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When k = 1, since J1(x) = ex – 1, we note that

1 + J1

(
2x log

(
t
2

+
√

1 +
t2

4

))
=

(
t
2

+
√

1 +
t2

4

)2x

=
∞∑

n=0

x[n] tn

n!
. (22)

Therefore, by (22), we have x[n](1) = x[n].
Second, we define the poly-central-Bell polynomials B(c,k)

n (x), which arise from the poly-
exponential function to be

1 + Jk
(
x
(
e

t
2 – e– t

2
))

=
∞∑

n=0

B(c,k)
n (x)

tn

n!
and B(c,k)

0 (x) = 1. (23)

When k = 1, since J1(x) = ex – 1, we note that

1 + J1
(
x
(
e

t
2 – e– t

2
))

= 1 + ex(e
t
2 –e– t

2 ) – 1 =
∞∑

n=0

B(c)
n (x)

tn

n!
. (24)

By (24), we have B(c,1)
n (x) = B(c)

n (x).
First, we observe relations of poly-falling factorial sequences and powers of x.

Theorem 1 For k ∈ Z and n ≥ 1, we have

x[n](k) =
n∑

l=1

1
lk–1 t(n, l)xl,

where t(n, l) is the central factorial numbers of the first kind.

Proof By (4) and (21), we observe that

1 + Jk

(
2x log

(
t
2

+
√

1 +
t2

4

))
= 1 +

∞∑
l=1

(2x)l(log( t
2 +

√
1 + t2

4 ))l

(l – 1)!lk

= 1 +
∞∑
l=1

xl

lk–1
1
l!

(
2 log

(
t
2

+
√

1 +
t2

4

))l

= 1 +
∞∑
l=1

xl

lk–1

∞∑
n=l

t(n, l)
tn

n!

= 1 +
∞∑

n=1

( n∑
l=1

1
lk–1 t(n, l)xl

)
tn

n!
.

(25)

Combining (21) with (25), we get the desired result. �

In Theorem 1, when k = 1, we note that

x[n] =
n∑

l=0

t(n, l)xl.
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Theorem 2 For k ∈ Z and n ≥ 1, we have

xn = nk–1
n∑

l=0

T(n, l)x[l](k).

Proof By replacing t with e t
2 – e– t

2 in (21), from (18), the left-hand side of (21) is

1 + Jk(xt) = 1 +
∞∑

n=1

xntn

(n – 1)!nk = 1 +
∞∑

n=1

xn

nk–1
tn

n!
. (26)

On the other hand, from (6), the right-hand side of (21) is

∞∑
m=0

x[m](k) (e t
2 – e– t

2 )m

m!
=

∞∑
m=0

x[m](k)
∞∑

n=m
T(n, m)

tn

n!

=
∞∑

n=0

n∑
m=0

x[m](k)T(n, m)
tn

n!
.

(27)

Comparing with the coefficients of (26) and (27), we have the desired result. �

In Theorem 2, when k = 1, we note that

xn =
n∑

l=0

t(n, l)x[l](k).

Theorem 3 For k ∈ Z and n ≥ 1, we have

B(c,k)
n (x) =

n∑
l=1

1
lk–1 T(n, l)xl.

Proof From (6) and (23), we observe that

1 + Jk
(
x
(
e

t
2 – e– t

2
))

= 1 +
∞∑
l=1

xl(e t
2 – e– t

2 )
(l – 1)!lk

= 1 +
∞∑
l=1

xl

lk–1
(e t

2 – e– t
2 )l

l!

= 1 +
∞∑
l=1

xl

lk–1

∞∑
n=l

T(n, l)
tn

n!

= 1 +
∞∑

n=1

( n∑
l=1

1
lk–1 T(n, l)xl

)
tn

n!
.

(28)

Combining (23) with (28), we get

B(c,k)
n (x) =

n∑
l=1

1
lk–1 T(n, l)xl (n ≥ 1). �
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In Theorem 3, when k = 1, we note that

B(c)
n (x) =

n∑
l=0

T(n, l)xl.

Theorem 4 For k ∈ Z and n ≥ 1, we have

B(c,k)
n (x) =

n∑
m=1

m∑
l=1

(
n
m

)(
–

1
2

)n–m

ln–m–k+1S2(m, l)xl.

Proof From (13) and (23), we observe that

1 + Jk
(
x
(
e

t
2 – e– t

2
))

= 1 +
∞∑
l=1

xle– t
2 l(et – 1)l

(l – 1)!lk

= 1 +
∞∑
l=1

xle– t
2 l

lk–1

∞∑
m=l

S2(m, l)
tm

m!

= 1 +
∞∑

m=1

m∑
l=1

1
lk–1 S2(m, l)xl tm

m!

∞∑
j=0

(
–

l
2

)j tj

j!

= 1 +
∞∑

n=1

( n∑
m=1

m∑
l=1

(
n
m

)
1

lk–1

(
–

1
2

l
)n–m

S2(m, l)xl

)
tn

n!
.

(29)

Combining (23) with (29), we have the desired result. �

In Theorem 4, when k = 1, we note that

B(c)
n (x) =

n∑
m=1

m∑
l=1

(
n
m

)(
–

1
2

l
)n–m

S2(m, l)xl.

Theorem 5 For k ∈ Z and n ≥ 1, we have

B(c,k)
n (x) =

n∑
l=1

(
n
l

)(
–

1
2

l
)n–l

bel(k)
n–l(x),

where bel(k)
n (x) are the poly-Bell polynomials.

Proof From (19) and (23), we get

1 + Jk
(
x
(
e

t
2 – e– t

2
))

= 1 + Jk
(
xe– t

2
(
et – 1

))
= 1 +

∞∑
l=1

xle– t
2 (et – 1)l

(l – 1)!lk

= 1 +
∞∑
l=1

(x(et – 1))l

(l – 1)!lk

∞∑
m=0

(
–

1
2

l
)m tm

m!

= 1 +
∞∑
l=1

bel(k)
l (x)

tl

l!

∞∑
m=0

(
–

1
2

l
)m tm

m!

= 1 +
∞∑

n=1

n∑
l=1

(
n
l

)(
–

1
2

l
)n–l

bel(k)
n–l(x)

tn

n!
.

(30)

Combining (23) with (30), we have the desired result. �
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Theorem 6 For k ∈ Z and n ≥ 1, we have

n∑
j=1

2jS1(n, j)B(c,k)
j (x) =

n∑
m=1

m∑
l=1

(
n
m

)
2lxl

lk–1 S1(m, l)b∗(l)
n–m,

where b∗(l)
n are the order l type 2 Bernoulli polynomials of the second kind.

Proof By replacing t with 2 log(1 + t) in (23), from (11) and (17), the left-hand side of (23)
is

1 + Jk(x
(
(1 + t) – (1 + t)–1) = 1 +

∞∑
l=1

xl((1 + t) – (1 + t)–1)l

(l – 1)!lk

= 1 +
∞∑
l=1

2lxl

lk–1

(
(1 + t) – (1 + t)–1

2 log(1 + t)

)l log(1 + t)l

l!

= 1 +
∞∑
l=1

2lxl

lk–1 S1(m, l)
tm

m!

∞∑
j=0

b∗(l)
j

tj

j!

= 1 +
∞∑

m=1

m∑
l=1

2lxl

lk–1 S1(m, l)
tm

m!

∞∑
j=0

b∗(l)
j

tj

j!

= 1 +
∞∑

n=1

n∑
m=1

m∑
l=1

(
n
m

)
2lxl

lk–1 S1(m, l)b∗(l)
n–m

tn

n!
.

(31)

On the other hand, by (11), the right-hand side of (23) is

∞∑
m=0

B(c,k)
m (x)

(2 log(1 + t))m

m!
=

∞∑
m=0

2mB(c,k)
m (x)

∞∑
n=m

S1(n, m)
tn

n!

=
∞∑

n=0

n∑
m=0

2mS1(n, m)B(c,k)
m (x)

tn

n!

= 1 +
∞∑

n=1

n∑
m=0

2mS1(n, m)B(c,k)
m (x).

(32)

Since S1(n, 0) = 0 for n ≥ 1, by comparing with the coefficients of (31) and (32), we have
the desired result. �

Theorem 7 For k ∈ Z and n ≥ 1, we have

n∑
j=0

(
n
j

)
bjB(c,k)

n–j+1(x) =
n∑

m=0

(
n
m

)
En–mB(c,k)

m+1(x),

where bn are the ordinary Bernoulli numbers and En are the ordinary Euler numbers.
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Proof Differentiating with respect to t in (23), the left-hand side of (23) is

∂

∂t
(
1 + Jk

(
x
(
e

t
2 – e– t

2
)))

=
∞∑

n=1

xn(e t
2 – e– t

2 )n–1

(n – 1)!nk–1
1
2
(
e

t
2 + e– t

2
)

=
e t

2 + e– t
2

2(e t
2 – e– t

2 )

∞∑
n=1

xn(e t
2 – e– t

2 )n

(n – 1)!nk–1

=
e t

2 + e– t
2

2(e t
2 – e– t

2 )
Jk–1

(
x
(
e

t
2 – e– t

2
))

=
et + 1

2(et – 1)

∞∑
n=1

B(c,k)
n (x)

tn

n!
.

(33)

On the other hand, the right-hand side of (23) is

∂

∂t

( ∞∑
n=0

B(c,k)
n (x)

tn

n!

)
=

∞∑
n=0

B(c,k)
n+1 (x)

tn

n!
. (34)

Combining (33) with (34), we get

1
et – 1

∞∑
n=1

B(c,k)
n (x)

tn

n!
=

2
et + 1

∞∑
n=0

B(c,k)
n+1 (x)

tn

n!
. (35)

From (16) and (35), we have

∞∑
j=0

bj
tj

j!

∞∑
m=0

1
m + 1

B(c,k)
m+1(x)

tm

m!
=

∞∑
i=0

Ei
ti

i!

∞∑
m=0

B(c,k)
m+1(x)

tm

m!
. (36)

By (36), we have

∞∑
n=0

n∑
j=0

(
n
j

)
bjB(c,k)

n–j+1(x)
tn

n!
=

∞∑
n=0

n∑
m=0

(
n
m

)
En–mB(c,k)

m+1(x)
tn

n!
. (37)

By comparing with the coefficients of both sides of (37), we have the desired result. �

3 Further remark
Let r ∈N∪ {0}, the r-Stirling numbers S2,r(n, j) of the second kind are given by

1
j!

ert(et – 1
)j =

∞∑
n=j

S2,r(n + r, j + r)
tn

n!
(see [15]). (38)

In view of (14), the r-Bell polynomials are given by

bel(r)
n (x) =

n∑
j=0

S2,r(n + r, j + r)xj (n ≥ 0), (see [15]). (39)
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From (38), it is easy to show that the generating function of degenerate r-Bell polynomials
is given by

ertex(eλ(t)–1) =
∞∑

n=0

beln,r(x|λ)
tn

n!
(see [14]). (40)

When x = 1, bel(r)
n (λ) = bel(r)

n (1|λ) which are called the degenerate r-Bell numbers.
We can define the extended poly-Bell polynomials Bel

(k)
n,λ(x), which are derived from the

polyexponential function to be

1 + Jk
(
x
(
et – 1

)
+ rt

)
=

∞∑
n=0

Bel
(k)
n (x)

tn

n!
and Bel

(k)
0 (x) = 1. (41)

When x = 1, Bel
(k)
n = Bel

(k)
n (1) which are called the extended poly-Bell numbers.

When k = 1, we note that

1 + Jk
(
x
(
et – 1

)
+ rt

)
= 1 +

∞∑
n=1

(x(et – 1) + rt)n

n!
= ex(et–1)+rt = ex(et–1)ert = beln,r(x).

In particular, when r = – 1
2 , Beln,– 1

2
(x) = B(c)

n (x).

Theorem 8 For n ≥ 1, we have

Bel
(k)
n,r(x) =

m∑
l=0

(
n

m – l

)
rm–l

mk–1 S2(n + l – m, l).

Proof From (13) and (41), we observe that

1 + Jk
(
x
(
et – 1

)
+ rt

)
= 1 +

∞∑
m=1

(x(et – 1) + rt)m

(m – 1)!mk

= 1 +
∞∑

m=1

1
mk–1m!

m∑
l=0

(
m
l

)
xl(et – 1

)l(rt)m–l

= 1 +
∞∑

m=1

m∑
l=0

rm–lxl

mk–1(m – l)!
tm–l (et – 1)l

l!

= 1 +
∞∑

m=1

m∑
l=0

rm–lxl

mk–1(m – l)!

∞∑
n=l

S2(n, l)
tn+m–l

n!

= 1 +
∞∑

m=1

m∑
l=0

rm–lxl

mk–1(m – l)!

∞∑
n=0

S2(n + l, l)
tn+m

(n + l)!

= 1 +
∞∑

m=1

m∑
l=0

rm–lxl

mk–1(m – l)!

∞∑
n=m

S2(n + l – m, l)
tn

(n + l – m)!

= 1 +
∞∑

n=1

n∑
m=1

m∑
l=0

(
n

m – l

)
rm–l

mk–1 S2(n + l – m, l)
tn

n!
.

(42)

By (41) and (42), we get what we want. �
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4 Conclusion
To summarize, we introduced poly-central factorial sequences and poly-central Bell poly-
nomials in terms of the polyexponential functions, reducing them to central factorials and
central Bell polynomials of the second kind respectively when k = 1. We derived relations
between poly-central factorial sequences and power of x in Theorems 1, 2. We also ob-
tained relations between poly-central Bell polynomials and power of x in Theorems 3, 4.
In addition, we showed several identities between poly-central Bell polynomials and poly-
Bell polynomials; between poly-central Bell polynomials and higher order type 2 Bernoulli
polynomials of second kind; recurrence formula of poly-central Bell polynomials in The-
orems 5, 6, 7.

To conclude, there are various methods for studying special polynomials and num-
bers, including: generating functions, combinatorial methods, umbral calculus, differen-
tial equations, and probability theory [2, 4–7, 18–20]. We are now interested in continu-
ing our research into the application of ‘poly’ versions of certain special polynomials and
numbers in the fields of physics, science, and engineering as well as mathematics.
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