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Abstract
The initial-boundary value problem of a degenerate parabolic equation arising from
double phase convection is considered. Let a(x) and b(x) be the diffusion coefficients
corresponding to the double phase respectively. In general, it is assumed that
a(x) + b(x) > 0, x ∈ � and the boundary value condition should be imposed. In this
paper, the condition a(x) + b(x) > 0, x ∈ � is weakened, and sometimes the boundary
value condition is not necessary. The existence of a weak solution u is proved by
parabolically regularized method, and ut ∈ L2(QT ) is shown. The stability of weak
solutions is studied according to the different integrable conditions of a(x) and b(x).
To ensure the well-posedness of weak solutions, the classical trace is generalized, and
that the homogeneous boundary value condition can be replaced by
a(x)b(x)|x∈∂� = 0 is found for the first time.
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1 Introduction
Consider the parabolic equation with a nonlinear convective term

ut = div
(
a(x)|∇u|p–2∇u + b(x)|∇u|q–2∇u

)
+

N∑

i=1

∂fi(u, x, t)
∂xi

, (x, t) ∈ QT , (1.1)

which arises from the double phase problems, as well as from the flows of incompressible
turbulent fluids etc. [3]. In this paper, QT = � × (0, T), � is a smooth bounded domain in
R

N , p, q > 1, a(x), b(x) ∈ C(�), fi(s, x, t) is a Lipschitz function when |s| is bounded.
Though the initial-boundary value problem of the non-Newtonian fluid equation

ut = div
(|∇u|p–2∇u

)
, (x, t) ∈ QT , (1.2)

has been studied far and widely [12, 13, 24], as a generalized case, equation (1.1) has not
provoked researchers’ attention until recent years. Since the authors of [20] pointed out
that the methods used in studying the well-posedness problem of equation (1.2) are invalid
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for equation (1.1), more and more works related to equation (1.1) have appeared, one can
refer to [4–6, 8–10, 35]. First of all, let us give a simple review of [20]. If q ≥ p > 1 and

a(x) ≥ 0, b(x) ≥ 0, a(x) + b(x) > 0, x ∈ �, (1.3)

then

a(x)|∇u|p + b(x)|∇u|q ≥ c|∇u|p,

provided that |∇u| ≥ 1. By its coercivity, we can minimize, with fixed boundary values,
the integral

F(u) =
∫

�

(
a(x)|∇u|p + b(x)|∇u|q)dx

and the local minimizers in the Sobolev class W 1,p
loc (�). It is expected (however it is not

always true!) that any local minimizer u is also a weak solution to the corresponding Euler’s
first variation, i.e., the PDE in a divergence form

N∑

i=1

∂

∂xi
ai(x,∇u) = 0, x ∈ �,

where a(x,∇u) = (ai(x,∇u)), i = 1, 2, . . . , N , is given by

a(x, ξ ) =
{

pa(x)|∇u|p–2 + qb(x)|∇u|q–2}∇u,

satisfying that

∣∣a(x, ξ )
∣∣ ≤ c

(
1 + |ξ |q–1), ξ ∈R

N .

If u ∈ W 1,q
loc (�), we can obtain

∣
∣a(x,∇u)

∣
∣ ≤ M

(
1 + |∇u|q–1) ∈ L

q
q–1
loc (�) = Lq′

loc(�),

and u ∈ W 1,q
loc (�) would satisfy the (correct) weak form of the equation

∫

�

N∑

i=1

ai(x,∇u)
∂ϕ

∂xi
dx = 0, ∀ϕ ∈ W 1,q

0 (�), suppϕ ⊂ �.

But the fact is that a minimizer of the functional (1.3) is only a function of class u ∈
W 1,p

loc (�)! This is a difference (and a difficulty) with respect to equation (1.2) in which p = q.
Of course, there is a similar difficulty in the evolution problems. Emphasizing the fact

that an evolution problem is usually formulated by a differential equation and not as a min-
imization, the authors of [20] adopted a different point of view and posed this philosophi-
cal question: does a counterpart of the minimization property exist in evolution problems?
i.e., may a solution of an evolution problem be a variational minimizer? By introducing a
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new kind of weak solution (called as variational solution in [20]), such a problem has been
perfectly solved in [20].

In this paper, we study the well-posedness problem of equation (1.1) only assuming that

[
a(x) + b(x)

]|x∈∂� = 0,
[
a(x) + b(x)

]|x∈� > 0, (1.4)

or

[
a(x)b(x)

]|x∈∂� = 0,
[
a(x)b(x)

]|x∈∂� > 0. (1.5)

Since a(x) ≥ 0, b(x) ≥ 0, on the boundary ∂�, if [a(x) + b(x)]|x∈∂� = 0 implies
[a(x)b(x)]|x∈∂� = 0. But generally, [a(x)b(x)]|x∈∂� = 0 does not imply [a(x) + b(x)]|x∈∂� = 0.
Let us give some special cases when N = 2, � ⊂ R

2 is bounded. For example, we can
choose a small constant δ < 1

4 and

�1 =
{

x = (x1, x2) : x2
1 + x2

2 < 1
}

,

0 ≤ a1(x) ∈ C1(�1), and on the boundary it is defined as

a1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ∈ {1 ≥ x2 ≥ –δ, x2
1 + x2

2 = 1},
smooth connected, if x ∈ {–δ ≥ x2 ≥ –2δ, x2

1 + x2
2 = 1},

> 0, if x ∈ {–2δ > x2 ≥ –1, x2
1 + x2

2 = 1}.

While 0 ≤ b1(x) ∈ C1(�1), and on the boundary it is defined as

b1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ∈ {–1 ≤ x2 ≤ δ, x2
1 + x2

2 = 1},
smooth connected, if x ∈ {2δ ≥ x2 ≥ δ, x2

1 + x2
2 = 1},

> 0, if x ∈ {2δ < x2 ≤ 1, x2
1 + x2

2 = 1}.

Then a1(x)b1(x) = 0, x ∈ ∂�1, but

a1(x) + b1(x) > 0, x ∈ {
–2δ > x2 ≥ –1, x2

1 + x2
2 = 1

} ∪ {
2δ < x2 ≤ 1, x2

1 + x2
2 = 1

}
.

So, (1.5) is true, whether or not (1.4) is right.
For a simpler example, let

�2 =
{

x = (x1, x2) : 1 < x2
1 + x2

2 < 4
}

and

a2(x) = x2
1 + x2

2 – 1, b2(x) = 4 –
(
x2

1 + x2
2
)
.

Clearly, a2(x) + b2(x) = 3 > 0 and a2(x)b2(x) = 0 when x ∈ ∂�2. Also (1.5) is true, whether
or not (1.4) is right.

Certainly, if a(x) = 0, b(x) = 0 on the boundary ∂�, then conditions (1.4) and (1.5) can
be true at the same time.
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We would like to enlarge a bit upon this point. If a(x) and b(x) satisfy

a(x) > 0, b(x) > 0, x ∈ �, (1.6)

to study the well-posedness of the solutions of equation (1.1), besides the initial value
condition

u(x, 0) = u0(x), x ∈ �, (1.7)

similar to the usual non-Newtonian fluid equation (1.2), in the sense of the classical trace,
the boundary value condition

u(x, t) = 0, (x, t) ∈ ∂� × (0, T) (1.8)

should be imposed.
On the other hand, if a(x) and b(x) only satisfy (1.4) or (1.5), equation (1.1) may be de-

generate on the boundary ∂�, how to define a suitable boundary value condition instead
of (1.8) becomes an important problem. In fact, for a degenerate parabolic equation, the
weak solution u(x, t) may be too weak to define the trace on the boundary. For example,
the authors of [25] pointed out that if the weak solution u(x, t) only has the property

∫

�

α(x)|∇u|p dx < ∞,
∫

�

α(x)– 1
p–1 dx = +∞ (1.9)

with that

α(x) ≥ 0, x ∈ �,

then C∞
0 (QT ) is not dense in the space B = {u : u satisfies (1.9)}, and so one cannot define

the trace on ∂� in the classical way. The author of [25] gave a new way to deal with the
boundary value condition, and we will introduce the related content in the last section of
this paper.

In recent years, the author of this paper has been interested in the stability of weak
solutions to the following equation:

ut = div
(
α(x)|∇u|p(x)–2∇u

)
+ f (x, t, u,∇u), (x, t) ∈ QT , (1.10)

including the special cases of that p(x) = p is a constant, provided that

α(x) = 0, x ∈ ∂�, α(x) > 0, x ∈ �. (1.11)

If the weak solutions of (1.10) only satisfy (1.9), we also cannot define the trace on the
boundary in the classical way. To solve this problem, we have avoided to use the boundary
value condition (1.8). Instead, we have found that, to study the uniqueness of weak solution
of equation (1.10), condition (1.11) can take place of the boundary value condition (1.8)
[26, 29–32].

Actually, for a degenerate parabolic equation, how to deal with the boundary value con-
dition (1.8) has been an important problem for a long time, and there are many papers
devoted to this question, one can refer to [14, 15, 18, 21, 27, 30] etc. for the details.
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2 The definition of weak solution and the main results
In the first place, we give some basic concepts.

Assume that ν(x) is a positive measurable function defined in �. Define the weighted
Lebesgue space Lp(ν,�), 1 < p < ∞, as the space of all real-valued functions u for which

‖u‖p,ν =
(∫

�

ν(x)
∣∣u(x)

∣∣p dx
)1/p

< ∞.

Further we suppose that

ν(x) ∈ L1
loc(�),

[
ν(x)

]–1 ∈ L1/(p–1)
loc (�). (2.1)

Now, we denote by W 1,p(ν,�) the space of all real-valued functions u such that the deriva-
tive in the sense of distributions fulfills

u ∈ Lp(�) and ν1/p|∇u| ∈ Lp(�)

with the norm

‖u‖1,p,ν =
(∫

�

∣∣u(x)
∣∣p dx +

∫

�

ν(x)
∣∣∇u(x)

∣∣p dx
)1/p

. (2.2)

By (2.1) we can introduce the subspace W 1,p
0 (ν,�) of W 1,p(ν,�) as the closure of C∞

0 (�)
with respect to the norm (2.2). Moreover, conditions (2.1) imply that W 1,p(ν,�) as well as
W 1,p

0 (ν,�) are reflexive Banach spaces [19].

Lemma 2.1 Let us suppose that (2.1) holds and

[
ν(x)

]–1 ∈ Lg∗
(�) (2.3)

with some g∗ ≥ 1
p–1 . Then W 1,p(ν,�) is continuously imbedded into W 1,p1 (�), where p1 =

pg∗
g∗+1 .

Remark 2.2 By virtue of compact imbedding theorems (see [6]) and Lemma 2.1, we obtain
that the imbedding

W 1,p(ν,�) → Lq(�) (2.4)

is compact for 1 ≤ q < Np1
N–p1

if N > p1, for 1 ≤ q < ∞ if N = p1, for 1 ≤ q < ∞ if N < p1.
Therefore, if we also suppose that the number g∗ from Lemma 2.1 satisfies g∗ > N

p . then
W 1,p(μ,�) is compactly imbedded into Lp(�).

In the second place, we introduce the definition of weak solution.

Definition 2.3 If u(x, t) is a L∞(QT ) function, it satisfies

u ∈ Lp(0, T ; W 1,p(a(x),�
)) ∩ Lq(0, T ; W 1,q(b(x),�

))
, ut ∈ L2(QT ) (2.5)
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and

∫∫

QT

utϕ dx dt

+
∫∫

QT

[
(
a(x)|∇u|p–2∇u + b(x)|∇u|q–2∇u

)∇ϕ +
N∑

i=1

fi(u, x, t)ϕxi

]

dx dt

= 0, ∀ϕ ∈ C1
0(QT ),

(2.6)

then u(x, t) is said to be the weak solution of equation (1.1) with the initial boundary values
(1.7)–(1.8) provided that

lim
t→0

∫

�

(
u(x, t) – u0(x)

)
φ(x) dx = 0, ∀φ(x) ∈ C∞

0 (�), (2.7)

and the boundary value condition (1.8) is satisfied in the sense of trace.

In the third place, we give the main results.

Theorem 2.4 Suppose that q ≥ p > 2, a(x), b(x) ∈ C(�) satisfies (1.5), fi(s, x, t) is a C1 func-
tion on R× QT satisfies

∣
∣fi(uε , x, t)

∣
∣ ≤ c min

{
a(x), b(x)

}
, i = 1, 2, . . . , N , (2.8)

u0(x) satisfies

u0 ∈ L∞(�), |∇u0| ∈ Lq(�). (2.9)

If

∫

�

a(x)–g1∗ dx < ∞, g1∗ ≥ 2
p – 2

, (2.10)

or

∫

�

b(x)–g2∗ dx < ∞, g2∗ ≥ 2
q – 2

, (2.11)

then the initial-boundary value problem (1.1)–(1.7)–(1.8) has a solution.

If we do not require ut ∈ L2(QT ), instead, ut ∈ L1(0, T ; W –1,q(�)) (or a more general
Banach space), condition (2.10) or condition (2.11) may not be necessary. Also, condition
(2.8) is only used in the proof of the L∞-norm estimate of u, and we conjecture it can be
replaced by the condition

N∑

i=1

∂

∂xi
fi(·, x, t) < 0. (2.12)
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In this case, if u0(x) ≥ 0, then by the maximal value theorem, one may prove that there is
a nonnegative weak solution u(x, t) satisfying

0 ≤ u(x, t) ≤ ∥
∥u0(x)

∥
∥

L∞(�).

Moreover, by considering the minimality for the variational solution, the existence and
the regularity of weak solutions was studied in [20] when

2 ≤ p ≤ q < p + min

{
1,

4
N

}
.

However, the main aim of this paper is not to study the existence of weak solution to
equation (1.1), we do not pay attention to whether conditions (2.10)(2.11) are optimal or
not. Also, we do not try to compare Theorem 2.4 with the results of weak solutions given
in [20]. We only give a result on the existence of weak solution for the completeness of
the paper. We mainly focus on the stability of weak solutions to equation (1.1) when the
coefficients a(x) and b(x) may be degenerate on the boundary ∂�.

Theorem 2.5 Let q ≥ p > 1, a(x), b(x) ∈ C(�) satisfy

∫

�

[
a(x)– 1

p–1 + b(x)– 1
q–1

]
dx < ∞, (2.13)

fi(s, x, t) be a Lipschitz function when |s| ≤ c, i = 1, 2, . . . , N . If u(x, t) and v(x, t) are two
solutions of equation (1.1) with the same homogeneous boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂� × (0, T), (2.14)

and with different initial values u0(x) and v0(x) respectively, then

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

∣∣u0(x) – v0(x)
∣∣dx, t ∈ [0, T). (2.15)

If condition (2.13) is invalid, there are three cases
(a)

∫

�

a(x)– 1
p–1 dx < ∞,

∫

�

b(x)– 1
q–1 dx = ∞;

(b)
∫

�

a(x)– 1
p–1 dx = ∞,

∫

�

b(x)– 1
q–1 dx < ∞;

(c)
∫

�

a(x)– 1
p–1 dx = ∞,

∫

�

b(x)– 1
q–1 dx = ∞.

By Proposition 3.3, in cases (a) and (b), we still can impose the boundary value condition
(2.14) and obtain stability (2.15). If a(x), b(x) satisfy (c), we cannot impose the boundary
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value condition (2.14) generally. Fortunately, if there are some restrictions between a(x),
b(x) and fi(s, x, t), we are still able to prove the following stability of weak solutions without
(2.14).

Theorem 2.6 Let q ≥ p > 1, a(x), b(x) ∈ C1(�) satisfy (1.5), fi(s, x, t) be a Lipschitz function
when |s| ≤ c. Suppose that u(x, t) and v(x) are two solutions of (1.1) with the initial values
u0(x) and v0(x) respectively. If a(x), b(x) and fi(s, x, t) satisfy

∣
∣fi(u, x, t) – fi(v, x, t)

∣
∣ ≤ c

[
a(x)

1
p + b(x)

1
q
]|u – v|, i = 1, 2, . . . , N , (2.16)

and for η small enough,

∫

�\�η

a(x)1–p|∇a|p dx ≤ c,
∫

�\�η

a(x)b(x)–p|∇b|p dx ≤ c, (2.17)

∫

�\�η

b(x)1–q|∇b|p dx ≤ c,
∫

�\�η

b(x)a(x)–q|∇a|q dx ≤ c, (2.18)

then stability (2.15) is true.

Here, η is a small constant and �η = {x ∈ � : a(x)b(x) > η}.

Theorem 2.7 Let q ≥ p > 1, a(x), b(x) ∈ C1(�) satisfy (1.4), fi(s, x, t) be a Lipschitz function
when |s| ≤ c. Suppose that u(x, t) and v(x) are two solutions of (1.1) with the initial values
u0(x) and v0(x), respectively. If a(x), b(x) and fi(s, x, t) satisfy

∣∣fi(u, x, t) – fi(v, x, t)
∣∣

≤ c
[(

a(x) + b(x)
) 1

p +
(
a(x) + b(x)

) 1
q
]|u – v|, i = 1, 2, . . . , N , (2.19)

and for η small enough,

1
η

(∫

�\Dη

∣
∣∇(

a(x) + b(x)
)1+ 1

p
∣
∣p dx

) 1
p

≤ c, (2.20)

1
η

(∫

�\Dη

∣∣∇(
a(x) + b(x)1+ 1

q
)∣∣q dx

) 1
q

≤ c, (2.21)

then stability (2.15) is true.

Here, η is a small constant and Dη = {x ∈ � : a(x) + b(x) > η}. There is an essential differ-
ence between Theorem 2.6 and Theorem 2.7. In Theorem 2.6, a(x), b(x) ∈ C1(�) satisfy
(1.5), and so

a(x) > 0, b(x) > 0, x ∈ �;

while in Theorem 2.7 a(x), b(x) ∈ C1(�) satisfy (1.4), and so

a(x) = 0, b(x) = 0, x ∈ ∂�.
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But it is possible that there is x0 ∈ �,

a(x0) + b(x0) > 0, a(x0)b(x0) = 0. (2.22)

Naturally, condition (2.16) (or (2.19)) may not be necessary. In the last section of this
paper, by giving a generalization of the classical trace of u ∈ BV (QT ), we will use a reason-
able partial boundary value condition instead of condition (2.16) (or (2.19)) to study the
stability of weak solutions.

3 The existence of weak solutions
In this section, we want to prove Theorem 2.4. Let us first consider the following Cauchy–
Dirichlet problem:

uεt – div
((

a(x) + ε
)(|∇uε|2 + ε

) p–2
2 ∇uε +

(
b(x) + ε

)(|∇uε|2 + ε
) q–2

2 ∇uε

)

–
N∑

i=1

∂fi(uε , x, t)
∂xi

= 0, (x, t) ∈ QT ,

(3.1)

uε(x, t) = 0, (x, t) ∈ ∂� × (0, T), (3.2)

uε(x, 0) = uε0(x), x ∈ �, (3.3)

where uε0 ∈ C∞
0 (�), ‖uε0‖L∞(�) ≤ ‖u0‖L∞(�), |∇uε0| converges to |∇u0(x)| in Lq(�).

Since the convection function fi(s, x, t) is a C1 function on R × QT , i = 1, 2, . . . , N ,
by the classical existence theory for parabolic equations [17], similar to [8], we know
there is a unique weak solution uε ∈ C0([0, T]; L2(�)) ∩ Lq(0, T ; W 1,q

0 (�)) with ∂tuε ∈
Lq′ (0, T ; W –1,q′ (�)). Now, let us show that

‖uε‖L∞(QT ) ≤ c.

Lemma 3.1 Assume that a1, b1, λ are positive constants, where λ > 1
2 + b1

a1
. Define

ϕ(s) =

⎧
⎨

⎩
eλs–1 s ≥ 0,

–e–λs + 1 s ≤ 0.
(3.4)

Then the following properties hold:
1. For any s ∈R, we have

∣∣ϕ(s)
∣∣ ≥ λ|s|, a1ϕ

′(s) – b1
∣∣ϕ(s)

∣∣ ≥ a1

2
eλ|s|. (3.5)

2. For any s ≥ d, there hold constants d ≥ 0, M > 1, we have

ϕ′(s) ≤ λM
[
ϕ

(
s
l

)]l

, ϕ(s) ≤ M
[
ϕ

(
s
l

)]l

, (3.6)

where l > 1.
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3. Let 
(s) =
∫ s

0 ϕ(σ ) dσ . For any s ≥ 0, if l > 2, here holds constant c∗ > 0, we have


(s) ≥ c∗
[
ϕ

(
s
l

)]l

. (3.7)

If 1 < l < 2, then there exist d ≥ 0 and c∗ = c∗(q, d) such that

⎧
⎨

⎩

(s) ≥ c∗[ϕ( s

l )]l, ∀s ≥ d,


(s) ≥ c∗[ϕ( s
l )]2, ∀0 ≤ s ≤ d.

(3.8)

Lemma 3.1 can be found in [16].

Lemma 3.2 Assume that uε is a weak solution of (3.1), then there is a constant c (which is
independent of ε) such that

‖uε‖L∞(QT ) ≤ ‖u0‖L∞(�) + c. (3.9)

Proof We only give the proof provided that condition (2.10) is true. When condition (2.11)
is true, this lemma can be verified in a similar way. Let k be a real number and ‖u0‖L∞(�) ≤
k, the function ϕ be defined as (3.4). Define

Gk(uε) =

⎧
⎪⎪⎨

⎪⎪⎩

uε – k, uε > k,

uε + k, uε < –k,

0, |uε| ≤ k.

We can see ϕ(Gk(uε)) ∈ V ∩ L∞(QT ). So, for any τ ∈ [0, T], we can choose v =
ϕ(Gk(uε))χ[0,τ ] as a test function (where χA is an eigenfunction on the set A). At the
same time, we know that vxi = χ[0,τ ]χ{|uε| > k}ϕ′(Gk(uε))uεxi and ∇v = χ[0,τ ]χ{|uε| >
k}ϕ′(Gk(uε))∇uε . Since fi(uε , x, t) satisfies (2.8), we have

∫ τ

0

〈
uεt ,ϕ

(
Gk(uε)

)〉
dt

+
∫ τ

0

∫

�

[(
b(x) + ε

)(|∇uε|2 + ε
) q–2

2 |∇uε|2

+
(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 |∇uε|2
]

· ϕ′(Gk(uε)
)
χ

{|uε| > k
}

dx dt

= –
N∑

i=1

∫ τ

0

∫

�

fi(uε , x, t)χ
{|uε| > k

}
ϕ′(Gk(uε)

)
uεxi dx dt

≤
∫ τ

0

∫

�

[
1
p

a(x)|∇uε|p +
1
q

a(x)
]
χ

{|uε| > k
}
ϕ′(Gk(uε)

)
dx dt, (3.10)

where 〈uεt ,ϕ(Gk(uε))〉 is the dyadic interaction between Lp(0, T ; W 1,p
0 (�)) and

Lp′ (0, T ; W –1,p′ (�)).
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Let Ak(t) = {x ∈ � : |uε(x, t)| > k} depend on k. We have

∫ τ

0

〈
uεt ,ϕ

(
Gk(uε)

)〉
dt =

∫

�



(
Gk(uε)

)
(τ ) dx –

∫

�



(
Gk(uε0)

)
dx

=
∫

Ak (τ )



(
Gk(uε)

)
(τ ) dx –

∫

Ak (0)



(
Gk(uε0)

)
dx

=
∫

Ak (τ )

(Gk(uε)(τ ) dx.

(3.11)

Substituting (3.11) into (3.10), using Lemma 2.1, we can deduce that

∫

Ak (τ )



(
Gk(uε)

)
(τ ) dx +

∫ τ

0

∫

Ak (t)
|∇uε|pϕ′ dx dt

≤
∫

Ak (τ )



(
Gk(uε)

)
(τ ) dx +

∫ τ

0

∫

Ak (t)
a(x)|∇uε|pϕ′ dx dt

+
∫ τ

0

∫

Ak (t)
b(x)|∇uε|qϕ′ dx dt

≤ c
∫

Ak (τ )



(
Gk(uε)

)
(τ ) dx

+ c
∫ τ

0

∫

Ak (t)

[(
b(x) + ε

)(|∇uε|2 + ε
) q–2

2 |∇uε|2

+
(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 |∇uε|2
]
ϕ′ dx dt

≤ c
∫ τ

0

∫

Ak (t)
a(x)ϕ′(Gk(uε)

)
dx dt.

(3.12)

Let ωk = ϕ( |Gk (uε)|
p ). Then

∫ τ

0

∫

Ak (t)
|∇uε|pϕ′ dx dt ≥ 1

2

∫ τ

0

∫

Ak (t)

∣∣eλ
|Gk (uε )|

p ∇u
∣∣p dx dt

=
1
2

∫ τ

0

∫

Ak (t)

∣
∣∣
∣
p
λ

∣
∣∣
∣

p

|∇ωk|p dx dt

≥ 1
2

(
1
λ

)p ∫ τ

0

∫

Ak (t)
|∇ωk|p dx dt.

(3.13)

By definition we know that Ak(t)\Ak+d(t) = {x ∈ � : k < |uε(x, t)| ≤ k + d}. So, in the set
of Ak(t)\Ak+d(t), we get 0 < |Gk(uε)| ≤ d, ϕ′(Gk(uε)) = λeλ|Gk (uε)| ≤ λeλd . Combining (3.6)
with (3.12) and (3.13), we have

∫

Ak (τ )



(
Gk(uε)

)
(τ ) dx +

1
2

(
1
λ

)p ∫ τ

0

∫

Ak (t)
|∇ωk|p dx dt

≤ cλ
∫ τ

0

∫

Ak+d(t)
|wk|p dx dt + cλeλd

∫ τ

0

∫

Ak (t)Ak+d(t)
dx dt.

(3.14)
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Since p ≥ 2, by (3.7), then

∫

Ak (τ )



(
Gk(uε)

)
(τ ) dx ≥ c∗

∫

Ak (τ )
|ωk|p–

dx. (3.15)

Plugging (3.15) into (3.14) and taking the supremum for τ ∈ [0, t1], with t1 ≤ T to be de-
termined later, we have

sup
τ∈[0,t1]

∫

Ak (τ )
|ωk|p–

dx +
1
2

(
1
λ

)p ∫ t1

0

∫

Ak (t)
|∇ωk|p dx dt

≤ cλ
∫ τ

0

∫

Ak+d(t)
|wk|p dx dt + c1λeλd

∫ τ

0

∫

Ak (t)Ak+d(t)
dx dt.

(3.16)

Let ψk =
∫ t1

0 μ(Ak(t)) dt. By choosing

c1
(
t1μ(�)

) p
N+p ≤ 1

2
, (3.17)

where μ(�) is the Lebesgue measure of �. Now, using the embedding inequality [16, 24],
we can deduce that

(∫ t1

0

∫

Ak (t)
|ωk|p N+p

N dx dt
) N

N+p ≤ γ

(
sup

τ∈[0,t1]

∫

Ak (τ )
|ωk|p dx +

∫ t1

0

∫

Ak (t)
|∇ω|p dx dt

)
,

where γ is a constant independent of t1, similar to the proof of Theorem 2.2 in [16], it
follows from (3.16) that

ψl ≤ c

(l – k)
p(N+p)

N
ψ

(1– 1
r ) N+p

N
k , (3.18)

where r > N+p
N is a constant, and so

(
1 –

1
r

)
N + p

N
> 1.

Therefore, thanks to the iteration lemma in [21], from (3.18), we eventually obtain that

ψ(‖u0‖L∞(�)+D) = 0,

where D > 0 is a constant depending only on p, N , t1, r, �. This proves that, for fixed λ

validating Lemma 2.1,

∥
∥u(x, t)

∥
∥

L∞(Qt1 ) ≤ ‖u0ε‖L∞(�) + D. (3.19)

Finally, we partition the time interval [0, T] into finite subintervals [0, t1], [t1, t2], . . . ,
[tn–1, T] such that the conditions similar to (3.17) are available for each subinterval [ti, ti+1],
then we deduce an inequality of the form (3.19). Eventually, we have conclusion (3.9). �
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Proof of Theorem 2.4 Multiplying (3.1) by uε and integrating it over QT yield

1
2

∫

�

u2
ε dx +

∫∫

QT

[(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 |∇uε|2

+
(
b(x) + ε

)(|∇uε|2 + ε
) q–2

2 |∇uε|2
]

dx dt

+
N∑

i=1

∫∫

QT

∂fi(uε , x, t)
∂xi

uε dx dt

=
1
2

∫

�

u2
ε0 dx. (3.20)

Since fi(s, x, t) is a Lipschitz function when |s| ≤ c, ∂fi(s,x,t)
∂s exists almost everywhere and is

bounded. If
∫
�

a(x)– 2
p–2 dx < ∞, then

∫
�

a(x)– 1
p–1 dx < ∞, and

∣∣
∣∣

∫

�

∂fi(uε , x, t)
∂xi

uε dx
∣∣
∣∣ ≤

∫

�

∣∣
∣∣
∂fi(s, x, t)

∂s

∣∣
∣∣
s=uε

uεxi

∣∣
∣∣|uε|dx + c

≤ c
∫

�

∣
∣∣
∣
∂fi(s, x, t)

∂s

∣
∣∣
∣
s=uε

uεxi

∣
∣∣
∣dx + c

≤ 1
4

∫

�

a(x)|∇uε|p dx + c
∫

�

a(x)– 1
p–1 dx + c

≤ 1
4

∫

�

a(x)|∇uε|p dx + c.

Or similarly, if
∫
�

b(x)– 2
q–2 dx < ∞, we know that

∫
�

b(x)– 1
q–1 dx < ∞ and

∣
∣∣∣

∫

�

∂fi(uε , x, t)
∂xi

uε dx
∣
∣∣∣ ≤

∫

�

∣
∣∣∣
∂fi(s, x, t)

∂s

∣
∣∣∣
s=uε

uεxi

∣
∣∣∣|uε|dx + c

≤ c
∫

�

∣
∣∣
∣
∂fi(s, x, t)

∂s

∣
∣∣
∣
s=uε

uεxi

∣
∣∣
∣dx + c

≤ 1
4

∫

�

b(x)|∇uε|q dx + c
∫

�

b(x)– 1
q–1 dx + c

≤ 1
4

∫

�

b(x)|∇uε|q dx + c.

Accordingly, based on condition (2.10) or condition (2.10), by (3.20), we obtain

∫

�

u2
ε dx +

∫∫

QT

a(x)|∇uε|p dx dt +
∫∫

QT

b(x)|∇uε|q dx dt

≤
∫

�

u2
ε dx +

∫∫

QT

(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 |∇uε|2 dx dt

+
∫∫

QT

(
b(x) + ε

)(|∇uε|2 + ε
) q–2

2 |∇uε|2 dx dt

≤ c.

(3.21)
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Let �1 ⊂⊂ �. Then there exists a constant c(�1) such that

a(x) ≥ c(�1) > 0, b(x) ≥ c(�1) > 0.

By q ≥ p > 2, (3.21) yields

∫ T

0

∫

�1

|∇uε|2 dx dt

≤ c
(∫ T

0

∫

�1

|∇uε|p dx dt
) 2

p

≤ c(�1)
[(∫ T

0

∫

�1

a(x)|∇uε|p dx dt
) 2

p
+

(∫ T

0

∫

�1

b(x)|∇uε|q dx dt
) 2

q
]

≤ c.

(3.22)

Multiplying (2.9) by uεt , we have

∫∫

QT

|uεt|2 dx dt

=
N∑

i=1

∫∫

QT

∂

∂xi

[(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 uεxi

+
(
b(x) + ε

)(|∇uε|2 + ε
) q–2

2 uεxi

]
uεt dx dt

+
N∑

i=1

∫∫

QT

uεt
∂fi(uε , x, t)

∂xi
dx dt.

(3.23)

For every term in (1.7), firstly, we have

N∑

i=1

∫∫

QT

∂

∂xi

((
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 uεxi

)
uεt dx dt

= –
N∑

i=1

∫∫

QT

(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 uεxi uεxit dx dt

= –
1
2

N∑

i=1

∫∫

QT

(
a(x) + ε

) d
dt

∫ |∇uε |2+ε

0
s

p–2
2 ds dx dt

(3.24)

and

N∑

i=1

∫∫

QT

∂

∂xi

((
b(x) + ε

)(|∇uε|2 + ε
) q–2

2 uεxi

)
uεt dx dt

= –
N∑

i=1

∫∫

QT

(
b(x) + ε

)(|∇uε|2 + ε
) q–2

2 uεxi uεxit dx dt

= –
1
2

N∑

i=1

∫∫

QT

(
b(x) + ε

) d
dt

∫ |∇uε |2+ε

0
s

q–2
2 ds dx dt.

(3.25)
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Secondly, if
∫
�

a(x)– 2
p–2 (x) dx < ∞, by the Hölder inequality, we have

∫∫

QT

|∇uε|2 dx dt

= c
∫∫

QT

a(x)– 2
p a(x)

2
p |∇uε|2 dx dt

≤ c
(∫∫

QT

a(x)– 2
p–2 dx dt

) p–2
p

(∫∫

QT

a(x)|∇uε|p dx dt
) 2

p

≤ c.

(3.26)

Similarly, if
∫
�

b(x)– 2
q–2 (x) dx < ∞, we have

∫∫

QT

|∇uε|2 dx dt

= c
∫∫

QT

b(x)– 2
q b(x)

2
q |∇uε|2 dx dt

≤ c
(∫∫

QT

b(x)– 2
q–2 dx dt

) q–2
q

(∫∫

QT

b(x)|∇uε|q dx dt
) 2

q

≤ c.

(3.27)

Thirdly, we have

N∑

i=1

∫∫

QT

uεt
∂fi(uε , x, t)

∂xi
dx dt

≤
N∑

i=1

∫∫

QT

∣∣fiuε (uε , x, t)
∣∣|uεxi ||uεt|dx dt

+
N∑

i=1

+
∫∫

QT

∣∣fixi (uε , x, t)
∣∣|uεt|dx dt

≤ 1
2

∫∫

QT

|uεt|2 dx dt + c
∫∫

QT

|∇uε|2 dx dt + c.

(3.28)

Combining inequalities (3.24)–(3.28) with (3.23), we can extrapolate that

∫∫

QT

|uεt|2 dx dt +
∫∫

QT

(
a(x) + ε

) d
dt

∫ |∇uε |2+ε

0
s

p–2
2 ds dx dt

+
∫∫

QT

b(x)
d
dt

∫ |∇uε |2+ε

0
s

q–2
2 ds dx dt

≤ c,
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and so
∫∫

QT

|uεt|2 dx dt

≤ c + c
∫

�

(
a(x) + ε

) ∫ |∇uε0|2+ε

0
s

p–2
2 ds dx

+ c
∫

�

(
b(x) + ε

)∫ |∇uε0|2+ε

0
s

q–2
2 ds dx

≤ c.

(3.29)

According to the weak convergence theory, by (3.20), (3.21), (3.22), and (3.29), there exist

a function u and two N-dimensional vector functions
−→
ζ = (ζ1, . . . , ζN ) and

−→
ξ = (ξ1, . . . , ξN )

such that

u ∈ L∞(QT ), |ζi| ∈ L
p

p–1 (QT ), |ξi| ∈ L
q

q–1 (QT ),

uε → u, a.e. in QT ,

uε ⇀ ∗u, in L∞(QT ),

fi(uε , x, t) → fi(u, x, t), a.e. in QT ,

a(x)|∇uε|p–2uεxi ⇀ ζi, in L
p

p–1 (QT ),

b(x)|∇uε|q–2uεxi ⇀ ξi, in L
q

q–1 (QT ).

At last, it is not difficult to show that

lim
ε→0

∫∫

QT

(
a(x) + ε

)(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 |∇uε|2∇uε∇ϕ dx dt

+ lim
ε→0

∫∫

QT

(
b(x) + ε

)(
a(x) + ε

)(|∇uε|2 + ε
) q–2

2 |∇uε|2∇uε∇ϕ dx dt

=
∫∫

QT

(
−→
ζ + ξ ) · ∇ϕ dx dt

=
∫∫

QT

[
a(x)|∇u|p–2∇u + b(x)|∇u|q–2∇u

]∇ϕ dx dt

for any given ϕ ∈ C1
0(QT ). So u ∈ Lp(0, T ; W 1,p

loc (�)) ∩ Lq(0, T ; W 1,q
loc (�)), and (2.6) is true.

In addition, we can choose the test function ϕ(x, t) = χ[t1,t2]φ(x) in which φ(x) ∈ C∞
0 (�)

and χ[t1,t2] is the characteristic function of [t1, t2] ⊂ (0, T). Then

∫ t2

t1

∫

�

[
(
a(x)|∇u|p–2∇u + b(x)|∇u|q–2∇u

)∇φ +
N∑

i=1

fi(x, t, u)φ(x)

]

dx dt

=
∫

�

(
u(x, t2) – u(x, t1)

)
φ(x) dx.

Let t = t2 and t1 → 0. Then we have (2.7). Moreover, by the following proposition, u can
be defined as the trace on the boundary ∂�, u is a solution of equation (1.1) with the
initial-boundary value conditions (1.7)–(1.8). Theorem 2.4 is proved. �
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Proposition 3.3 If u(x, t) is a weak solution of equation (1.1) with the initial value condi-
tion (1.4) and one of the following conditions is true:

(i)

∫

�

a(x)– 1
p–1 dx < ∞ (3.30)

(ii)

∫

�

b(x)– 1
q–1 dx < ∞, (3.31)

then
∫

�

|∇u|dx ≤ c(T). (3.32)

Proof If (i) is true, then

∫

�

|∇u|dx =
∫

{x∈�:a(x)
1

p–1 |∇u|≤1}
|∇u|dx

+
∫

{x∈�:a
1

p–1 |∇u|>1}
|∇u|dx

≤ c
∫

�

a(x)– 1
p–1 dx +

∫

�

a(x)|∇u|p dx + c

≤ c.

Similarly, if (ii) is true, we also have (3.32). �

4 The stability of the initial-boundary value problem
For small η > 0, we introduce the following functions:

Sη(s) =
∫ s

0
hη(τ ) dτ , hη(s) =

2
η

(
1 –

|s|
η

)

+
, Hη(s) =

∫ s

0
Sη(τ ) dτ .

Obviously, we have |shη(s)| ≤ 1 and

lim
η→0

Sη(s) = sgn s, lim
η→0

shη(s) = 0, lim
η→0

Hη(s) = |s|, s ∈ (–∞, +∞). (4.1)

Proposition 4.1 Let u(x, t) and v(x, t) be two solutions of equation (1.1) with the homoge-
neous value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂� × (0, T), (4.2)

and with different initial values u0(x) and v0(x) respectively. If p > 1, (3.30) or (3.31) is true,
and

∣∣fi(u, x, t) – fi(v, x, t)
∣∣ ≤ c

[
a(x)

1
p + b(x)

1
q
]|u – v|, i = 1, 2, . . . , N , (4.3)
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then

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx, t ∈ [0, T).

Proof Since (3.30) or (3.31) is true, Proposition 3.3 implies that the boundary value condi-
tion (4.2) is true in the sense of trace. Choose ϕ = χ[τ ,s]Sη(u – v) as the test function, where
χ[τ ,s] is the characteristic function of [τ , s] ⊂ (0, T). Then

∫ s

τ

∫

�

Sη(u – v)
∂(u – v)

∂t
dx dt

+
∫ s

τ

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇(u – v)hη(u – v) dx dt

+
∫ s

τ

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇(u – v)hη(u – v) dx dt

+
N∑

i=1

∫ s

τ

∫

�

[
fi(u, x, t)) – fi(v, x, t)

]
(u – v)xi hη(u – v) dx dt

= 0.

(4.4)

By that
∫∫

QT
|ut|dx dt ≤ c,

∫∫
QT

|vt|dx dt ≤ c, we can use the dominated convergence
theorem to obtain

lim
η→0

∫ s

τ

∫

�

Sη(u – v)
∂(u – v)

∂t
dx dt

= lim
η→0

∫

�

[
Hη(u – v)(x, s) – Hη(u – v)(x, τ )

]
dx

=
∫

�

|u – v|(x, s) dx –
∫

�

|u – v|(x, τ ) dx.

(4.5)

Also, since a p-Laplacian operator is a monotone operator, then we have

∫ s

τ

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇(u – v)hη(u – v) dx dt ≥ 0 (4.6)

and

∫ s

τ

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇(u – v)hη(u – v) dx dt ≥ 0. (4.7)

Moreover, since fi(s, x, t) satisfies (4.3), we have

lim
η→0

N∑

i=1

∣
∣∣
∣

∫ s

τ

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xi hη(u – v) dx dt

∣
∣∣
∣

≤ c lim
η→0

∫ s

τ

∫

�

∣
∣hη(u – v)(u – v)

∣
∣[a(x)

1
p + b(x)

1
q
]∣∣∇(u – v)

∣
∣dx dt

≤ c lim
η→0

∫ s

τ

∫

�

∣∣hη(u – v)(u – v)
∣∣a(x)

1
p
∣∣∇(u – v)

∣∣dx dt
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+ c lim
η→0

∫ s

τ

∫

�

∣∣hη(u – v)(u – v)
∣∣b(x)

1
q
∣∣∇(u – v)

∣∣dx dt

≤ c lim
η→0

(∫ s

τ

∫

�

a(x)
(|∇u|p + |∇v|p)dx dt

) 1
p

(4.8)

·
(∫ s

τ

∫

�

∣∣(u – v)hη(u – v)
∣∣

p
p–1 dx dt

) p–1
p

+ c lim
η→0

(∫ s

τ

∫

�

b(x)
(|∇u|q + |∇v|q)dx dt

) 1
q

·
(∫ s

τ

∫

�

∣∣(u – v)hη(u – v)
∣∣

q
q–1 dx dt

) q–1
q

= 0.

Finally, let η → 0 in (4.4). By (4.5)–(4.8), we have
∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x, τ ) – v(x, τ )
∣∣dx.

Let τ → 0. Then
∫

�

∣
∣u(x, s) – v(x, s)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx.

Proposition 4.1 is proved. �

Proof of Theorem 2.5 Comparing with Proposition 4.1, Theorem 2.5 is not with condition
(4.3). By checking the proof of Proposition 4.1, we only need to show

lim
η→0

∣
∣∣
∣

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xi hη(u – v) dx

∣
∣∣
∣ = 0 (4.9)

without condition (4.3). We give the details below
∫

�

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xi hη(u – v) dx

=
∫

{�:|u–v|<η}

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xi hη(u – v) dx.

(4.10)

When the set {� : |u – v| = 0} is with zero measure, since |fi(u, x, t) – fi(v, x, t)| ≤ c, we
have

lim
η→0

∣∣
∣∣

∫

{�:|u–v|<η}

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xi hη(u – v) dx

∣∣
∣∣

=
1
2

lim
η→0

∣∣∣
∣

∫

{�:|u–v|<η}

[
fi(u, x, t) – fi(v, x, t)

]

· [a(x)
1

p–1 a(x)– 1
p–1 + b(x)

1
q–1 b(x)– 1

q–1
]
(u – v)xi hη(u – v) dx

∣∣∣
∣

≤ c
(∫

{�:|u–v|=0}

(
a(x)

(|∇u|p + |∇vp)|)p dx
) 1

p
(∫

�

a(x)– 1
p–1 dx

) p–1
p
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+ c
(∫

{�:|u–v|=0}

(
b(x)

(|∇u|q + |∇v|q))q dx
) 1

q
(∫

�

b(x)– 1
q–1 dx

) q–1
q

= 0.

When the set {� : |u – v| = 0} is with a positive measure, by (2.13), [a(x)– 1
p–1 + b(x)– 1

p–1 ] ∈
L1(�), we have

lim
η→0

∣
∣∣
∣

∫

{�:|u–v|<η}

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xi hη(u – v) dx

∣
∣∣
∣

≤ c
(∫

{�:|u–v|=0}

(
a(x)

1
p |∇u – ∇v|)p dx

) 1
p
(∫

�

a(x)– 1
p–1 dx

) p–1
p

+ c
(∫

{�:|u–v|=0}

(
b(x)

1
q |∇u – ∇v|)q dx

) 1
q
(∫

�

b(x)– 1
q–1 dx

) q–1
q

= 0.

Thus, we have the conclusion. �

5 Proof of Theorems 2.6

Proof of Theorems 2.6 Since a(x)b(x) = 0, x ∈ ∂�, we can define �η = {x ∈ � : a(x)b(x) > η},

φη(x) =

⎧
⎨

⎩
1, if x ∈ �η,
a(x)b(x)

η
, if x ∈ � \ �η,

(5.1)

and choose χ[τ ,s]φη(x)Sη(u – v) as the test function. Thus

∫ s

τ

∫

�

φηSη(u – v)
∂(u – v)

∂t
dx dt

+
∫ s

τ

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇(u – v)hη(u – v)φη(x) dx dt

+
∫ s

τ

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)
(u – v)Sη(u – v)∇φη dx dt

+
∫ s

τ

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇(u – v)hη(u – v)φη(x) dx dt

+
∫ s

τ

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)
(u – v)Sη(u – v)∇φη dx dt

+
N∑

i=1

∫ s

τ

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
φηxi Sη(u – v) dx dt

+
N∑

i=1

∫ s

τ

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xiφηhη(u – v) dx dt

= 0.

(5.2)
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At first, we have

lim
η→0

∫ s

τ

∫

�

φη(x)Sη(u – v)
∂(u – v)

∂t
dx dt

= lim
η→0

∫ s

τ

∫

�

∂[φη(x)Hη(u – v)]
∂t

dx dt (5.3)

=
∫

�

|u – v|(x, s) dx –
∫

�

|u – v|(x, τ ) dx.

Secondly, we have

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇(u – v)hη(u – v)φη(x) dx ≥ 0 (5.4)

and

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇(u – v)hη(u – v)φη(x) dx ≥ 0. (5.5)

Thirdly, we have

∇φη(x) =

⎧
⎨

⎩
0, if x ∈ �η,
1
η
∇(a(x)b(x)), if x ∈ � \ �η,

condition (2.17) yields

∣∣
∣∣

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇φηSη(u – v) dx
∣∣
∣∣

=
∣∣
∣∣

∫

�\�η

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇φηSη(u – v) dx
∣∣
∣∣

≤ 1
η

∫

�\�η

a(x)
(|∇u|p–1 + |∇v|p–1)∇(

a(x)b(x)
)
Sη(u – v)|dx

≤ c
η

(∫

�\�η

[
a(x)

(|∇u|p + |∇v|p)]dx
) p–1

p

·
(∫

�\�η

a(x)
∣∣∇(

a(x)b(x)
)∣∣p dx

) 1
p

≤ c
[(∫

�\�η

a(x)|∇u|p dx
) p–1

p
+

(∫

�\�η

a(x)|∇v|p dx
) p–1

p
]

·
[(∫

�\�η

a(x)1–p|∇a|p dx
) 1

p
+

(∫

�\�η

a(x)b(x)–p|∇b|p dx
) 1

p
]

≤ c
[(∫

�\�η

a(x)|∇u|p dx
) p–1

p
+

(∫

�\�η

a(x)|∇v|p dx
) p–1

p
]

,

(5.6)
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which goes to zero as η → 0. Similarly, by (2.18), we have

∣∣
∣∣

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇φηSη(u – v) dx
∣∣
∣∣

=
∣
∣∣∣

∫

�\�η

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇φηSη(u – v) dx
∣
∣∣∣

≤ 1
η

∫

�\�η

b(x)
(|∇u|q–1 + |∇v|q–1)∇(

a(x)b(x)
)
Sη(u – v)|dx

≤ c
η

(∫

�\�η

[
b(x)

(|∇u|q + |∇v|q)]dx
) q–1

q
(∫

�\�η

b(x)
∣
∣∇(

a(x)b(x)
)∣∣q dx

) 1
q

≤ c
[(∫

�\�η

b(x)|∇u|q dx
) q–1

q
+

(∫

�\�η

b(x)|∇v|q dx
) q–1

q
]

·
[(∫

�\�η

b(x)1–q|∇b|q dx
) 1

q
+

(∫

�\�η

b(x)a(x)–q|∇a|q dx
) 1

q
]

≤ c
[(∫

�\�η

b(x)|∇u|q dx
) q–1

q
+

(∫

�\�η

b(x)|∇v|q dx
) q–1

q
]

,

(5.7)

which goes to zero as η → 0.
Fourthly, since u(x, t), v(x, t) ∈ L∞(QT ), condition (2.17) yields

lim
η→0

∣
∣∣
∣

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
φηxi Sη(u – v) dx

∣
∣∣
∣

= lim
η→0

∣∣
∣∣

∫

�\�η

[
fi(u, x, t) – fi(v, x, t)

]
φηxi Sη(u – v) dx

∣∣
∣∣

≤ lim
η→0

1
η

∫

�\�η

[
a(x)

1
p + b(x)

1
q
]∣∣(a(x)b(x)

)
xi

∣
∣
∣
∣Sη(u – v)(u – v)

∣
∣dx

≤ lim
η→0

(∫

�\�η

(
a(x)1–p|∇a|p + a(x)b(x)–p|∇b|p)dx

) 1
p

×
(∫

�

∣
∣Sη(u – v)(u – v)

∣
∣

p
p–1 dx

) p–1
p

+ lim
η→0

(∫

�\�η

(
b(x)1–q|∇b|q + b(x)a(x)–q|∇a|q)dx

) 1
q

×
(∫

�

∣
∣Sη(u – v)(u – v)

∣
∣

q
q–1 dx

) q–1
q

≤ c
(∫

�

|u – v|dx
) p–1

p
+ c

(∫

�

|u – v|dx
) q–1

q
.

(5.8)

Moreover, by condition (2.16), we have

lim
η→0

N∑

i=1

∫ s

τ

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xiφηhη(u – v) dx dt = 0. (5.9)
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Finally, let η → 0 in (5.2). Then

∫

�

∣
∣u(x, s) – v(x, s)

∣
∣dx ≤

∫

�

∣
∣u(x, τ ) – v(x, τ )

∣
∣dx + c

(∫ t

0

∫

�

|u – v|dx dt
)k

.

where k < 1.
By the generalized Gronwall inequality [28], we can extrapolate

∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤ c

∫

�

∣∣u(x, τ ) – v(x, τ )
∣∣dx.

Letting τ → 0, we have the stability (2.15). �

Corollary 5.1 Suppose that a(x) and b(x) satisfy condition (a) or condition (b), and satisfy
(2.17)(2.18). Let q ≥ p > 1, a(x), b(x) ∈ C1(�) satisfy (1.5), and when |s1|, |s2| ≤ c, there is a
nonnegative continuous function gi(x) such that

∣∣fi(x)(s1, x, t) – fi(s2, x, t)
∣∣ ≤ cgi(x), i = 1, 2, . . . , N . (5.10)

If u(x, t) and v(x, t) are two solutions of (1.1) with the initial values u0(x) and v0(x) respec-
tively and with the homogeneous boundary value condition

u(x, t) = v(x, t) = 0, (x, t) = �pq × (0, T), (5.11)

then stability (2.15) is true, where

�pq =

{

x ∈ ∂� :
N∑

i=1

(
a(x)b(x)

)
xi

gi(x) = 0

}

.

Proof Similar to the proof of Theorem 2.6, we have (5.2)–(5.7). Since a(x) and b(x) sat-
isfy condition (a) or condition (b), Proposition 3.3 means that the partial boundary value
condition (5.11) is true in the classical sense of the trace. Then by condition (2.17) it yields

lim
η→0

∣∣
∣∣∣

∫

�

N∑

i=1

[
fi(u, x, t) – fi(v, x, t)

]
φηxi Sη(u – v) dx

∣∣
∣∣∣

= lim
η→0

∣
∣∣
∣∣

∫

�\�η

N∑

i=1

[
fi(u, x, t) – fi(v, x, t)

]
φηxi Sη(u – v) dx

∣
∣∣
∣∣

≤ c lim
η→0

1
η

∫

�\�η

N∑

i=1

∣
∣(a(x)b(x)

)
xi

gi(x)
∣
∣
∣
∣Sη(u – v)(u – v)

∣
∣dx

= c
∫

∂�

N∑

i=1

∣
∣(a(x)b(x)

)
xi

gi(x)
∣
∣|u – v|dx

= 0.

(5.12)

The remaining process of the proof can be completed as that of Theorem 2.6. �
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6 Proof of Theorems 2.7
In this section, we use a similar method as that used in the proof of Theorem 2.6 to prove
Theorem 2.7.

Proof of Theorem 2.7 Let u(x, t) and v(x, t) be two weak solutions of equation (1.1) with
the initial values u0(x) and v0(x) respectively. Different from the proof of Theorem 2.6),
a(x) and b(x) may satisfy (2.22).

Since a(x) = b(x) = 0 when x ∈ ∂�, but a(x) + b(x) > 0 when x ∈ �, we define Dη = {x ∈
� : a(x) + b(x) > η} and let

ϕη(x) =

⎧
⎨

⎩
1, if x ∈ Dη,
a(x)+b(x)

η
, if x ∈ � \ Dη.

(6.1)

By choosing χ[τ ,s]ϕη(x)Sη(u – v) as the test function, we have

∫ s

τ

∫

�

ϕηSη(u – v)
∂(u – v)

∂t
dx dt

+
∫ s

τ

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇(u – v)hη(u – v)ϕη(x) dx dt

+
∫ s

τ

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)
(u – v)Sη(u – v)∇ϕη dx dt

+
∫ s

τ

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇(u – v)hη(u – v)ϕη(x) dx dt

+
∫ s

τ

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)
(u – v)Sη(u – v)∇ϕη dx dt

+
N∑

i=1

∫ s

τ

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
ϕηxi Sη(u – v) dx dt

+
N∑

i=1

∫ s

τ

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xiϕηhη(u – v) dx dt

= 0.

(6.2)

Directly, we have the following three formulas similar to (5.3)–(5.5):

lim
η→0

∫ s

τ

∫

�

ϕη(x)Sη(u – v)
∂(u – v)

∂t
dx dt

= lim
η→0

∫ s

τ

∫

�

∂[ϕη(x)Hη(u – v)]
∂t

dx dt

=
∫

�

|u – v|(x, s) dx –
∫

�

|u – v|(x, τ ) dx,

(6.3)

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇(u – v)hη(u – v)ϕη(x) dx ≥ 0 (6.4)

and
∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇(u – v)hη(u – v)ϕη(x) dx ≥ 0. (6.5)
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Moreover, condition (2.20) yields

∣
∣∣
∣

∫

�

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇ϕηSη(u – v) dx
∣
∣∣
∣

=
∣∣∣
∣

∫

�\Dη

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇ϕηSη(u – v) dx
∣∣∣
∣

≤ 1
η

∫

�\Dη

a(x)
(|∇u|p–1 + |∇v|p–1)∇(

a(x) + b(x)
)
Sη(u – v)|dx

≤ c
η

(∫

�\Dη

[
a(x)

(|∇u|p + |∇v|p)]dx
) p–1

p
(∫

�\Dη

a(x)
∣∣∇(

a(x) + b(x)
)∣∣p dx

) 1
p

≤ c
[(∫

�\Dη

a(x)|∇u|p dx
) p–1

p
+

(∫

�\Dη

a(x)|∇v|p dx
) p–1

p
]

,

(6.6)

which goes to zero as η → 0. Similarly, by (2.14), we can show that

∣∣∣
∣

∫

�

b(x)
(|∇u|q–2∇u – |∇v|q–2∇v

)∇ϕηSη(u – v) dx
∣∣∣
∣

≤ c
[(∫

�\Dη

b(x)|∇u|q dx
) q–1

q
+

(∫

�\Dη

b(x)|∇v|q dx
) q–1

q
]

,

(6.7)

which goes to zero as η → 0.
At the same time, since u(x, t), v(x, t) ∈ L∞(QT ), condition (2.19) yields

lim
η→0

∣∣
∣∣

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
ϕηxi Sη(u – v) dx

∣∣
∣∣

= lim
η→0

∣∣
∣∣

∫

�\Dη

[
fi(u, x, t) – fi(v, x, t)

]
ϕηxi Sη(u – v) dx

∣∣
∣∣

≤ lim
η→0

1
η

∫

�\Dη

[(
a(x) + b(x)

) 1
p +

(
a(x) + b(x)

) 1
q
]

× ∣∣(a(x) + b(x)
)

xi

∣∣∣∣Sη(u – v)(u – v)
∣∣dx

≤ lim
η→0

(∫

�\Dη

(∣∣∇(a + b)
∣∣1+ 1

p
)

dx
) 1

p
(∫

�

∣∣Sη(u – v)(u – v)
∣∣

p
p–1 dx

) p–1
p

+ lim
η→0

(∫

�\Dη

(∣∣∇(a + b)
∣
∣1+ 1

p
)

dx
) 1

q
(∫

�

∣
∣Sη(u – v)(u – v)

∣
∣

q
q–1 dx

) q–1
q

≤ c
(∫

�

|u – v|dx
) p–1

p
+ c

(∫

�

|u – v|dx
) q–1

q
.

(6.8)

For another term on the left-hand side of (6.2), conditions (2.19)–(2.21) yield

lim
η→0

N∑

i=1

∫ s

τ

∫

�

[
fi(u, x, t) – fi(v, x, t)

]
(u – v)xiϕηhη(u – v) dx dt = 0. (6.9)
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Finally, let η → 0 in (6.2). Then

∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x, τ ) – v(x, τ )
∣∣dx + c

(∫ t

0

∫

�

|u – v|dx dt
)k

.

where k < 1.
Similar to the proof of Theorem 2.6, we can deduce conclusion (2.15). �

Corollary 6.1 Suppose that a(x) and b(x) satisfy condition (a) or condition (b), and satisfy
(2.20), (2.21). Let q ≥ p > 1, a(x), b(x) ∈ C1(�) satisfy (1.4), and when |s1|, |s2| ≤ c, fi(s, x, t)
satisfies (5.10). If u(x, t) and v(x) are two solutions of (1.1) with the initial values u0(x) and
v0(x) respectively and with the homogeneous boundary value condition

u(x, t) = v(x, t) = 0, (x, t) = �pq × (0, T), (6.10)

then stability (2.15) is true, where

�pq =

{

x ∈ ∂� :
N∑

i=1

(
a(x) + b(x)

)
xi

gi(x) = 0

}

.

The proof is similar to that of Corollary 5.1, we omit the details here.

7 A generalization of trace
Let BV (�) be the BV function space, i.e., | ∂f

∂xi
| is a regular measure, and

BV (�) =
{

f (x) :
∫

�

∣
∣∣
∣
∂f
∂xi

∣
∣∣
∣ < c, i = 1, 2, . . . , N

}
.

Then C∞
0 (�) is dense in BV (�), and so the trace of f (x) ∈ BV (�) on the boundary ∂� is

defined as the limit of a sequence fε(x) as

f (x)|x∈∂� = lim
ε→0

fε(x)|x∈∂�. (7.1)

It is well known that a BV function space is the weakest space such that integration by
parts is still true.

For a degenerate parabolic equation, how to impose a suitable boundary condition has
been an important and difficult problem for a long time. For example, if we consider the
reaction-diffusion equation

∂u
∂t

= div
(
a(u, x, t)∇u

)
+ div

(
b(u)

)
, (x, t) ∈ QT , (7.2)

if a(u, x, t) is smooth enough, then the weak solution u(x, t) ∈ BV (QT ) can be proved, and
so one can impose the boundary value condition (1.8) in the sense of trace in the classical
way [26, 30, 32]. However, if a(u, x, t) is just a continuous function or just a integral func-
tion, then one only can prove that there is a weak solution u(x, t) ∈ L∞(QT ), but u(x, t)
may not be a BV function. Equation (7.2) is of hyperbolic-parabolic mixed type. When
a ≡ 0, equation (7.1) becomes a first-order hyperbolic equation, if the solution is merely
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in L∞, the author of [23] first extended the trace in a weaker sense by introducing an
integral formulation of the boundary condition. [23]’s idea was generalized to deal with
well-posedness of weak solutions to the strongly degenerate parabolic equations (7.2) in
[1, 2, 7, 11, 14, 15, 18, 22].

In this paper, we first consider the evolutionary p-Laplacian equations of the form

∂u
∂t

– div
(
α(x)|∇u|p–2∇u

)
– bi(x)Diu + c(x, t)u = f (x, t), (x, t) ∈ QT , (7.3)

where Di = ∂
∂xi

, α(x) ∈ C(�), α(x) > 0 in � but may be equal to 0 on the boundary ∂�. The
author of [25] classified the boundary ∂� into three parts: the nondegenerate boundary
�3, the weakly degenerate boundary �4, and the strongly degenerate boundary �0. In
detail, the author of [25] denoted that

�3 =
{

x ∈ ∂� : α(x) > 0
}

,

�4 =
{

x ∈ ∂� : α(x) = 0, there exists r > 0, such that
∫

�∩Br (x)
a(y)– 1

p–1 dy < +∞
}

,

�0 = ∂� \ (�3 ∪ �4) =
{

x ∈ ∂� : for any small r > 0,
∫

�∩Br (x)
a(y)– 1

p–1 dy = +∞
}

,

where Br(x) = {y : d(x, y) < r}. Meanwhile, they defined

�0 =

{

x ∈ �0 :
N∑

i=1

bi(x)ni(x) = 0

}

,

�1 =

{

x ∈ �0 :
N∑

i=1

bi(x)ni(x) > 0

}

,

�2 =

{

x ∈ �0 :
N∑

i=1

bi(x)ni(x) < 0

}

,

where �n = {ni(x)} is the inner normal vector of ∂�. In order to study the well-posedness
of weak solutions to equation (7.3), they imposed a partial boundary value condition as

u(x, t) = g(x, t), (x, t) ∈ (�2 ∪ �3 ∪ �4) × (0, T), (7.4)

where g(x, t) is an appropriately smooth function.
According to Proposition 3.3, it is obvious that on (�3 ∪�4) × (0, T) the boundary value

condition is true in the classical trace sense. So, the trouble lies in that the classical trace
of u on the strongly degenerate boundary �0 cannot be defined.

Denote that �λ = {x ∈ � : d(x) > λ} when λ is a positive infinite variable, and denote by
B the closure of the set C∞

0 (QT ) with respect to the norm

‖u‖B =
∫∫

QT

a(x)
(∣∣u(x, t)

∣
∣p +

∣
∣∇u(x, t)

∣
∣p)dx dt, u ∈ B.
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The author of [25] defined the trace of u ∈ B, u(x, t) = 0 on �2 as

ess lim
λ→0

∫

{x∈∂�λ :
∑N

i=1 bi(x)ni(x)<0}
u2

N∑

i=1

bi(x)ni(x) dσ = 0. (7.5)

Remark 2.2 in [25] pointed out that the usual trace of u ∈ B, u(x, t) = 0 on �3 ∪ �4 also
satisfies (7.5). So, (7.5) is a generalization of the usual trace of u ∈ BV (QT ) to that of u ∈ B.

Moreover, we can generalize the trace of u ∈ BV (QT ) to that of u ∈ B by a more general
way. Let φ(x) be a weak characteristic function of � [33], i.e., φ(x) ∈ C(�) ∩ C1(� \ �μ)
and

φ(x) > 0, x ∈ �,

where

�μ =
{

x ∈ � : φ(x) > μ
}

.

In a very recent paper [34], using some idea of [25], we defined the trace of u ∈ B, u(x, t) = 0
on �0 as

ess lim
μ→0+

∫

{x∈∂�μ :
∑N

i=1 bi(x)φi(x)<0}
u2

N∑

i=1

bi(x)φxi (x) dσ = 0, (7.6)

and the partial boundary value condition matching up with equation (7.3) is

u(x, t) = v(x, t) = 0, (x, t) = �p × (0, T), (7.7)

in the sense of (7.5), where

�p =

{

x ∈ ∂� :
N∑

i=1

bi(x)φxi (x) < 0

}

.

Secondly, let us come back to our main equation (1.1). Denote that

‖u‖Bp =
∫∫

QT

a(x)
(∣∣u(x, t)

∣
∣p +

∣
∣∇u(x, t)

∣
∣p)dx dt, u ∈ Bp,

and

‖u‖Bq =
∫∫

QT

b(x)
(∣∣u(x, t)

∣∣q +
∣∣∇u(x, t)

∣∣q)dx dt, u ∈ Bq.

If a(x), b(x) satisfy (c), we cannot impose the boundary value condition (7.7) in the sense of
the classical trace generally. However, inspired by [25, 34], if fi satisfies (5.10), by checking
the proof of Corollary 5.1, then we may generalize the trace of u ∈ BV (QT ) to that of
u ∈ Bp ∩ Bq, u(x, t) = 0 as

ess lim
λ→0

∫

{x∈∂�μ :
∑N

i=1 gi(x)φxi �=0}
|u|

∣
∣∣
∣∣

N∑

i=1

gi(x)φxi

∣
∣∣
∣∣
dσ = 0. (7.8)
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Accordingly, if a(x), b(x) satisfy (c), in order to study the uniqueness of weak solution to
equation (1.1), we can impose the partial boundary value condition

u(x, t) = 0, (x, t) ∈ (�p ∪ �q) × (0, T), (7.9)

in the sense of (7.8), where

�p =
{

x ∈ ∂� : for any small r > 0,
∫

�∩Br(x)
a(y)– 1

p–1 dy = +∞
}

and

�q =
{

x ∈ ∂� : for any small r > 0,
∫

�∩Br (x)
b(y)– 1

q–1 dy = +∞
}

.

Naturally, there are other ways to generalize the trace. For example, similar to [25, 34],
one also can generalize the trace of u ∈ BV (QT ) to that of u ∈ Bp ∩ Bq, u(x, t) = 0 as

ess lim
λ→0

∫

{x∈∂�μ :
∑N

i=1 gi(x)φxi �=0}
|u|2

∣
∣∣
∣∣

N∑

i=1

gi(x)φxi

∣
∣∣
∣∣
dσ = 0.

In this weak sense of trace, one also can study the stability of weak solution to equation
(1.1) with the partial boundary value condition (7.9), provided fi satisfies

∣∣fi(u, x, t) – fi(v, x, t)
∣∣ ≤ gi(x)|u – v|2.

The details are omitted here.

8 About the regularity
The following parabolic equation with p, q-growth

ut = div
(|∇u|p–2∇u + |∇u|q–2∇u

)
, (x, t) ∈ QT , (8.1)

was studied in [8]. Actually, the main equation considered in [8] has a more general sense.
The following definitions and theorems are deduced from [8] directly.

Definition 8.1 We identify a function u ∈ Lq
loc(0, T ; W 1,q

loc (�)) as a weak solution of equa-
tion (8.1) if and only if

∫∫

QT

[
uϕt –

(|∇u|p–2∇u + |∇u|q–2∇u
)∇ϕ

]
dx dt = 0, ∀ϕ ∈ C∞

0 (QT ). (8.2)

Theorem 8.2 (A priori estimate) Let u ∈ Lq
loc(0, T ; W 1,q

loc (�)) be a weak solution of equation
(8.1). Assume that

2 ≤ p ≤ q < p +
4
N

. (8.3)
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Then we have ∇u ∈ L∞(QT ,RN ), and for any parabolic cylinder Qρ(z0) ⊂⊂ QT and s ∈
(0, 1), there holds

sup
Qsρ (z0)

|∇u| ≤ c
[

1
[(1 – s)ρ]n̂+2

∫∫

Qρ (z0)

(
1 + |∇u|2)

q
2 dz

] 1
q

2q
4–n̂q–p

(8.4)

for a constant c which goes to ∞ as q → p + 4
N , where n̂ = n if n ≥ 3, n̂ = any number ∈

(2, 4
q–p ) if n = 2.

Definition 8.3 We identify a function

u ∈ Lp(0, T ; W 1,p
0 (�)

) ∩ Lq
loc

(
0, T ; W 1,q

loc (�)
)

as a weak solution of the Cauchy–Dirichlet problem to equation (8.1) if and only if (8.2)
holds and, moreover, the homogeneous Dirichlet boundary value condition is true in the
sense of trace, the initial value condition is true in the sense

lim
h→0

1
h

∫ h

0

∫

�

∣
∣u(x, t) – u0(x)

∣
∣2 dx dt = 0.

By considering the Cauchy–Dirichlet problem to the following equation related to the
q-Laplacian

ut = div
(|∇u|p–2∇u +

(|∇u|2 + ε
) q–2

2 ∇u
)
, (x, t) ∈ QT , (8.5)

according to [17], there is a unique weak solution uε ∈ C0([0, T]; L2(�))∩Lq(0, T ; W 1,q
0 (�))

with ∂tuε ∈ Lq′ (0, T ; W –1,q′ (�)). Based on this fact, using the Morse iterative technique and
by the Stekov mean value method, the author of [8] proved the following theorem.

Theorem 8.4 (Existence of weak solutions) Suppose that

2 ≤ p ≤ q < p +
4

N + 2
(8.6)

holds. Then there exists a weak solution u of the Cauchy–Dirichlet problem to equation
(8.1). Moreover, its Lp(0, T ; W 1,p

0 (�)) norm bounded by a constant depends only on p, q,
N , |u0|L∞(�), and |∇u0|Lr (�). Further, the solution u satisfies ∇u ∈ L∞

loc(QT ,RN ) and ut ∈
L

q
q–1 (0, T ; W –1, p

q–1 (�)). Once more, for any parabolic cylinder Qρ(z0) ⊂⊂ QT and s ∈ (0, 1),
there holds

sup
Qsρ (z0)

|∇u| ≤ c
[

1
[(1 – s)ρ]n̂+2

∫∫

Qρ (z0)

(
1 + |∇u|2)

q
2 dz

] 1
p

2q
4–(n̂+2)q–p

, (8.7)

where n̂ = n if n ≥ 3, n̂ = any number ∈ (2, 4
q–p – 2) if n = 2.

Recalling the main equation considered in this paper

ut = div
(
a(x)|∇u|p–2∇u + b(x)|∇u|q–2∇u

)
+

N∑

i=1

∂fi(u, x, t)
∂xi

, (x, t) ∈ QT , (8.8)
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with that a(x) > 0 and b(x) > 0 when x ∈ �. Since fi(s, x, t) is a C1 function on R × QT ,
i = 1, 2, . . . , N , if we notice that the estimates about |∇u| are local in Theorems 8.2 and 8.4,
besides the existence theorem (Theorem 2.4 in Sect. 2), under conditions (8.3) and (8.6),
then we conjecture that estimates (8.4) and (8.7) are true correspondingly. We are ready
to discuss this problem thoroughly in the future; in particular, we are concerned with the
boundary estimates about the weak solution u(x, t) and the estimate of its gradient |∇u|
near the boundary.
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