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Abstract
In this paper, we introduce the concept of lacunary statistical boundedness of
�-measurable real-valued functions on an arbitrary time scale. We also give the
relations between statistical boundedness and lacunary statistical boundedness on
time scales.
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1 Introduction
The idea of statistical convergence was formally introduced by Fast [1] and Steinhaus
[2], independently. This concept is a generalization of the classical convergence, and
it depends on the density of subsets of the natural numbers N. Let K ⊆ N and Kn =
{k ≤ n : k ∈ K}. Then the natural density of K is defined by δ(K) = limnn–1|Kn| if the limit
exists, where |Kn| indicates the cardinality of Kn. A sequence x = (xk) is said to be sta-
tistically convergent to L if, for every ε > 0, the set Kε := {k ∈N : |xk – L| ≥ ε} has natural
density zero, i.e., for each ε > 0,

lim
n

1
n

∣
∣
{

k ≤ n : |xk – L| ≥ ε
}∣
∣ = 0,

and written as st – lim x = L.
Statistical convergence has become very active in different fields of mathematics over

the years and has been studied by many researchers, see [3–21].
Before moving on to the main results of the study, we need to give a brief introduction

to time scale theory. A time scale is an arbitrary closed subset of the real numbers R in the
usual topology which is denoted by T. The calculus of time scales has been constructed
by Hilger [22]. This theory is an efficient tool to unify continuous and discrete analyses
in one theory as it allows integration and differentiation of the independent domain used.
Therefore, it has received much attention in different branches of science and engineering.
The readers can find basic calculus of time scales in [23–25]. Moreover, the idea of sta-
tistical convergence was first studied on time scales in [26] and [27], independently. Since
then, many concepts related to statistical convergence and summability theory have been
applied to time scales by various researchers in the literature [28–36].
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The forward jump operator σ : T→ T is defined by

σ (t) = inf{s ∈ T : s > t}

for t ∈ T, and also the graininess function μ : T → [0,∞) is defined by μ(t) = σ (t) – t.
A closed interval on a time scale T is given by [a, b]T = {t ∈ T : a ≤ t ≤ b}. Open intervals
or half-open intervals are defined accordingly.

In this paper, we use the Lebesgue �-measure by μ� introduced by Guseinov [24]. In this
case, it is known that if a ∈ T\{maxT}, then the single point set {a} is �-measurable and
μ�({a}) = σ (a) – a. If a, b ∈ T and a ≤ b, then μ�([a, b)T) = b – a and μ�((a, b)T) = b –σ (a);
if a, b ∈ T\{maxT} and a ≤ b, then μ�((a, b]T) = σ (b) – σ (a) and μ�([a, b]T) = σ (b) – a,
see [24].

We now recall some of the concepts defined using the time scale calculus on the summa-
bility theory:

Throughout this paper, we consider that T is a time scale satisfying infT = t0 > 0 and
supT = ∞.

Definition 1.1 ([27]) A �-measurable function f : T → R is statistically convergent to a
number L on T if, for every ε > 0,

lim
t→∞

μ�({s ∈ [t0, t]T : |f (s) – L| ≥ ε})
μ�([t0, t]T)

= 0,

which is denoted by stT – limt→∞ f (t) = L.

Let θ = (kr) be an increasing sequence of nonnegative integers with k0 = 0 and σ (kr) –
σ (kr–1) → ∞ as r → ∞. Then θ is called a lacunary sequence with respect to T [29].

Definition 1.2 ([29]) Let θ be a lacunary sequence on T. A �-measurable function f :
T →R is said to be lacunary statistically convergent to a number L if, for every ε > 0,

lim
r→∞

μ�({s ∈ (kr–1, kr]T : |f (s) – L| ≥ ε})
μ�((kr–1, kr]T)

= 0,

which is denoted by stθ–T – limt→∞ f (t) = L.

If f : T → R is a function such that f (t) satisfies a property P for all t except a set which
has zero lacunary density on time scale, then it is said that f (t) has the property P almost
all t with respect to θ .

Definition 1.3 ([28]) Let f : T → R be a �-measurable function. Then f is said to be
statistically bounded on T if there exists a number M > 0 such that

lim
t→∞

μ�({s ∈ [t0, t]T : |f (s)| > M})
μ�([t0, t]T)

= 0.

The set of all statistically bounded functions on T is denoted by ST(B).

The aim of this study is to introduce and examine the concept of lacunary statistical
boundedness on time scales.
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2 Main results
In this part, we begin by presenting a new definition, namely lacunary statistical bound-
edness on time scale. We then give some results related to this concept.

Definition 2.1 Let θ = (kr) be a lacunary sequence on T and f : T →R be a �-measurable
function. Then f is said to be lacunary statistically bounded on T if there exists a number
M > 0 such that

lim
r→∞

μ�({s ∈ (kr–1, kr]T : |f (s)| > M})
μ�((kr–1, kr]T)

= 0,

i.e., |f (s)| ≤ M (almost all s with respect to θ ). The set of all lacunary statistically bounded
functions on T is denoted by Sθ–T(B).

Remark 2.1
(i) If we take T = N in Definition 2.1, then lacunary statistical boundedness on T

reduces to lacunary statistical boundedness of sequences which is introduced in
[19].

(ii) If we choose T = [a,∞) (a > 1) in Definition 2.1, then lacunary statistical
boundedness on T reduces to lacunary statistical boundedness of measurable
functions which is introduced in [21].

Theorem 2.1 Every lacunary statistically convergent function on T is lacunary statisti-
cally bounded on T, but the converse does not need to be true.

Proof Let f : T → R be lacunary statistically convergent to M. Then, for each ε > 0, we
have

lim
r→∞

μ�({s ∈ (kr–1, kr]T : |f (s) – M| > ε})
μ�((kr–1, kr]T)

= 0.

From the fact that

{

s ∈ (kr–1, kr]T :
∣
∣f (s)

∣
∣ > ε + M

} ⊆ {

s ∈ (kr–1, kr]T :
∣
∣f (s) – M

∣
∣ > ε

}

,

we obtain that |f (s)| ≤ ε + M (almost all s with respect to θ ) which is the desired result.
For the converse, we consider the following example: Let f (s) = (–1)s be a function where
s ∈ T = N. Then f is lacunary statistically bounded, but it is not a lacunary statistically
convergent function. �

Theorem 2.2 Let θ = (kr) be a lacunary sequence on T and f : T→ R be a �-measurable
function. Then f is lacunary statistically bounded if and only if there exists a bounded
function g : T→ R such that f (s) = g(s) almost all s with respect to θ .

Proof First assume that f is lacunary statistically bounded. Then there exists M ≥ 0 such
that δθ–T(K) = 0, where K = {s ∈ T : |f (s)| > M}. Let us consider the function g : T → R

defined as follows:

g(s) =

⎧

⎨

⎩

f (s), if s /∈ K ;

0, otherwise.
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It is clear that g is a �-measurable bounded function, and f (s) = g(s) almost all s with
respect to θ . Conversely, since g is bounded, there exists L ≥ 0 such that |g(s)| ≤ L for all
s ∈ T. Let D = {s ∈ T : f (s) �= g(s)}. As δθ–T(D) = 0, so |f (s)| ≤ L almost all s with respect to θ .
This means that f is lacunary statistically bounded. �

Theorem 2.3 Let θ = (kr) be a lacunary sequence on T. Then we have

ST(B) ⊂ Sθ–T(B) ⇔ lim inf
r→∞

σ (kr)
σ (kr–1)

> 1.

Proof Sufficiency. The sufficiency part of this theorem can be proved using a similar tech-
nique to Lemma 3.1 of [30].

Necessity. Conversely, assume that lim infr→∞ σ (kr)
σ (kr–1) = 1. Let us now select a subse-

quence (kr(j)) of θ = (kr) satisfying

σ (kr(j)) – t0

σ (kr(j)–1) – t0
< 1 +

1
j

and
σ (kr(j)–1) – t0

σ (kr(j–1)) – t0
> j,

where r(j) > r(j – 1) + 1.
Let us define �-measurable function f : T →R by

f (s) =

⎧

⎨

⎩

s, s ∈ (kr(j)–1, kr(j)]T for j = 1, 2, 3, . . . ;

0, otherwise.

Now, for any M > 0, there exists j0 ∈N such that kr(j0)–1 > M. If r = r(j), we have

1
μ�((kr(j0)–1, kr(j0)]T)

μ�(
{

s ∈ (

kr(j0)–1, kr(j0)]T :
∣
∣f (s)

∣
∣ > M

})

≥ 1
μ�((kr(j0)–1, kr(j0)]T)

μ�(
{

s ∈ (

kr(j0)–1, kr(j0)]T :
∣
∣f (s)

∣
∣ > kr(j0)–1

})

= 1,

and therefore

1
μ�((kr(j)–1, kr(j)]T)

μ�(
{

s ∈ (

kr(j)–1, kr(j)]T :
∣
∣f (s)

∣
∣ > M

})

= 1

for all j ≥ j0. Also, if r �= r(j), then we get

μ�({s ∈ (kr–1, kr]T : |f (s)| > M})
μ�((kr–1, kr]T)

= 0.

Hence, f /∈ Sθ–T(B).
Indeed, for any sufficiently t ∈ T, we can find a unique j ∈ N for which kr(j)–1 < t ≤

kr(j+1)–1, and we can write

1
μ�([t0, t]T)

μ�

({

s ∈ [t0, t]T :
∣
∣f (s)

∣
∣ >

t0

2

})

≤ 1
μ�([t0, kr(j)–1]

T
)
μ�

({

s ∈ [t0, kr(j–1)]T :
∣
∣f (s)

∣
∣ >

t0

2

})
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+
1

μ�([t0, kr(j)–1]
T

)
μ�

({

s ∈ (kr(j)–1, kr(j)]T :
∣
∣f (s)

∣
∣ >

t0

2

})

=
σ (kr(j–1)) – t0

σ (kr(j)–1) – t0
+

σ (kr(j)) – σ (kr(j)–1)
σ (kr(j)–1) – t0

≤ 1
j

+
σ (kr(j)) – t0

σ (kr(j)–1) – t0
– 1

<
1
j

+
1
j

=
2
j

.

Since t → ∞ implies j → ∞, we have f ∈ ST(B). Therefore, we find ST(B) �⊂ Sθ–T(B), which
is a contradiction. �

Remark 2.2 The function f : T → R given in the necessity part of Theorem 2.3 is an ex-
ample of a statistically bounded function which is not lacunary statistically bounded.

Theorem 2.4 Let θ = (kr) be a lacunary sequence on T such that μ(t) ≤ Kt for some K > 0
and for all t ∈ T. Then we have

Sθ–T(B) ⊂ ST(B) ⇔ lim sup
r→∞

σ (kr)
σ (kr–1)

< ∞.

Proof Sufficiency. The sufficiency part of this theorem can be proved using a similar tech-
nique to Lemma 3.2 of [30].

Necessity. Conversely, assume that lim supr→∞
σ (kr)

σ (kr–1) = ∞. By the hypothesis, we can get

kr

σ (kr–1)
=

kr

σ (kr)
σ (kr)

σ (kr–1)
≥ 1

(K + 1)
σ (kr)

σ (kr–1)
,

and so

lim sup
r→∞

kr

σ (kr–1)
= ∞.

Let us select a subsequence (kr(j)) of θ = (kr) such that kr(j)
σ (kr(j)–1) > j.

Now define �-measurable function f : T →R by

f (s) =

⎧

⎨

⎩

s, s ∈ (kr(j)–1, 2σ (kr(j)–1))T for j = 1, 2, 3, . . . ;

0, otherwise.

Letting

τr =
1

μ�((kr–1, kr]T)
μ�

({

s ∈ (kr–1, kr]T :
∣
∣f (s)

∣
∣ >

t0

2

})

.

If r �= r(j), then we can easily see that τr = 0. If r = r(j), then we get

τr =
1

μ�((kr–1, kr]T)
μ�

({

s ∈ (kr–1, kr]T :
∣
∣f (s)

∣
∣ >

t0

2

})
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=
1

μ�((kr(j)–1, kr(j)]T)
μ�

({

s ∈ (

kr(j)–1, 2σ (kr(j)–1)
)

T
:
∣
∣f (s)

∣
∣ >

t0

2

})

=
μ�((kr(j)–1, 2σ (kr(j)–1))

T
)

μ�((kr(j)–1, kr(j)]T)
.

Here, there are two possible cases: 2σ (kr(j)–1) ∈ T and 2σ (kr(j)–1) /∈ T. Let us now examine
these: If 2σ (kr(j)–1) ∈ T, then we find

μ�

((

kr(j)–1, 2σ (kr(j)–1)
)

T

)

= σ (kr(j)–1),

and so

τr =
μ�((kr(j)–1, 2σ (kr(j)–1))

T
)

μ�((kr(j)–1, kr(j)]T)

=
σ (kr(j)–1)

σ (kr(j)) – σ (kr(j)–1)

≤ σ (kr(j)–1)
kr(j) – σ (kr(j)–1)

<
1

j – 1
→ 0 (as j → ∞).

If 2σ (kr(j)–1) /∈ T, then we can write

(

kr(j)–1, 2σ (kr(j)–1)
)

T
= (kr(j)–1,αj]T,

where αj := max{s ∈ T : s < 2σ (kr(j)–1)}. Therefore, using the hypothesis, we get

μ�

((

kr(j)–1, 2σ (kr(j)–1)
)

T

)

= μ�((kr(j)–1,αj]T)

= σ (αj) – σ (kr(j)–1)

≤ (K + 1)αj – σ (kr(j)–1)

≤ 2(K + 1)σ (kr(j)–1) – σ (kr(j)–1)

= (2K + 1)σ (kr(j)–1),

and so

τr =
μ�((kr(j)–1, 2σ (kr(j)–1))

T
)

μ�((kr(j)–1, kr(j)]T)
≤ (2K + 1)σ (kr(j)–1)

σ (kr(j)) – σ (kr(j)–1)
<

2K + 1
j – 1

→ 0 (as j → ∞).

Thus, we get that f ∈ Sθ–T(B).
On the other hand, for any real M > 0, there exists some j0 ∈ N such that kr(j)–1 > M for

all j ≥ j0. Then we have

1
μ�([t0, 2σ (kr(j)–1)]

T
)
μ�

({

s ∈ [

t0, 2σ (kr(j)–1)
]

T
:
∣
∣f (s)

∣
∣ > M

})

≥ 1
μ�([t0, 2σ (kr(j)–1)]

T
)
μ�

({

s ∈ (

kr(j)–1, 2σ (kr(j)–1)
)

T
:
∣
∣f (s)

∣
∣ > kr(j)–1

})

=
μ�((kr(j)–1, 2σ (kr(j)–1))

T
)

μ�([t0, 2σ (kr(j)–1)]
T

)
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for all j ≥ j0. Here, if 2σ (kr(j)–1) ∈ T, then

1
μ�([t0, 2σ (kr(j)–1)]

T
)
μ�

({

s ∈ [

t0, 2σ (kr(j)–1)
]

T
:
∣
∣f (s)

∣
∣ > M

})

=
μ�((kr(j)–1, 2σ (kr(j)–1))

T
)

μ�([t0, 2σ (kr(j)–1)]
T

)

=
σ (kr(j)–1)

σ (2σ (kr(j)–1)) – t0

≥ σ (kr(j)–1)
2(K + 1)σ (kr(j)–1)

=
1

2(K + 1)
.

If 2σ (kr(j)–1) /∈ T, then we can write

μ�

((

kr(j)–1, 2σ (kr(j)–1)
)

T

)

= μ�

(

(kr(j)–1,βj)T
)

and

μ�

([

t0, 2σ (kr(j)–1)
]

T

)

= μ�

(

[t0,αj]T
)

,

where αj is the same as in the above and βj := min{s ∈ T : s > 2σ (kr(j)–1)}. Hence, if
2σ (kr(j)–1) /∈ T, then we have

1
μ�([t0, 2σ (kr(j)–1)]

T
)
μ�

({

s ∈ [

t0, 2σ (kr(j)–1)
]

T
:
∣
∣f (s)

∣
∣ > M

})

=
μ�((kr(j)–1, 2σ (kr(j)–1))

T
)

μ�([t0, 2σ (kr(j)–1)]
T

)

=
μ�((kr(j)–1,βj)T)

μ�([t0,αj]T)

=
βj – σ (kr(j)–1)

σ (αj) – t0

≥ 2σ (kr(j)–1) – σ (kr(j)–1)
(K + 1)αj

≥ σ (kr(j)–1)
2(K + 1)σ (kr(j)–1)

=
1

2(K + 1)
.

Therefore, we get that f /∈ ST(B). Consequently, we find that Sθ–T(B) �⊂ ST(B), which is a
contradiction. �

Remark 2.3 The function f : T → R given in the necessity part of Theorem 2.4 is an ex-
ample of a lacunary statistically bounded function which is not statistically bounded.
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Theorem 2.5 Let θ = (kr) and θ ′ = (lr) be two lacunary sequences on T such that
(kr–1, kr]T ⊂ (lr–1, lr]T for all r ∈N. Then we have the following:

(i) If lim infr→∞ μ�((kr–1,kr]T)
μ�((lr–1,lr]T) > 0, then Sθ ′–T(B) ⊆ Sθ–T(B).

(ii) If limr→∞ μ�((kr–1,kr]T)
μ�((lr–1,lr]T) = 1, then Sθ–T(B) ⊆ Sθ ′–T(B).

Proof (i) Suppose that (kr–1, kr]T ⊂ (lr–1, lr]T for all r ∈ N and lim infr→∞ μ�((kr–1,kr]T)
μ�((lr–1,lr]T) > 0.

For M > 0, we have

{

s ∈ (kr–1, kr]T :
∣
∣f (s)

∣
∣ > M

} ⊆ {

s ∈ (lr–1, lr]T :
∣
∣f (s)

∣
∣ > M

}

,

and so

1
μ�((kr–1, kr]T)

μ�(
{

s ∈ (

kr–1, kr]
T

:
∣
∣f (s)

∣
∣ > M

})

≤ μ�((lr–1, lr]T)
μ�((kr–1, kr]T)

1
μ�((lr–1, lr]T)

{

s ∈ (lr–1, lr]T :
∣
∣f (s)

∣
∣ > M

}

for all r ∈ N. Now, taking the limit as r → ∞, we get Sθ ′–T(B) ⊆ Sθ–T(B).
(ii) Suppose that (kr–1, kr]T ⊂ (lr–1, lr]T for all r ∈N and limr→∞ μ�((kr–1,kr]T)

μ�((lr–1,lr]T) = 1. For M >
0, we may write

1
μ�((lr–1, lr]T)

μ�(
{

s ∈ (

lr–1, lr]
T

:
∣
∣f (s)

∣
∣ > M

})

=
1

μ�((lr–1, lr]T)
μ�(

{

s ∈ (

lr–1, kr–1]
T

:
∣
∣f (s)

∣
∣ > M

})

+
1

μ�((lr–1, lr]T)
μ�(

{

s ∈ (

kr–1, kr]
T

:
∣
∣f (s)

∣
∣ > M

})

+
1

μ�((lr–1, lr]T)
μ�(

{

s ∈ (

kr , lr]
T

:
∣
∣f (s)

∣
∣ > M

})

≤ μ�((lr–1, kr–1]T)
μ�((lr–1, lr]T)

+
1

μ�((lr–1, lr]T)
μ�(

{

s ∈ (

kr–1, kr]
T

:
∣
∣f (s)

∣
∣ > M

})

+
μ�((kr , lr]T)
μ�((lr–1, lr]T)

=
μ�((lr–1, lr]T) – μ�((kr–1, kr]T)

μ�((lr–1, lr]T)
+

1
μ�((lr–1, lr]T)

μ�(
{

s ∈ (

kr–1, kr]
T

:
∣
∣f (s)

∣
∣ > M

})

≤
(

1 –
μ�((kr–1, kr]T)
μ�((lr–1, lr]T)

)

+
1

μ�((kr–1, kr]T)
μ�(

{

s ∈ (

kr–1, kr]
T

:
∣
∣f (s)

∣
∣ > M

})

for all r ∈ N. Since limr→∞ μ�((kr–1,kr]T)
μ�((lr–1,lr ]T) = 1, if f ∈ Sθ–T(B), then we get f ∈ Sθ ′–T(B). Thus,

this implies that Sθ–T(B) ⊆ Sθ ′–T(B). �
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