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Abstract
The impact of Newtonian heating on a time-dependent fractional
magnetohydrodynamic (MHD) Maxwell fluid over an unbounded upright plate is
investigated. The equations for heat, mass and momentum are established in terms of
Caputo (C), Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC) fractional derivatives.
The solutions are evaluated by employing Laplace transforms. The change in the
momentum profile due to variability in the values of parameters is graphically
illustrated for all three C, CF and ABC models. The ABC model has proficiently revealed
a memory effect.
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1 Introduction
Over the past thirty years, fractional derivatives have fascinated multiple researchers as
compared to classical derivatives. Also, fractional derivatives are more credible in math-
ematical modeling of real-world problems. The methodology of a fractional operator in-
volves regular derivatives and the kernel of a fractional operator with a convolution rela-
tion. Initially, Caputo [1] and Riemann–Liouville adopted a power-law kernel to produce
a fractional operator. However, this fractional operator faced a few obstructions in real-
world applications. Caputo and Fabrizio [2] instead adopted a localized exponential kernel
to construct a modern fractional operator. Furthermore, Atangana and Baleanu [3] sug-
gested an advanced fractional operator by using an optimized Mittag–Leffler function,
being a nonsingular and nonlocal kernel. This fractional operator counters local and sin-
gular kernel restrictions of the preceding fractional operators, keeping certain of their
features. Applications of fractional calculus have not only been used in the disciplines of
engineering and physical sciences but also in other disciplines, such as ecology, geology,
viscoelasticity, economics, probability and statistics and fluid dynamics [4–11].

Among different kinds of rate-type fluids, the Maxwell fluid has gained attention in
many research areas. It is a viscoelastic fluid that has properties both of viscosity and elas-
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ticity. Maxwell fluids are widely used in polymeric industries due to their lower complexity.
The impact of MHD recounts the movement of a conducting flow under the influence of a
magnetic field. MHD consequently intensifies conductivity during flow, being a sensation
in chemical, mechanical and electrical engineering. Cao et al. [12] analyzed a fractional
model of a MHD Maxwell nanofluid over a moving plate. Results for a Maxwell fluid on
a vibrating plate utilizing CF derivatives and Laplace transforms were acquired by other
investigators [13, 14]. Abro et al. [15] solved the model of a MHD Maxwell fluid for ve-
locity and temperature in a porous medium by using the ABC definition. Bai et al. [16]
conducted a thermal analysis in fractional MHD Maxwell flow with viscous dissipation.
Asif et al. [17] used the CF definition in order to explore a Maxwell fluid with slip effects.

Normally, thermal convection discussion are connected with distinct physical state, for
example, surface heat flux, ramped surface heating and uniform boundary temperature.
However, the aforementioned conditions are not applicable for some real-life phenomena.
For these phenomena, fluids are placed under Newtonian heating conditions. Newtonian
heating expresses that the heat-transfer rate through a sidewall is proportional to the lo-
cal sidewall temperature. Merkin [18] conducted an introductory study on Newtonian
heating. Newtonian heating has several applications, including engine cooling, solar radi-
ations, exploration and extraction processes of petroleum industries, and conjugate heat
transport around fins. Nowadays, Newtonian heating has attracted many researchers as a
result of its efficient prominence in various engineering systems like radiators. Riaz et al.
[19, 20] considered a Maxwell fluid with the contribution of Newtonian heating via frac-
tional operators. Imran et al. [21] employed a CF time derivative to investigate a Maxwell
fluid with Newtonian heating on a moving plate. Imran et al. [22] analyzed exact solutions
of a rate-type model with Newtonian heating by using Laplace, C and CF time derivatives.
Also, they studied the comparison between them. Raza and Asad Ullah [23] used Newto-
nian heating conditions in a fractional Maxwell fluid and analyzed heat transfer by using C
and CF derivatives. Vieru et al. [24] found the solutions for velocity, temperature, and con-
centration profile for flow under Newtonian heating conditions. Said Mad Zain et al. [25]
generalized a fractional Bézier curve with shape parameters. Ghomanjani and Noeiagh-
dam [26] studied the application of a ball curve for solving fractional differential-algebraic
equations.

The basic incentive of this paper was to observe the efficacy of fractional-order deriva-
tives to reveal the memory effect for the Maxwell model under Newtonian heating con-
ditions. The impact of emerging parameters onto momentum, mass and energy solutions
are plotted from different graphs accompanied by real justifications. Finally, a comparison
has been made among C, CF and ABC fractional models.

2 Mathematical model
Assume a Maxwell fluid upon an upright and unbounded plate under the impact of a
magnetic field having strength B0. The plate is perpendicular to the y-axis and parallel to
the x-axis. Initially, the fluid and the plate are stationary at a fixed temperature ϒ̃∞. The
local sidewall temperature ϒ̃ and the thermal transfer rate through the bounding wall to
the fluid are in proportion to each other. The physical model is shown in Fig. 1 and is given
in [19, 20].
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Figure 1 Physical model

The governing equations are given by [19, 20]:
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λ =
υh2

k2 λ̃, M =
σB2

ok2

μh2 , Gr = βϒ̃ϒ̃∞ and Gm = β�̃�̃w.

Therefore, the dimensionless momentum, energy and mass equations are:
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The required nondimensional initial and boundary conditions are:
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3 Preliminaries
3.1 Caputo derivative and its Laplace transform
The Caputo derivative and its Laplace transform are given below:
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L
(CDγ

t i(ζ , t)
)

= qγL
(
i(ζ , t)

)
– qγ –1i(ζ , 0). (8)

3.2 Caputo–Fabrizio derivative and its Laplace transform
The Caputo–Fabrizio derivative and its Laplace transform are given below:
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where N(γ ) is the normalization function or a constant depending on γ . Here, consider
N(γ ) = 1.
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3.3 Atangana–Baleanu derivative and its Laplace transform
The Atangana–Baleanu derivative and its Laplace transform are given below:
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where AB(γ ) represents the normalization function. Here, AB(γ ) = 1.

L
(ABCDγ

t i(ζ , t)
)

=
qγL(i(ζ , t)) – qγ –1i(ζ , 0)

(1 – γ )qγ + γ
. (12)

4 Solutions for temperature profile
The temperature fields for integer-order, C and CF time-fractional derivatives have been
already calculated by Vieru et al. [24], Asjad et al. [22], Raza and Asad Ullah [23] and Riaz
et al. [20], respectively.

5 Solutions for concentration profile
The concentration fields for integer-order, C and CF time-fractional derivatives have been
already calculated by Riaz et al. [20].

6 Solutions for velocity profile
6.1 Integer-order solution
Theorem 1 Let L be the Laplace operator, applying this operator to Eq. (4) along with
initial and boundary conditions, the exact solution of velocity is given in Eq. (19).

Proof Applying the Laplace transform to Eq. (4), we obtain:
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After some simplifications, we obtain:
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Equation (15) is a 2nd-order nonhomogeneous linear equation.
The standard solution of Eq. (15) is

W̄ (ζ , q) = W̄1(ζ , q) + W̄2(ζ , q). (16)
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Putting Eqs. (17) and (18) into Eq. (16), we obtain:
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After applying initial and boundary conditions to the above equation, we obtain the
Laplace solution for velocity:
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6.2 Caputo fractional derivative
Theorem 2 Let CDγ

t i(ζ , t) be the Caputo fractional derivative and L be the Laplace op-
erator, applying these operators to Eq. (4) along with initial and boundary conditions, the
exact solution of velocity is given in Eq. (26).

Proof Applying the Caputo time derivative Eq. (7) to the nondimensional velocity Eq. (4)
and taking the Laplace transform, we obtain:
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The general solution of the nonhomogeneous linear equation, Eq. (22), is:

W̄C(ζ , q) = W̄1(ζ , q) + W̄2(ζ , q). (23)
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Here,

W̄1(ζ , q) = c1eζ
√
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√
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Substituting Eq. (24) and Eq. (25) into Eq. (23) and applying initial and boundary condi-
tions, the Laplace solution of Eq. (23) is
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6.3 Caputo–Fabrizio fractional derivative
Theorem 3 Let CF Dγ

t i(ζ , t) be the Caputo–Fabrizio fractional derivative and L be the
Laplace operator, applying these operators to Eq. (4) along with initial and boundary con-
ditions, the exact solution of velocity is given in Eq. (33).

Proof Applying the Caputo–Fabrizio time derivative Eq. (9) and then its Laplace trans-
form Eq. (10) to Eq. (4), we obtain:
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After some calculations we obtain a second-order nonhomogeneous linear equation:
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The solution of Eq. (29) is

W̄CF (ζ , q) = W̄1(ζ , q) + W̄2(ζ , q), (30)
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where

W̄1(ζ , q) = c1e
ζ

√
( dq+γ
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. (32)

Inserting the values of Eq. (31) and Eq. (32) into Eq. (30) and applying initial and boundary
conditions, we have:

W̄CF (ζ , q) = Gr
[

dq + γ
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√

Pr q
lq+γ

)

(
e–ζ

√
Pr q

lq+γ – e
–ζ

√
m1( dq+γ

lq+γ
))]

+ Gm
[

dq + γ

q2(s2q + m1γ )
(
e–ζ

√
Scq

lq+γ – e
–ζ

√
m1( dq+γ
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, (33)

where m1 = q + M, l = 1 – γ , d = 1 – γ + λ, p2 = m1d – Pr and s2 = m1d – Sc. �

6.4 Atangana–Baleanu fractional derivative
Theorem 4 Let ABCDγ

t i(ζ , t) be the Atangana–Baleanu fractional derivative and L be the
Laplace operator, applying these operators to Eq. (4) along with initial and boundary con-
ditions, the exact solution of velocity is given in Eq. (40).

Proof Applying the Atangana–Baleanu time derivative Eq. (11) and then its Laplace trans-
form Eq. (12) to Eq. (4), we obtain:

L
[(

1 + λABCDγ
t
)∂W̄

∂ζ

]

= L
[

∂2W̄
∂ζ 2 + Gr

(
1 + λABCDγ

t
)
ϒ̄ + Gm

(
1 + ABCDγ

t
)
�̄ – M

(
1 + λABCDγ

t
)
W̄

]
, (34)

(
1 +

λqγ

(1 – γ )qγ + γ

)
qW̄ABC

=
∂2W̄ABC

∂ζ 2 + Gr
(

1 +
λqγ

(1 – γ )qγ + γ

)
ϒ̄ABC

+ Gm
(

1 +
λqγ

(1 – γ )qγ + γ

)
�̄ABC – M

(
1 +

λqγ

(1 – γ )qγ + γ

)
W̄ABC , (35)

[
∂2

∂ζ 2 –
(

1 +
λqγ

lqγ + γ

)
q – M

(
1 +

λqγ

lqγ + γ

)]
W̄ABC

= –
(

1 +
λqγ

lqγ + γ

)
(Grϒ̄ABC + Gm�̄ABC). (36)
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Equation (36) is a 2nd-order nonhomogeneous linear equation. So, its exact solution is:

W̄ABC(ζ , q) = W̄1(ζ , q) + W̄2(ζ , q). (37)

Here,

W̄1(ζ , q) = c1e
ζ

√
( dqγ +γ

lqγ +γ
)m1 + c2e

–ζ

√
( dqγ +γ

lqγ +γ
)m1 , (38)

and

W̄2(ζ , q) = Gr
[

dqγ + γ

q(
√

Pr qγ
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– 1)(p3qγ + m1γ )

e
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√
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]

+ Gm
[

dqγ + γ

q2(s3qγ + m1γ )
e

–ζ

√
Scqγ

lqγ +γ

]
. (39)

Putting values of the solution of W̄1(ζ , q) and W̄2(ζ , q) into Eq. (37) and after some sim-
plifications, we obtain:

W̄ABC(ζ , q) = Gr
[

dqγ + γ

q(
√

Pr qγ

lqγ +γ
)(p3qγ + m1γ )

(
e

–ζ

√
Pr qγ

lqγ +γ – e
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(
e

–ζ

√
Scqγ

lqγ +γ – e
–ζ

√
m1( dqγ +γ

lqγ +γ
))]

, (40)

where m1 = q + M, l = 1 – γ , d = 1 – γ + λ, p3 = m1d – Pr and s3 = m1d – Sc. �

Stehfest’s formula [22] is one of the simplest algorithms we use to determine the inverse
Laplace transform:

W (r, t) =
e4.7

t

[
1
2

W̄
(

r,
4.7
t

)
+ Re

{ N1∑
k=1

(–1)kW̄
(

r,
kπ i + 4.7

t

)}]
,

where N1 is a natural number, Re(·) and i are the real part and the imaginary unit, respec-
tively [22].

7 Limiting case
7.1 Case 1
By ignoring the concentration profile, we recover the results presented in Riaz and Iftikhar
[19].

7.2 Case 2
By removing the magnetic field in Eq. (4), we obtain the results presented in Riaz et al.
[20].

7.3 Case 3
By eliminating the concentration and magnetic field simultaneously we obtain the results
shown in Raza and Asad Ullah [23].
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8 Results and discussion
In this article, the effects of Newtonian heating on MHD Maxwell flow over a vertical
plate are studied. The C, CF and ABC derivatives are interpolated to form three particular
fractional models for flow, energy and mass equations. Fractional derivatives and Laplace
transforms are applied to examine the solutions for nondimensional fractional models.
Limiting cases of the fractional models are discussed. Several graphs are presented to il-
lustrate the physical effects of parameters γ , λ, Sc, Pr, Gr, Gm and M on velocity.

1. Effect of γ : Fig. 2 shows that the fluid velocity increases when the fractional
parameter γ increases, as time varies. The rate of change increases, and the velocity
profile increases. All curves, Caputo, Caputo–Fabrizio and Atangana–Baleanu,
converge as y tends to infinity. For both large and small time and among all three
MHD fractional Maxwell models, the fluid velocity is maximum for the
Atangana–Baleanu case as it has a nonsingular and nonlocal kernel. For the Caputo
fractional model, the fluid velocity is minimum, while for the Caputo–Fabrizio
model, the fluid velocity is moderate among all three models because it has a
nonsingular kernel and a maximum for the ABC model. The fractional-order
derivative converts into a classical model as α → 1.

2. Effect of M: Fig. 3 reveals the deviation in velocity distribution under the effect of a
magnetic field. The magnetic field causes a frictional force (Lorentz force) due to
which the fluid velocity decreases. For different values of M, an increase in the
Lorentz force effectively decreases flow-accelerating forces, and as a result, the
velocity is decelerated. The fluid velocity is maximum, moderate and minimum for
Atangana–Baleanu, Caputo–Fabrizio and Caputo models, respectively

3. Effect of λ: Fig. 4 shows that as λ increases, the velocity profile decreases. The
velocity function has also been determined for variable time. Relaxation time
enhances the backward flow and reduces the velocity. Also, when λ rises, the
thickness of the momentum boundary layer minimizes, which leads to a downshift of
the flow. Since the increment in relaxation time suggests that fluid will acquire
additional time to relax, it affirms a decrease in velocity.

4. Effect of Sc: The fluid velocity decreases when Sc increases, as shown in Fig. 5. As the
Maxwell fractional model concerns the effect of a magnetic field, this causes a
decrease in molecular or mass diffusivity and hence velocity decreases. Moreover, Sc
is also inversely proportional to the molecular diffusivity due to which the fluid
velocity decreases. Among all three fractional solutions, the velocity profile is
significant for the Atangana–Baleanu model.

5. Effect of Gm: Fig. 6 shows that the fluid velocity increases with increasing Gm.
Physically, the increment in buoyancy forces reduces the viscous force that leads to a
further increase in the velocity field with higher values of Gm. Velocity curves show
maximum behavior for the ABC model as compared to the other two models.

6. Effect of Gr: Fig. 7 describes the variability of the momentum profile with increasing
values of Grashof number. Physically, large values of Gr correspond to a significant
buoyancy force as it is related to strong convection currents. For increasing Gr, all
buoyancy forces dominate frictional forces and hence the momentum profile is
amplified.

7. Effect of Pr: Fig. 8 illustrates the effects of Pr on the flow. It is noted that the flow
declines as Pr increases. Clearly, as Pr increases, thermal diffusivity decreases. This
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Figure 2 (a, b, c). Velocity curves belonging to C, CF and ABC for various values of γ , where M = 4, Pr = 6,
Sc = 8, Gr = 6, Gm = 8 and λ = 0.2
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Figure 3 (a, b, c). Velocity curves belonging to C, CF and ABC for various values of M, where γ = 0.1, Pr = 6,
Sc = 8, Gr = 6, Gm = 8 and λ = 0.2
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Figure 4 (a, b, c). Velocity curves belonging to C, CF and ABC for various values of λ, where γ = 0.1, Pr = 6,
Sc = 8, Gr = 6, Gm = 8 and M = 4
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Figure 5 (a, b, c). Velocity curves belonging to C, CF and ABC for various values of Sc, where γ = 0.1, Pr = 6,
λ = 0.2, Gr = 6, Gm = 8 and M = 4
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Figure 6 (a, b, c). Velocity curves belonging to C, CF and ABC for various values of Gm, where γ = 0.1, Pr = 6,
λ = 0.2, Gr = 6, Sc = 8 and M = 4

causes an increase in viscosity, which results in a decrease in velocity. Moreover, the
velocity profile of the MHD Maxwell fractional model is minimum for the Caputo
case and maximum for the Atangana–Baleanu case.
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Figure 7 (a, b, c). Velocity curves belonging to C, CF and ABC for various values of Gr, where γ = 0.1, Pr = 6,
λ = 0.2, Sc = 8, Gm = 8 and M = 4
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Figure 8 (a, b, c). Velocity curves belonging to C, CF and ABC for various values of Pr, where γ = 0.1, Gr = 6,
λ = 0.2, Sc = 8, Gm = 8 and M = 4
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Figure 9 Velocity curves for C, CF and ABC for various values of γ

Figure 10 (a, b, c). Velocity curves for C, CF and ABC for various values of γ approaching to integer order

8. Comparison among C, CF and ABC: Fig. 9 shows a comparison among the three
fractional models. Clearly, velocity curves for ABC show a significant change for
different values of the fractional parameter.

9. Velocity profile without concentration: Fig. 10 presents the velocity curves for C, CF
and ABC without concentration. It is observed that as the fractional parameter tends
to 1 the fractional model approaches to an integer-order model [21].

9 Conclusions
This article studies a time-dependent, Maxwell MHD fluid on an unbounded upright plate
with Newtonian heating. The C, CF and ABC operators are used to construct a flow-
directing equation for a rate-type fluid. Solutions of the model equations are presented
from Laplace transforms. Several graphs are presented to illustrate the impact of various
parameters on the solutions. Significant findings of this study are noted as follows:

1. The velocity of the fluid increases with increasing fractional parameter for the
Caputo, Caputo–Fabrizio and Atangana Baleanu models.
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2. The flow profile is maximum for the ABC model as compared to the C and CF
models.

3. As the magnetic field increases for variable time, the fluid velocity decreases for local,
nonlocal and nonsingular kernels.

4. An increment in the Maxwell parameter λ causes a decrease in the fluid velocity for
all fractional models.

5. The fluid velocity declines as the values of Pr and Sc increase, whereas, the fluid
velocity exhibits a reverse profile for higher values of Gr and Gm.
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