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Abstract
In this paper a new approach is taken to find the exact solutions for generalized
unsteady magnetohydrodynamic transport of a rate-type fluid near an unbounded
upright plate and is analyzed for ramped wall temperature and velocity with constant
concentration. The vertical plate is suspended in a porous medium and encounters
radiation effects. Solutions based on special functions are obtained using an integral
transform for an unsteady MHD Maxwell fluid in the presence of ramped velocity,
temperature and constant concentration. The relations for Nusselt number and
skin-friction coefficient are efficiently computed to precisely estimate the rate of heat
transfer at the boundary and the shear stress. Results are also discussed in detail and
demonstrated graphically using software to comprehensively analyze the dynamics
of the proposed problem, and the physical impact of several system parameters, such
as magnetic fieldM, Prandtl number Pr, the relaxation time λ, dimensionless time τ ,
Schmidt number Sc, Mass and Thermal Grashof numbers Gm and Gr, respectively, is
studied. Furthermore, solutions for some recently published work are compared with
the current study that endorses the authenticity of our derived results and proves that
those investigations are limiting or special cases of the current problem.

Keywords: Special functions; Laplace transform; Maxwell fluid; Ramped conditions;
Velocity field; Porous material

1 Introduction
The study of non-Newtonian fluids is a very interesting topic for many researchers due
to its wide application in modern technologies and many industrial sectors. The non-
Newtonian fluids deal with the problems related to the chemical engineering, polymers,
petroleum, paints, pharmaceutical, plastics, and food-processing industries. Furthermore,
these type of models also deal with fluids such as biological materials, ketchup, polymeric
liquids, motor oils, personal care items (shampoo, creams, toothpastes) and complex mix-
tures, etc. However, in the literature, different types of fluid models exist included rate
type, differential and integral models. Many researchers have addressed the rate-type fluid
model, because from the research point of view it is more applicable, having both elastic
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effects and memory. Hence, in the present work, rate-type models are recognized as a
Maxwell model. Furthermore, this type of model was first developed by Maxwell to esti-
mate the air viscoelastic characteristics [1]. Also, Jordan et al. [2] studied solutions that are
exact for the Stokes problem of the first type, including the Maxwell model also. Moreover,
Fetecau et al. [3] explored the Stokes problem of the second type by assuming flow of a
fluid placed on the surface of an infinite plate that is vacillating in the plane. Furthermore,
the model generated by Maxwell is known as an uncomplicated model operated to assess
the rheological performance of fluids and have features of both viscosity and elasticity.
Fetecau [4] investigated the exact solution for an infinite vertical surface. The effects of
thermophoresis and chemically reactive impacts on the flow of Maxwell fluids were stud-
ied by Noor [5]. It is the case that when heat is extracted from a high-temperature wall
through a fluid having a certain movement such a mechanism is termed heat convection
(advection). This mechanism interacts by molecular diffusion and the motion of the fluid
on the basis of natural as well as forced convection. This is due to convective-heat transfer
that transpires when the surface temperature varies from that of the encompassing fluid
[6]. Solangi et al. [7] investigated the unique heat-conduction properties for the enhance-
ment of concentration. The focus in this work was to discuss the particle-size control for
heat exchange and mass-concentration behavior on fluids. Soomro et al. [8] carried out a
typical analysis of stretching a surface to develop the heat transfer for the flow of a non-
Newtonian nanofluid. To study the physical aspects, numerical computation was used
on the governing equations based on finite-difference schemes to describe heat-transfer
phenomena. Shafiq et al. [9] conducted an interesting study on the magnetohydrodynamic
convective flow to explore the transfer rate of heat, motile microorganisms and mass. They
emphasized the parametric study of the problem for Brownian motion, buoyancy forces,
thermophoretic, magnetic field and Newtonian heating for temperature and concentra-
tion. Kashif et al. [10] carried out a dual thermal analysis to determine the role of temper-
ature dissimilarity versus the temperature or time by using a suspension of nanoparticles.
The core objective of this study was to highlight the problem through fractional operators
and special functions. Heat transmission over a stretched sheet based on the magnetohy-
drodynamic two-dimensional Casson fluid flow was observed by Hamid et al. [11]. They
examined the linear convected heat effects on two-fold solutions in which numerical sta-
bility was discussed for the dual results from the governing equation of the problem. Abro
et al. [12] suggested a fractional study for thermal radiation of a Jeffery fluid and educed
the subsolutions from fluid motion of the second grade with and without a magnetic field.
The thermal properties of the governing equations were treated by an integral-transform
approach. Sheikholeslami et al. [13] observed a magnetizable hybrid fluid in the core of a
circular cavity with two heaters in circular form subjected to the carbon nanotubes. Their
focus was to create the magnetic fields by wires via an electrical current. Abdelmalek et al.
[14] applied a hybrid technique known as the Control Volume Finite Element Scheme to
the curved circular heater with nanosized particles on convective-heat transmission. They
suggested the finding and concluded that the conformation of the curved heater played an
essential role to manage the heat-transfer rate and control the convectional flow within the
enclosure. Kashif [15] applied surface-modification technology to analyze the thermodis-
sipation effects on the time-dependent natural-convection flow of fluid. A finite Fourier
sine transform, Laplace and fractional techniques were applied to the governing equations
to show the typical and rheological properties of the problem. Although the studies on heat
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and transfer analysis will be continued the relevant studies can be observed therein in cat-
egorical format as: heat transfer via analytical approaches [16, 17, 29–32], heat transfer
via numerical approaches [18, 19, 33–36], heat transfer via fractional calculus approaches
[20, 21, 37, 38] and heat transfer via multidimensional approaches [22, 23, 25, 26, 39, 40].
Motivated by the above consideration, the main theme of this paper is to assess the signif-
icance of convective heating and variable heat source on the azimuthal oscilatroy MHD
convective flows developed in a cylindrical Darcy–Forchheimer porous medium filled by
a radiating second-grade fluid.

Talha Anwar et al. [24] recently, discussed the same problem for a different fluid model
without analyzing the diffusion equation, and determined the approximate result for the
proposed problem by using the Laplace transformation technique and Durbin’s numerical
algorithm. The work introduced in this paper is new. In this model, we added a concen-
tration equation and analyzed its effects on the velocity profile. Based on the aforesaid
literature, the object of this exploration is to establish the exact expressions for velocity,
concentration and energy equations, in terms of a generalized Lorenzo–Hartley function
known as the G-function, of the considered problem and accomplish a comparison with
the results obtained by Talha Anwar et al. [24]. In solving the differential equations (DEs)
with the help of the Laplace transform method (LT), the inverse integral transform is not
trivial. In this regard we have to introduce some special functions. For example, a Mittag–
Leffler function, a Robotnov and Hartley function, a Lorenzo and Hartley generalized R
function, a generalized G function, etc. Such functions produce a direct solution and give
important interpretations for the fundamental linear integer-order DEs and correspond-
ing IVPs. These functions are helpful in the solution of the problems and more notably in
the solution of differential equations. Furthermore, the consequences of different related
physical parameters, such as relaxation time parameter λ, grashof number Gr, magnetic
field M, dimensionless time τ , Schmidt number Sc, mass Grashof number Gm and Prandtl
number Pr, on nondimensional velocity, concentration and temperature are discussed in
detail and demonstrated graphically using appropriate software.

2 Mathematical model
Let us assume that the unsteady MHD, natural convection, incompressible, time-depen-
dent, viscous motion of a Maxwell fluid is near an infinite upright plate embedded in a
permeable medium with constant concentration and ramped conditions on temperature.
In this case, consider the cartesian coordinates system (x, y), the plate is placed in the plane
such that the x-axis is vertically oriented and the y-axis is in the normal direction. At the
end of the wall, temperature, velocity and concentration are assumed to be time dependent
within certain limits of time, identified as the characteristic time; velocity, temperature and
concentration after that time attain constant values of velocity u0, temperature T∞ and
concentration C∞. The physical quantities of the model’s flow that is under consideration
is described in Fig. 1. The principal governing partial differential equations with small
Reynolds number and the usual Boussinesq’s approximation are given as [25, 26]:

(
1 + λ1

∂

∂t

)
∂u∗(η, t)

∂t

= υ
∂2u∗(η, t)

∂η2 –
(

λ1
∂

∂t
+ 1

)
σB2

0u∗(η, t)
ρ
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Figure 1 Geometrical formation of the flow model

+
(
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∂
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)
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(
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)
–

(
1 + λ1

∂

∂t

)
gβC̀

(
C̀∞ – C̀(η, t)

)
, (1)

∂T̀(η, t)
∂t

=
k

ρC̀p

∂2T̀(η, t)
∂η2 , (2)

(
1 + λ1

∂

∂t

)
S0 = υ

∂u∗(η, t)
∂η

, (3)

∂C̀(η, t)
∂t

= δm
∂2C̀(η, t)

∂η2 – δm
(
C̀(η, t) – C̀∞

)
. (4)

with initial and boundary conditions of:

u∗(η, 0) = 0, T̀(η, 0) = T̀∞, C̀(η, 0) = C̀∞,
∂u(η, 0)

∂t
= 0, η ≥ 0, (5)

C̀(0, t) = C̀w, u∗(0, t) = g1(t), T̀(0, t) = g2(t), (6)

where

g1(t) =

⎧⎨
⎩

u0
t̀
t0

, 0 < t̀ ≤ t0;

u0, t̀ > t0,
g2(t) =

⎧⎨
⎩

(Tw – T∞) t
t0

+ T∞, 0 < t ≤ t0;

T̀(0, t̀) = Tw, t > t0.
(7)

and

u∗(η, t) → 0, T̀(η, t) → ∞, C̀(η, t) → ∞ as η → ∞. (8)

Introducing the set of dimensionless quantities:

ψ =
u0

υ
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2

υ
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0

υ
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,
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σ0B2
0υ

ρu2
0

,

Pr =
μCp

k
, υ = t0u0

2, C∗ =
C̀ – C∞

Cw – C∞
, Gr =

gβT̀ t0(T̀ – T∞)
u0

,

(9)
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a = M, b = 1 + λM, λ0 =
υ2

u2
0

.

After employing the dimensionless quantities, and ignoring the asterisk ∗ notation, the
following partial differential equations in dimensionless form are derived as:

(
1 + λ

∂

∂τ

)
∂u(ψ , τ )

∂τ
=

∂2u(ψ , τ )
∂ψ2 –

(
1 + λ

∂

∂τ

)
Mu(ψ , τ )

+
(

1 + λ
∂

∂τ

)
Grθ (ψ , τ ) +

(
1 + λ

∂

∂τ

)
GmC(ψ , τ ), (10)

∂θ (ψ , τ )
∂τ

=
1
Pr

∂2θ (ψ , τ )
∂ψ2 , (11)

(
1 + λ

∂

∂τ

)
S =

∂u(ψ , τ )
∂ψ

, (12)

∂C(ψ , τ )
∂τ

=
1
Sc

∂2C(ψ , τ )
∂ψ2 –

λ0

Sc
C(ψ , τ ). (13)

with conditions in dimensionless form:

u(ψ , 0) = 0, C(ψ , 0) = 0, θ (ψ , 0) = 0, (14)

u(0, τ ) = d(τ ), θ (0, τ ) = d(τ ), C(0, τ ) = 1. (15)

where

d(τ ) =

⎧⎨
⎩

τ , 0 < τ ≤ 1

1, τ > 1,

and

u(ψ , τ ) → 0, C(ψ , τ ) → 0, θ (ψ , τ ) → 0 as ψ → ∞. (16)

3 Solution of the problem
To obtain the solution of the considered problem, the Laplace transformation technique
was employed.

3.1 Exact solution of heat profile
Applying the Laplace transformation technique to write the solution of Eq. (11) with con-
ditions as Eqs. (14), (15), (16), we have

d2θ̄ (ψ , s)
dψ2 – Prsθ̄ (ψ , s) = 0. (17)

with

θ̄ (0, s) =
1 – e–s

s2 and θ̄ (ψ , s) → 0 as ψ → ∞. (18)
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and its solution is given by

θ̄ (ψ , s) = c1eψ
√

Prs + c2e–ψ
√

Prs. (19)

we applied boundary conditions for temperature given by Eq. (18) to determine the un-
known constants and obtain:

θ̄ (ψ , s) =
1
s2

(
1 – e–s)e–ψ

√
Prs. (20)

which can be written as

θ̄ (ψ , s) =
(

e–ψ
√

Prs

s2

)
– e–s

(
e–ψ

√
Prs

s2

)
,

= θ̄r(ψ , s) – e–sθ̄r(ψ , s). (21)

To obtain the required solution of Eq. (21), the Laplace inverse transformation was used,
which is written as:

θ (ψ , τ ) = θr(ψ , τ ) – θr(ψ ,)g(). (22)

with

θr(ψ , τ ) =
(

Pr

2
ψ2 + τ

)
erfc

(√
Pr

4τ
ψ

)
–

(√
Prτ

π
ψ

)
e

–Prψ2
4τ . (23)

where g() represents a standard Heaviside function and  = τ – 1.

3.1.1 Nusselt number
An expression for the Nusselt number to efficiently forecast the generalized rate of heat
transfer corresponding to ramped conditions is evaluated as:

Nu = –
∂θ (ψ , τ )

∂ψ

∣∣∣∣
ψ=0

= –
∂

∂ψ
L –1{θ̄ (ψ , s)

} ∣∣∣∣
ψ=0

= –L –1
{

∂θ̄ (ψ , s)
∂ψ

∣∣∣∣
ψ=0

}

= L –1
{

(1 – e–s)
√

Prs
s2

}

=
√

Pr

[
2
√

τ√
π

–
2
√

τ – 1√
π

H(τ – 1)
]

, (24)

where H(τ – 1) represents a standard Heaviside function.
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3.2 Exact solution of mass profile
Solving Eq. (13) using Eqs. (14), (15) and (16), and employing the Laplace transformation
technique, the resulting equations are written as:

d2C̄(ψ , s)
dψ2 – (Scs + λ0)C̄(ψ , s) = 0. (25)

with

C̄(0, s) =
1
s

and C̄(ψ , s) → 0 as ψ → ∞. (26)

the solution in general form is

C̄(ψ , s) = c1eψ
√

Scs+λ0 + c2e–ψ
√

Scs+λ0 . (27)

the values of constants c1 and c2, conditions are implemented as given in Eq. (26) for con-
centration, so

C̄(ψ , s) =
1
s

e–ψ
√

Scs+λ0 . (28)

To obtain the solution, taking the inverse Laplace transformation, we have:

C(ψ , τ ) = L –1
{

1
s

e–ψ
√

Sc
√

s+ λ0
Sc

}

=
1
2

(
e–ψ

√
Sc

√
λ0
Sc erfc

(
ψ

√
Sc

2
√

τ
–

√
λ0

Sc
τ

))

+
1
2

(
eψ

√
Sc

√
λ0
Sc erfc

(
ψ

√
Sc

2
√

τ
+

√
λ0

Sc
τ

))
. (29)

The following result, which exists in the literature, is used:

L –1
{

e–ψ
√c1

√
s+b1

s – a1

}
=

ea1τ

2

(
e–ψ

√c1
√

a1+b1 erfc

(
ψ

√c1

2
√

τ
–

√
(a1 + b1)τ

))

+
ea1τ

2

(
eψ

√c1
√

a1+b1 erfc

(
ψ

√c1

2
√

τ
+

√
(a1 + b1)τ

))
. (30)

3.3 Exact solution of velocity profile
The solution of Eq. (10) by using a Laplace transform, is:

(1 + λs)ū(ψ , s) =
d2ū(ψ , s)

dψ2 + (1 + λs)Gr θ̄ (ψ , s)

+ (1 + λs)GmC̄(ψ , s) – (1 + λs)Mū(ψ , s), (31)

d2ū(ψ , s)
dψ2 –

(
a + λs2 + bs

)
ū(ψ , s) = –(1 + λs)(Gr θ̄ + GmC̄). (32)
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by using Eqs. (21), (28) to determine the values θ̄ (ψ , s) and C̄(ψ , s), then Eq. (32) has the
general form of the solution, which is represented as:

ū(ψ , s) = c3eψ
√

(a+λs2+bs) + c4e–ψ
√

(a+λs2+bs) –
(

Gr(1 + λs)(1 – e–s)e–ψ
√

Prs

s2(Prs – (a + λs2 + bs))

)

–
(

Gm(1 + λs)e–ψ
√

Scs+λ0

s(Scs + λ0 – (a + λs2 + bs))

)
(33)

Applying ū(ψ , s) → 0, as ψ → ∞ and ū(0, s) = 1–e–s

s2 , to determine the values of unknowns
c3 and c4, we obtain:

ū(ψ , s) =
(

1 – e–s

s2

)
e–ψ

√
(a+λs2+bs) +

(
1 – e–s

s2

)(
Gr(1 + λs)(e–ψ

√
(a+λs2+bs) – e–ψ

√
Prs)

Prs – (a + λs2 + bs)

)

+
(

Gm(1 + λs)(e–ψ
√

(a+λs2+bs) – e–ψ
√

Scs+λ0 )
s(Scs + λ0 – (a + λs2 + bs))

)
. (34)

To find the Laplace inverse of Eq. (34), we rearrange the above equation as:

ū(ψ , s) = F̄(ψ , s) + Grχ̄ (ψ , s)
[
θ̄ (ψ , s) – F̄(ψ , s)

]
+ Gmξ̄ (ψ , s)

[
C̄(ψ , s) – H̄(ψ , s)

]
. (35)

Employing an inverse Laplace transformation on Eq. (35), the obtained solution is written
as:

u(ψ , τ ) = F(ψ , τ ) + Gr
[
(χ ∗ θ )(τ ) – (χ ∗ F)(τ )

]
+ Gm

[
(ξ ∗ C)(τ ) – (ξ ∗ H)(τ )

]
. (36)

with

F(ψ , τ ) = F1(ψ , τ ) – F1(ψ ,)g(). (37)

where g() represents a standard Heaviside function and  = τ – 1, also

F̄1(ψ , s) =
1
s2 e–ψ

√
a+λs2+bs (38)

=
∞∑

α=0

∞∑
β=0

∞∑
γ =0

(–ψ)α(a) α
2 –β (b)β–γ (λ)γ �( α

2 + 1)
α!γ !�(β – γ + 1)

1
s2–β–γ

, (39)

F1(ψ , τ ) =
∞∑

α=0

∞∑
β=0

∞∑
γ =0

(–ψ)α(a) α
2 –β (b)β–γ (λ)γ �( α

2 + 1)
α!γ !�(β – γ + 1)

t1–β–γ

�(2 – β – γ )
, (40)

H̄(ψ , s) =
1
s

e–ψ
√

a+λs2+bs, (41)

=
∞∑

α=0

∞∑
β=0

∞∑
γ =0

(–ψ)α(a) α
2 –β (b)β–γ (λ)γ �( α

2 + 1)
α!γ !�(β – γ + 1)

1
s1–β–γ

, (42)

H(ψ , τ ) =
∞∑

α=0

∞∑
β=0

∞∑
γ =0

(–ψ)α(a) α
2 –β (b)β–γ (λ)γ �( α

2 + 1)
α!γ !�(β – γ + 1)

t–β–γ

�(1 – β – γ )
, (43)

χ̄ (ψ , s) = (1 + λs)
1

λs2 – (Pr –b)s + a
, (44)
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=
∞∑

n=0

(–1)n(a)n

(λ)n+1
(s)–n–1

(s – ε)n+1 + λ

∞∑
n=0

(–1)n(a)n

(λ)n+1
(s)–n

(s – ε)n+1 , (45)

χ (ψ , τ ) =
∞∑

n=0

(–1)n(a)n

(λ)n+1

[
G1,–n–1,n+1(ε, τ ) + G1,–n,n+1(ε, τ )

]
, (46)

ξ̄ (ψ , s) = (1 + λs)
1

λs2 – (Sc – b)s + (a – λ0)
, (47)

=
∞∑

m=0

(–1)m(a – λ0)m

(λ)m+1
(s)–m–1

(s – δ)m+1 + λ

∞∑
m=0

(–1)m(a – λ0)m

(λ)m+1
(s)–m

(s – δ)m+1 , (48)

ξ (ψ , τ ) =
∞∑

m=0

(–1)m(a – λ0)m

(λ)m+1

[
G1,–m–1,m+1(δ, τ ) + G1,–m,m+1(δ, τ )

]
. (49)

with ε = Pr –b
λ

and δ = Sc–b
λ

, the function Gh,b,l(., τ ) used in the above expressions is known
as the generalized Lorenzo–Hartley function and is defined as L –1{ sb

(sh–j)l } = Gh,b,l(j, τ );
Re(hl – b) > 0, Re(s) > 0, | j

sh | < 1.

3.4 Solution of shear stress
In the industrial and mechanical fields, wall shear stress is of indispensable significance
and increasing shear stress is considered as a disadvantage. To estimate the wall shear
stress and skin-friction coefficient for a Maxwell fluid we employ a Laplace transform on
Eq. (12), and we have:

(1 + λs)S̄(ψ , s) =
dū(ψ , s)

dψ
. (50)

To determine the value of dū(ψ ,s)
dψ

, differentiating Eq. (34) with respect to ψ yields:

dū(ψ , s)
dψ

=
(

1 – e–s

s2

)(
–
√

§e–ψ
√

§
)

+
(

1 – e–s

s2

)(
Gr(1 + λs)(–

√
§e–ψ

√
§ +

√
Prse–ψ

√
Prs)

Prs – §

)

+
(

Gm(1 + λs)(–
√

§e–ψ
√

§ +
√

Scs + λ0e–ψ
√

Scs+λ0 )
s(Scs + λ0 – §)

)
, (51)

where § = a + λs2 + bs.
Inserting Eq. (51) into Eq. (50), gives the expression for shear stress:

S̄(ψ , s) =
(

1 – e–s

s2

)(
–
√

§e–ψ
√

§

1 + λs

)

+
(

1 – e–s

s2

)(
Gr(1 + λs)(–

√
§e–ψ

√
§ +

√
Prse–ψ

√
Prs)

(1 + λs)(Prs – §)

)

+
(

Gm(1 + λs)(–
√

§e–ψ
√

§ +
√

Scs + λ0e–ψ
√

Scs+λ0 )
s(1 + λs)(Scs + λ0 – §)

)
. (52)
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The skin-friction coefficient is estimated as

C̄f =
1

(1 + λs)
dū(ψ , s)

dψ

∣∣∣∣
ψ=0

,

=
(

1 – e–s

s2

)(
–
√

§

1 + λs

)
+

(
1 – e–s

s2

)(
Gr(1 + λs)(–

√
§ +

√
Prs)

(1 + λs)(Prs – §)

)

+
(

Gm(1 + λs)(–
√

§ +
√

Scs + λ0)
s(1 + λs)(Scs + λ0 – §)

)
. (53)

Since the solution given in Eq. (52) and Eq. (53) contains complex terms of the Laplace pa-
rameter s, to derive the solution in real time τ , we applied the numerical inversion method
known as the Durbin Method [27].

4 Limiting cases
We obtain the same expression for the velocity profile with ramped temperature, with-
out considering the effect of the mass Grashof number, i.e., Gm = 0, as obtained by Talha
Anwar et al. [24]. Also, we derive the same result for the velocity profile and temperature
distribution of a viscous fluid when λ = 0 and Gm = 0, etc. [28]. This proves the authen-
ticity of our work compared with the existing literature.

5 Results and discussion
In this work, we investigated the effects of constant concentration, ramped temperature
and velocity, on the unsteady MHD convective flow of a Maxwell fluid. The exact expres-
sions for nondimensional velocity, concentration and energy equations, in terms of the
generalized Lorenzo–Hartley function known as the G-function, are established for the
considered problem. The results are demonstrated graphically, for better understanding
of the physical significance of the proposed problem, by considering several values of dif-
ferent parameters involved in the problem, like Prandtl number ‘Pr’, the relaxation time
‘λ’, dimensionless time ‘τ ’, Schmidt number ‘Sc’, mass Grashof number ‘Gm’ and Grashof
number ‘Gr’. For various values of t the behavior of temperature, concentration and veloc-
ity are portrayed in Figs. 2 to 11.

Figure 2 Temperature and concentration profiles of a Maxwell fluid for various values of τ
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Figure 3 Temperature profiles of a Maxwell fluid for various values of Pr at two different times

Figure 4 Concentration profiles of a Maxwell fluid for various values of Sc at two different times

Figure 5 Velocity profiles of a Maxwell fluid for various values of Gm at two different times

Figure 2 represents the influence of τ on concentration and the energy equation. It is
noted that increases in time enhanced the temperature and concentration profile of the
moving fluid. Concentration and energy are both rising functions of time.

Figure 3 describes the temperature variation for various values of Pr; it is shown that
when the value of Pr increases the result is a decrease in the temperature. Generally,
the thermal outline layer thickness decreases rapidly, corresponding to high values of Pr.
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Figure 6 Velocity profiles of a Maxwell fluid for various values of Gr at two different times

Figure 7 Velocity profiles of a Maxwell fluid for various values of M at two different times

Figure 8 Velocity profiles of a Maxwell fluid for various values of Pr at two different times

Hence, increasing the value of Pr improves the boundary thickness, which causes the en-
ergy profile to slow down linearly.

Figure 4 illustrates the behavior of concentration for various values of Schmidt number
Sc; it is deceptive that for maximum values of Sc, a decay in concentration profile is noted.
This is due to the reduction in the outline layer of concentration that occurs corresponding
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Figure 9 Velocity profiles of a Maxwell fluid for various values of Sc at two different times

Figure 10 Velocity profiles of a Maxwell fluid for various values of λ at two different times

Figure 11 Velocity profile of a Maxwell fluid for various values of τ

to the increase in the value of the Schmidt number. The involvement of the concentration
factor of fluid velocity on the fluid flow is very important and it cannot be overlooked.

Figure 5 describes the effects of Gm. The mass Grashof number is generally defined as
the ratio of mass buoyancy force to viscous force, which causes unrestricted convection.
It is noted that the velocity is enhanced in the case of increasing Gm.
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Figure 6 shows the impacts of Gr. It is noted that the velocity is elevated due to the
higher value of Gr. Thermal Grashof number is the proportion of thermal buoyancy force
to viscous force, which causes free convection.

Figure 7 illustrates the variation in the velocity field for different values of M; it can be
observed that the fluid velocity declines when M is maximum, which causes an increase
in the Lorentz force that acts as a dragging force along with allied forces that leads to a
fall in the fluid velocity. Also, this force becomes weaker when this is far from the plate
surface and eventually fluid flow stops.

Figure 8 represents the influence of Pr on the momentum equation. It is noted that in-
creases in Prandtl number reduce the velocity of the moving fluid. The outline layer of the
velocity profile becomes thicker due to the small rate of thermal diffusion, Pr dominates
the relative thickness of the boundary layers of momentum in heat-transfer problems.

In Fig. 9 the action of Sc on the velocity profile is displayed and shows that the flow will
decrease as Sc increases. Physically, the Schmidt number Sc is mathematically defined as
the ratio of momentum to mass diffusivity. This layer of momentum diffusivity of the fluid
is more viscous, and as a result velocity decreases.

Figure 10 shows the behavior of the Maxwell parameter in that the velocity decreases as
the value of λ increases. This is due to a low Maxwell shear stress impact, parameter value
variation of the term λ is not too significant because of the low effect of activation energy.

Figure 11 shows the momentum field to analyze the effect of τ . A rise in the velocity
profile appears on increasing the value of τ . It has been observed that velocity increases
as a function of time.

6 Conclusions
In this paper, we analyze the effects of ramped temperature and velocity with constant
concentration on unsteady MHD convective flow on Maxwell fluids. The governing partial
differential equation is inscribed into a dimensionless form and the technique of Laplace
transformation is used to establish the analytical solution for the velocity profile, con-
centration and energy equations, in terms of the generalized Lorenzo–Hartley function
known as the G-function, for the proposed problem. The mathematical expressions for
skin-friction coefficient and Nusselt number are also given. Also, for various parameters,
i.e., Prandtl number Pr, Maxwell parameter λ, dimensionless time τ , Schmidt number Sc,
magnetic field M, mass and thermal Grashof numbers Gm and Gr, respectively, the im-
pacts of all these parameters on fluid velocity field, constant concentration and ramped
wall temperature with the help of graphical illustrations are analyzed. Some noteworthy
remarks and concluding results from this work are:

• It is shown that the temperature field declines with larger values of Pr. It is also noted
that the concentration reduces for increasing values of Sc.

• It is determined that concentration, temperature and velocity profiles are increased as
τ increases.

• It is shown that for higher values of M and λ the fluid velocity is decreased.
• Increasing values of the Grashof numbers Gr and Gm stimulate the velocity

distribution.
• The accumulative values of the parameters Sc and Pr decrease in the velocity

distribution noted.
• The involvement of the concentration factor of fluid velocity in the fluid movement is

significant and cannot be overlooked.
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