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Abstract
The aim of this paper is to investigate the boundary value problem of a fractional
q-difference equation with φ-Laplacian, where φ-Laplacian is a generalized
p-Laplacian operator. We obtain the existence and nonexistence of positive solutions
in terms of different eigenvalue intervals for this problem by means of the Green
function and Guo–Krasnoselskii fixed point theorem on cones. Finally, we give some
examples to illustrate the use of our results.
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1 Introduction
The theory of q-calculus has been developed for more than 100 years; see [1]. As a branch
of q-calculus, fractional q-calculus was first proposed by Al-Salam and Agarwal in the
1960s; see [2, 3]. Fractional q-calculus has a wide range of applications in many fields,
such as cosmic strings and black holes, quantum theory, aerospace dynamics, biology,
economics, control theory, medicine, electricity, signal processing, image processing, bio-
physics, blood flow phenomenon, and so on; see [4–10] and the references therein. The
fractional q-difference equations are very important, and their basic theory has been con-
tinuously developed. Recently, as a new research direction, the solvability of boundary
value problems (BVPs) of fractional q-difference equations have been widely concerned
by scholars at home and abroad, and some conclusions have been obtained; see [11–14].
However, there are a few studies of eigenvalue problems for fractional q-difference equa-
tions with φ-Laplacian operator, and lots of work should be done.

In 2013, Li et al. [15] studied some positive solutions for a class of nonlinear fractional q-
difference equations with parameters involving the Riemann–Liouville fractional deriva-
tive by means of a fixed theorem in cones,

⎧
⎨

⎩

(Dα
q u)(x) + λf (u(x)) = 0, 0 < x < 1,

u(0) = (Dqu)(0) = (Dqu)(1) = 0,
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where 2 < α ≤ 3, and f : [0, 1] × R → R is a nonnegative continuous function.
In 2015, Wang et al. [16] obtained the existence and uniqueness of solutions for a class

of singular BVPs of nonlinear fractional q-difference equations by a fixed point theorem
in partially ordered sets,

⎧
⎨

⎩

(Dα
q u)(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0, (Dqu)(0) = 0,

where 2 < α ≤ 3, and f : [0, 1] × [0, +∞) → [0, +∞) is continuous with limt→0+ f (t, ·) = ∞.
In 2015, Han et al. [17] used the Green function and Guo–Krasnoselskii fixed-point the-

orem on cones to study solutions for eigenvalue problems of fractional differential equa-
tions with generalized p-Laplacian

⎧
⎨

⎩

Dβ

0+ (φ(Dα
0+ u(t))) = λf (u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0, φ(Dα
0+ u(0)) = (φ(Dα

0+ u(1)))′ = 0,
(1.1)

where 0 < q < 1, 2 < α ≤ 3, 1 < β ≤ 2, λ > 0 is a parameter, and Dβ

0+ and Dα
0+ are the standard

Riemann–Liouville fractional derivatives.
Motivated by the work above, in this paper, we investigate the following BVP of fractional

q-difference equation with φ-Laplacian:

⎧
⎨

⎩

Dβ
q (φ(Dα

q u(t))) = λf (u(t)), 0 < t < 1,

u(0) = Dqu(0) = Dqu(1) = 0, φ(Dα
q u(0)) = Dq(φ(Dα

q u(1))) = 0,
(1.2)

where 0 < q < 1, 2 < α ≤ 3, 1 < β ≤ 2, λ > 0 is a parameter, and Dβ
q , Dα

q are the standard
Riemann–Liouville fractional q-derivatives. As q → 1–, problem (1.2) reduces to prob-
lem (1.1).

In this paper, we always assume that
(A1) φ : R → R is an odd increasing homeomorphism, and there exist two increasing

homeomorphisms ψ1, ψ2 : (0,∞) → (0,∞) such that

ψ1(x)φ(y) ≤ φ(xy) ≤ ψ2(x)φ(y), x, y > 0;

(A2) f : (0, +∞) → (0, +∞) is a continuous function.
A function φ satisfying (A1) is called a generalized p-Laplacian operator. Two important

cases are φ(u) = u and φ(u) = |u|p–2u (p > 1); see [18] and the references therein.
We aim to obtain the existence of at least one or two positive solutions in terms of dif-

ferent eigenvalue intervals using the Green function and Guo–Krasnoselskii fixed point
theorem on cones. We also consider the nonexistence of positive solutions in terms of the
parameter λ. Finally, we give some examples to illustrate our main results.

2 Preliminary results
In this section, we cite some definitions and fundamental results of the q-calculus and
fractional q-calculus.
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Definition 2.1 ([1]) For 0 < q < 1, we define the q-derivative of a real-valued function f as

(Dqf )(x) =
f (x) – f (qx)

(1 – q)x
, (Dqf )(0) = lim

x→0
(Dqf )(x).

Note that limq→1– Dqf (x) = f ′(x).

Definition 2.2 ([1]) The q-integral of a function f in the interval [0, b] is given by

(Iqf )(x) =
∫ x

0
f (t) dqt = x(1 – q)

∞∑

n=0

f
(
xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], then its integral from a to b is defined
as

∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt –

∫ a

0
f (t) dqt.

More definitions and properties of q-calculus can be found in [1]. In recent years, some
results of q-calculus have been obtained; see [18–20] and the references therein.

Definition 2.3 ([10]) Let α ≥ 0, and let f be a function on [0, 1]. The fractional q-integral
of the Riemann–Liouville type is defined by (I0

q f )(x) = f (x) and

(
Iα

q f
)
(x) =

1
�q(α)

∫ x

0
(x – qt)(α–1)f (t) dqt, α > 0, x ∈ [0, 1].

Definition 2.4 ([21]) The fractional q-derivative of the Riemann–Liouville type of order
α ≥ 0 is defined by (D0

qf )(x) = f (x) and

(
Dα

q f
)
(x) =

(
Dm

q Im–α
q f

)
(x), α > 0,

where m is the smallest integer greater than or equal to α.

Lemma 2.1 ([10, 21]) Let α,β ≥ 0, and let f be a continuous differentiable function
on [0, 1]. Then we have the following formulas:

1. (Iβ
q Iα

q f )(x) = (Iα+β
q f )(x),

2. (Dα
q Iα

q f )(x) = f (x).

Lemma 2.2 ([22]) Let f : [0, 1] → R be differentiable, let p be a positive integer, and let
α > p – 1. Then

(
Iα

q Dp
qf

)
(x) =

(
Dp

qIα
q f

)
(x) –

p–1∑

k=0

xα–p+k

�q(α + k – p + 1)
(
Dk

qf
)
(0).

Lemma 2.3 ([23]) Let α ∈ R+, n := �α	. Then

(
Iα

q Dα
q f

)
(x) = f (x) –

n∑

j=1

Dα–j
q f

(
0+) xα–j

�q(α – j + 1)
.
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Lemma 2.4 ([22]) Let α ≥ 0. Then we have the following three formulas:

[
a(t – s)

](α) = aα(t – s)(α),

tDq(t – s)(α) = [α]q(t – s)(α–1),

xDq

∫ x

0
f (x, t) dqt =

∫ x

0
xDqf (x, t) dqt + f (qx, x).

Remark 2.1 ([22]) Note that if α ≥ 0 and a ≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α).

Lemma 2.5 Let y ∈ Cq[0, 1], 2 < α ≤ 3, 1 < β ≤ 2. Then the BVP

⎧
⎨

⎩

Dβ
q (φ(Dα

q u(t))) = λy(t), 0 < t < 1,

u(0) = (Dqu)(0) = Dqu(1) = 0, φ(Dα
q u(0)) = Dq(φ(Dα

q u(1))) = 0,
(2.1)

has a unique solution

u(t) =
∫ 1

0
G(t, qs)φ–1

(

λ

∫ 1

0
H(s, qτ )y(τ ) dqτ

)

dqs,

where

H(s, τ ) =
1

�q(β)

⎧
⎨

⎩

sβ–1(1 – τ )(β–2) – (s – τ )(β–1), τ ≤ s,

sβ–1(1 – τ )(β–2), τ ≥ s,
(2.2)

G(t, s) =
1

�q(α)

⎧
⎨

⎩

tα–1(1 – s)(α–2) – (t – s)(α–1), s ≤ t,

tα–1(1 – s)(α–2), s ≥ t.
(2.3)

Proof By Lemma 2.3 we have

φ
(
Dα

q u(t)
)

= C1tβ–1 + C2tβ–2 + λ

∫ t

0

(t – qτ )(β–1)

�q(β)
y(τ ) dqτ .

Using Lemma 2.4 and the boundary conditions φ(Dα
q u(0)) = Dq(φ(Dα

q u(1))) = 0, we get that

C2 = 0, C1 = –λ

∫ 1

0

(1 – qτ )(β–2)

�q(β)
y(τ ) dqτ .

So we can obtain

φ
(
Dα

q u(t)
)

= –λ

∫ 1

0

tβ–1(1 – qτ )(β–2)

�q(β)
y(τ ) dqτ + λ

∫ t

0

(t – qτ )(β–1)

�q(β)
y(τ ) dqτ

= –λ

∫ 1

0
H(t, qτ )y(τ ) dqτ .

Further, from

Dα
q u(t) = –φ–1

(

λ

∫ 1

0
H(t, qτ )y(τ ) dqτ

)
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by Lemma 2.3 we have

u(t) = C3tα–1 + C4tα–2 + C5tα–3 –
∫ t

0

(t – qs)(α–1)

�q(α)
φ–1

(

λ

∫ 1

0
H(s, qτ )y(τ ) dqτ

)

dqs.

Using the boundary condition u(0) = (Dqu)(0) = Dqu(1) = 0, we get

C5 = 0, C4 = 0, C3 =
∫ 1

0

(1 – qs)(α–2)

�q(α)
φ–1

(

λ

∫ 1

0
H(s, qτ )y(τ ) dqτ

)

dqs,

so we have

u(t) =
∫ 1

0

tα–1(1 – qs)(α–2)

�q(α)
φ–1

(

λ

∫ 1

0
H(s, qτ )y(τ ) dqτ

)

dqs

–
∫ t

0

(t – qs)(α–1)

�q(α)
φ–1

(

λ

∫ 1

0
H(s, qτ )y(τ ) dqτ

)

dqs

=
∫ 1

0
G(t, qs)φ–1

(

λ

∫ 1

0
H(s, qτ )y(τ ) dqτ

)

dqs. �

Lemma 2.6 Let 2 < α ≤ 3. The functions G(t, qs) and H(s, qτ ) defined by (2.2) and (2.3),
respectively, are continuous on [0, 1] × [0, 1] and satisfy

(i) G(t, qs) ≥ 0, H(s, qτ ) ≥ 0 for t, s, τ ∈ [0, 1];
(ii) G(t, qs) ≤ G(1, qs), H(s, qτ ) ≤ H(qτ , qτ ) for t, s, τ ∈ [0, 1];

(iii) G(t, qs) ≥ k(t)G(1, qs), H(s, qτ ) ≥ sβ–1H(1, qτ ), where k(t) = tα–1, for t, s, τ ∈ [0, 1].

Proof (i) Let

g1(t, qs) = tα–1(1 – qs)(α–2) – (t – qs)(α–1), s ≤ t,

g2(t, qs) = tα–1(1 – qs)(α–2), s ≥ t.

It is clear that g2(t, qs) ≥ 0 for t, s ∈ [0, 1]. If s ≤ t, then in view of Remark 2.1, for t 
= 0,

g1(t, qs) = tα–1(1 – qs)(α–2) – (t – qs)(α–1)

= tα–1(1 – qs)(α–2) – tα–1(1 – qs/t)(α–1)

≥ tα–1[(1 – qs)(α–2) – (1 – qs)(α–1)]

≥ 0.

Therefore G(t, qs) ≥ 0. In the same way, we can obtain that H(s, qτ ) ≥ 0.
(ii) Fix s ∈ [0, 1]. For t 
= 0, we have

tDqg1(t, qs) = [α – 1]qtα–2(1 – qs)(α–2) – [α – 1]q(t – qs)(α–2)

= [α – 1]qtα–2(1 – qs)(α–2) – [α – 1]qtα–2
(

1 –
qs
t

)(α–2)

= [α – 1]qtα–2
[

(1 – qs)(α–2) –
(

1 –
qs
t

)(α–2)]

≥ 0
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and

tDqg2(t, qs) = [α – 1]qtα–2(1 – qs)(α–2) ≥ 0.

Therefore g1(t, qs), g2(t, qs) are increasing functions of t for s ∈ [0, 1]. Thus G(t, qs) ≤
G(1, qs). In the same way, we get that H(s, qτ ) ≤ H(qτ , qτ ).

(iii) Suppose that s ≤ t. Then

G(t, qs)
G(1, qs)

=
tα–1(1 – qs)(α–2) – (t – qs)(α–1)

(1 – qs)(α–2) – (1 – qs)(α–1)

=
tα–1(1 – qs)(α–2) – tα–1(1 – qs

t )(α–1)

(1 – qs)(α–2) – (1 – qs)(α–1)

≥ tα–1.

For the other circumstance, we also get G(t, qs) ≥ tα–1G(1, qs). In the same way, we get that
H(s, qτ ) ≥ sβ–1H(1, qτ ). The proof is completed. �

Lemma 2.7 ([17]) Assume that (A1) holds. Then

ψ–1
2 (x)y ≤ φ–1(xφ(y)

) ≤ ψ–1
1 (x)y, x, y ∈ (0,∞).

Theorem 2.1 ([24] (Krasnoselskii)) Let E be a Banach space, and let K ∈ E be a cone in
E. Let 	1 and 	2 be open subsets of E with 0 ∈ 	1 and 	1 ⊂ 	2. Let T : K ∩ (	2\	1) → K
be a completely continuous operator. In addition, suppose that either

(H1) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂	1 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂	2 or
(H2) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂	2 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂	1.
Then T has a fixed point in K ∩ (	2\	1).

3 Main results
In this section, we consider the existence of at least one or two positive solutions or no
positive solution for the BVP (1.1).

Let the Banach space E = Cq[0, 1] be endowed with norm ‖u‖ = max0≤t≤1 |u(t)|. Define
the cone

P =
{

u ∈ E | u(t) ≥ k(t)‖u‖, t ∈ [0, 1]
} ⊂ E.

Let Tλ : P → P be the operator defined by

Tλu(t) :=
∫ 1

0
G(t, qs)φ–1

(

λ

∫ 1

0
H(s, qτ )f

(
u(τ )

)
dqτ

)

dqs.

Lemma 3.1 Assume that (A2) holds. Then Tλ : P → P is completely continuous.

Proof By Lemma 2.6 we have

(Tλu)(t) ≥ tα–1
∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(s, qτ )f

(
u(τ )

)
dqτ

)

dqs = k(t)
∥
∥Tλu(t)

∥
∥.
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Thus Tλ(P) ⊂ P. In view of the nonnegativeness and continuity of G(t, qs), H(s, qτ ),
and f (u(τ )), we have that Tλ : P → P is continuous.

Next, we prove that Tλ is uniformly bounded.
Let 	 ⊂ P be bounded, that is, there exists a positive constant M > 0 such that ‖u‖ ≤ M

for all u ∈ 	. Set L = max0≤u≤M |f (u)| + 1. Then, for u ∈ 	 and all t ∈ [0, 1], we have

∣
∣Tλu(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t, qs)φ–1

(

λ

∫ 1

0
H(s, qτ )f

(
u(τ )

)
dqτ

)

dqs
∣
∣
∣
∣

≤ ψ–1
1 (λL)

∫ 1

0
G(t, qs)φ–1

(∫ 1

0
H(s, qτ ) dqτ

)

dqs

≤ ψ–1
1 (λL)

∫ 1

0
G(1, qs)φ–1

(∫ 1

0
H(qτ , qτ ) dqτ

)

dqs

< +∞.

Hence Tλ(	) is uniformly bounded.
On the other hand, we prove that Tλ is equicontinuous.
Since G(t, qs) is continuous on [0, 1] × [0, 1], it is uniformly continuous on [0, 1] × [0, 1].

Thus, for any ε > 0, there exists a constant δ > 0 such that t1, t2 ∈ [0, 1] with |t1 – t2| < δ

imply

∣
∣G(t2, qs) – G(t1, qs)

∣
∣ <

ε

ψ–1
1 (λL)φ–1(

∫ 1
0 H(qτ , qτ ) dqτ )

.

Then, for all u ∈ 	,

∣
∣Tλu(t2) – Tλu(t1)

∣
∣ ≤

∫ 1

0

∣
∣G(t2, qs) – G(t1, qs)

∣
∣φ–1

(

λ

∫ 1

0
H(s, qτ )f

(
u(τ )

)
dqτ

)

dqs

≤ ψ–1
1 (λL)

∫ 1

0

∣
∣G(t2, qs) – G(t1, qs)

∣
∣φ–1

(∫ 1

0
H(qτ , qτ ) dqτ

)

dqs

= ψ–1
1 (λL)φ–1

(∫ 1

0
H(qτ , qτ ) dqτ

)∫ 1

0

∣
∣G(t2, qs) – G(t1, qs)

∣
∣dqs

< ε.

Hence Tλ(	) is equicontinuous. By the Arzelà–Ascoli theorem we have that Tλ : P → P is
completely continuous. The proof is completed. �

For convenience, we denote

F0 = lim
u→0+

sup
f (u)
φ(u)

, F∞ = lim
u→+∞ sup

f (u)
φ(u)

,

f0 = lim
u→0+

inf
f (u)
φ(u)

, f∞ = lim
u→+∞ inf

f (u)
φ(u)

,

A1 =
∫ 1

0
G(1, qs)ψ–1

1

(∫ 1

0
H(qτ , qτ ) dqτ

)

dqs,

A2 = k(δ)
∫ 1

0
ψ–1

2
(
sβ–1)G(1, qs)ψ–1

2

(∫ 1

0
ψ1

(
τα–1)H(1, qτ ) dqτ

)

dqs,
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A3 = k(δ)
∫ 1

0
ψ–1

2
(
sβ–1)G(1, qs)ψ–1

2

(∫ 1

0
H(1, qτ ) dqτ

)

dqs.

Theorem 3.1 Assume that (A1), (A2), and f∞ψ1(A–1
1 ) > F0ψ2(A–1

2 ) hold. Then for each

λ ∈ (
ψ2

(
A–1

2
)
f –1
∞ ,ψ1

(
A–1

1
)
F–1

0
)
, (3.1)

the BVP of fractional q-difference Eq. (1.1) has at least one positive solution. Here we impose
that f –1∞ = 0 if f∞ = +∞ and F–1

0 = +∞ if F0 = 0.

Proof Let λ satisfy (3.1), and let ε > 0 be such that

ψ2
(
A–1

2
)
(f∞ – ε)–1 ≤ λ ≤ ψ1

(
A–1

1
)
(F0 + ε)–1. (3.2)

We separate the proof into two steps.
(1) By the definition of F0 there exists r1 > 0 such that

f (u) ≤ (F0 + ε)φ(u), 0 < u < r1. (3.3)

If u ∈ P with ‖u‖ = r1, then from (3.2) and (3.3) we obtain

∥
∥Tλu(t)

∥
∥ ≤

∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ )f

(
u(τ )

)
dqτ

)

dqs

≤
∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ )(F0 + ε)φ(r1)

)

dqτ ) dqs

≤ ψ–1
1

(
λ(F0 + ε)

)
∫ 1

0
G(1, qs)φ–1

(∫ 1

0
H(qτ , qτ )φ(r1)

)

dqτ ) dqs

≤ ψ–1
1

(
λ(F0 + ε)

)
r1

∫ 1

0
G(1, qs)ψ–1

1

(∫ 1

0
H(qτ , qτ ) dqτ

)

dqs

= ψ–1
1

(
λ(F0 + ε)

)
A1r1 ≤ r1 = ‖u‖.

Let 	1 = {u ∈ E | ‖u‖ < r1}. Then

‖Tλu‖ ≤ ‖u‖, u ∈ P ∩ ∂	1. (3.4)

(2) By the definition of f∞ there exists r3 > 0 such that

f (u) ≥ (f∞ – ε)φ(u), u > r3. (3.5)

If u ∈ P with ‖u‖ = r2 = max{2r1, r3}, then from (3.2) and (3.5) we obtain

∥
∥Tλu(t)

∥
∥ ≥

∫ 1

0
k(δ)G(1, qs)φ–1

(

λ

∫ 1

0
H(s, qτ )f

(
u(τ )

)
dqτ

)

dqs

≥
∫ 1

0
k(δ)G(1, qs)φ–1

(

λ

∫ 1

0
sβ–1H(1, qτ )(f∞ – ε)φ

(
τα–1‖u‖)dqτ

)

dqs

≥
∫ 1

0
k(δ)G(1, qs)φ–1

(

λ

∫ 1

0
sβ–1H(1, qτ )(f∞ – ε)ψ1

(
τα–1)φ(r2) dqτ

)

dqs
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≥ ψ–1
2

(
λ(f∞ – ε)

)
r2k(δ)

×
∫ 1

0
ψ–1

2
(
sβ–1)G(1, qs)ψ–1

2

(∫ 1

0
H(1, qτ )ψ1

(
τα–1)dqτ

)

dqs

= ψ–1
2

(
λ(f∞ – ε)

)
A2r2 ≥ r2 = ‖u‖.

Let 	2 = {u ∈ E | ‖u‖ < r2}. Then

‖Tλu‖ ≥ ‖u‖, u ∈ P ∩ ∂	2. (3.6)

From (3.4) and (3.6) and from Theorem 2.1 we have that Tλ has a fixed point u ∈ P ∩
(	2 \ 	1) with r1 ≤ ‖u‖ ≤ r2 and that u is a positive solution for the BVP of fractional
q-difference Eq. (1.1). The proof is completed. �

Theorem 3.2 Assume that (A1), (A2), and f0ψ1(A–1
1 ) > F∞ψ2(A–1

2 ) hold. Then for each

λ ∈ (
ψ2

(
A–1

2
)
f –1
0 ,ψ1

(
A–1

1
)
F–1

∞
)
, (3.7)

the BVP of fractional q-difference Eq. (1.1) has at least one positive solution. Here we impose
that f –1

0 = 0 if f0 = +∞ and F–1∞ = +∞ if F∞ = 0.

Proof Let λ satisfy (3.7), and let ε > 0 be such that

ψ2
(
A–1

2
)
(f0 – ε)–1 ≤ λ ≤ ψ1

(
A–1

1
)
(F∞ + ε)–1. (3.8)

We separate the proof into two steps.
(1) By the definition of f0 there exists r1 > 0 such that

f (u) ≥ (f0 – ε)φ(u), 0 < u ≤ r1. (3.9)

If u ∈ P with ‖u‖ = r1, then similarly to the second part of the proof of Theorem 3.1, let
	1 = {u ∈ E | ‖u‖ < r1}. Then

‖Tλu‖ ≥ ‖u‖, u ∈ P ∩ ∂	1. (3.10)

(2) By the definition F∞ there exists R1 > 0 such that

f (u) ≤ (F∞ + ε)φ(u), u > R1. (3.11)

We consider two cases:
Case 1: When f is bounded, then there exists N > 0, such that |f (u)| ≤ N for u ∈ (0, +∞).

If u ∈ P with ‖u‖ = r3, where r3 = max{2r1,φ–1(λN)A1}, then

∥
∥Tλu(t)

∥
∥ ≤

∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ )f

(
u(τ )

)
dqτ

)

dqs

≤ φ–1(λN)
∫ 1

0
G(1, qs)ψ–1

1

(∫ 1

0
H(qτ , qτ ) dqτ

)

dqs
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≤ φ–1(λN)A1

≤ r3 = ‖u‖.

So let 	3 = {u ∈ E | ‖u‖ < r3}. Then

‖Tλu‖ ≤ ‖u‖, u ∈ P ∩ ∂	3. (3.12)

Case 2: Suppose f is unbounded. Then there exists r4 > max{2r1, R1} such that f (u) ≤
f (r4) for 0 < u < r4. If u ∈ P with ‖u‖ = r4, then by (3.7) and (3.11) we have

∥
∥Tλu(t)

∥
∥ ≤

∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ )f

(
u(τ )

)
dqτ

)

dqs

≤
∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ )(F∞ + ε)φ(r4) dqτ

)

dqs

≤ ψ–1
1

(
λ(F∞ + ε)

)
A1r4

≤ r4 = ‖u‖.

Thus we suppose 	4 = {u ∈ E | ‖u‖ < r4}. Then

‖Tλu‖ ≤ ‖u‖, u ∈ P ∩ ∂	4. (3.13)

In view of Cases 1 and 2, we let 	2 = {u ∈ E | ‖u‖ < r2}, where r2 = max{r3, r4}. Then

‖Tλu‖ ≤ ‖u‖, u ∈ P ∩ ∂	2. (3.14)

From (3.10) and (3.14) and from Theorem 2.1 we obtain that Tλ has a fixed point u ∈
P ∩ (	2\	1) with r1 ≤ ‖u‖ ≤ r2. Obviously, u is a positive solution of the BVP of fractional
q-difference Eq. (1.1). The proof is completed. �

Theorem 3.3 Assume that (A1) and (A2) hold and there exist r2 > r1 > 0 such that

λ min
k(δ)r1≤u≤r1

f (u) ≥ φ

(
r1

A3

)

, λ max
0≤u≤r2

f (u) ≤ φ

(
r2

A1

)

.

Then the BVP of fractional q-difference Eq. (1.1) has a positive solution u ∈ P with r1 ≤
‖u‖ ≤ r2.

Proof Let 	1 = {u ∈ E|‖u‖ < r1}. Then for u ∈ P ∩ ∂	1, we obtain

∥
∥Tλu(t)

∥
∥ ≥ Tλu(δ)

=
∫ 1

0
G(δ, qs)φ–1

(

λ

∫ 1

0
H(s, qτ )f

(
u(τ )

)
dqτ

)

dqs

≥
∫ 1

0
k(δ)G(1, qs)φ–1

(

λ

∫ 1

0
sβ–1H(1, qτ ) min

k(δ)r1≤u≤r1
f
(
u(τ )

)
dqτ

)

dqs

≥
∫ 1

0
k(δ)G(1, qs)ψ–1

2
(
sβ–1)φ–1

(

λ

∫ 1

0
H(1, qτ ) min

k(δ)r1≤u≤r1
f
(
u(τ )

)
dqτ

)

dqs
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≥ φ–1
(
λ min

k(δ)r1≤u≤r1
f (u)

)
A3

≥ r1 = ‖u‖.

Suppose 	2 = {u ∈ E | ‖u‖ < r2}. Then for u ∈ P ∩ ∂	2, we have

∥
∥Tλu(t)

∥
∥ ≤

∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ )f

(
u(τ )

)
dqτ

)

dqs

≤
∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ ) max

0≤u≤r2
f
(
u(τ )

)
dqτ

)

dqs

≤ φ–1
(
λ max

0≤u≤r2
f
(
u(τ )

))
A1

≤ r2 = ‖u‖.

Thus by Theorem 2.1 the BVP of fractional q-difference Eq. (1.1) has a positive solution
u ∈ P with r1 ≤ ‖u‖ ≤ r2. The proof is completed. �

Theorem 3.4 Assume that (A1) and (A2) hold. Let λ1 = supr>0
φ(r)

φ(A1) max0≤u≤r f (u) . If f0 = +∞
and f∞ = +∞, then the BVP of fractional q-difference Eq. (1.1) has at least two positive
solutions for each λ ∈ (0,λ1).

Proof We define x(r) = φ(r)
ψ2(A1) max0≤u≤r f (u) . In view of the continuity of f , f0 = +∞, and

f∞ = +∞, we obtain that x(r) : (0, +∞) → (0, +∞) is continuous and limr→0+ x(r) =
limr→+∞ x(r) = 0. So there exists r0 ∈ (0, +∞) such that x(r0) = supr>0 x(r) = λ1. For all
λ ∈ (0,λ1), there exist constants a1, a2 > 0 such that x(a1) = x(a2) = λ, where 0 < a1 < r0 <
a2 < +∞. Thus

λf (u) ≤ φ(a1)
ψ2(A1)

≤ φ

(
a1

A1

)

, u ∈ [0, a1], (3.15)

λf (u) ≤ φ(a2)
ψ2(A1)

≤ φ

(
a2

A1

)

, u ∈ [0, a2], (3.16)

By the conditions f0 = +∞ and f∞ = +∞ there exist constants b1, b2 > 0, where 0 < b1 <
a1 < r0 < a2 < b2 < +∞, such that

f (u)
φ(u)

≥ 1
λψ1(k(δ))φ(A3)

, u ∈ (0, b1) ∪ (
k(δ)b2, +∞)

,

so that

λ min
k(δ)b1≤u≤b1

f (u) ≥ φ

(
b1

A3

)

, (3.17)

λ min
k(δ)b2≤u≤b2

f (u) ≥ φ

(
b2

A3

)

. (3.18)

By (3.15), (3.17), (3.16), and (3.18), combined with Theorems 2.1 and 3.3, the BVP of
fractional q-difference Eq. (1.1) has at least two positive solutions for each λ ∈ (0,λ1). The
proof is completed. �
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Theorem 3.5 Assume that (A1) and (A2) hold. If F0 < +∞ and F∞ < +∞, then there exists
λ0 > 0 such that for all 0 < λ < λ0, the BVP of fractional q-difference Eq. (1.1) has no positive
solution.

Proof Since F0 < +∞ and F∞ < +∞, there exist M1, M2, r1, r2 > 0, such that r1 < r2 and

f (u) ≤ M1φ(u), u ∈ [0, r1],

f (u) ≤ M2φ(u), u ∈ [r2, +∞).

Let M0 = max{M1, M2, maxr1≤u≤r2
f (u)
φ(u) }. Then we have

f (u) ≤ M0φ(u), u ∈ [0, +∞).

Let v be a positive solution of the fractional q-difference equation boundary value
problem (1.1). We will show that this leads to a contradiction for 0 < λ < λ0, where
λ0 := M–1

0 ψ1(A–1
1 ). Indeed, since Tλv(t) = v(t) for t ∈ [0, 1], we have

‖v‖ = ‖Tλv‖ ≤
∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ )f

(
v(τ )

)
dqτ

)

dqs

≤
∫ 1

0
G(1, qs)φ–1

(

λ

∫ 1

0
H(qτ , qτ )M0φ

(
v(τ )

)
dqτ

)

dqs

≤ ψ–1
1 (λM0)‖v‖A1 < ‖v‖,

a contradiction. Therefore the BVP of fractional q-difference Eq. (1.1) has no positive so-
lution. The proof is completed. �

Theorem 3.6 Assume that (A1) and (A2) hold. If f0 > 0 and f∞ > 0, then there exists λ′
0 > 0

such that for all λ > λ′
0, the BVP of fractional q-difference Eq. (1.1) has no positive solution.

Proof Since f0 > 0 and f∞ > 0, there exist m1, m2, r3, r4 > 0 such that r3 < r4 and

f (u) ≥ m1φ(u), u ∈ [0, r3],

f (u) ≥ m2φ(u), u ∈ [r4, +∞).

Let m0 = max{m1, m2, maxr3≤u≤r4
f (u)
φ(u) }. Then we have

f (u) ≥ m0φ(u), u ∈ [0, +∞).

Let v be a positive solution of the fractional q-difference equation BVP (1.1). We will
show that this leads to a contradiction for λ > λ′

0, where λ′
0 := m–1

0 ψ2(A–1
2 ). Indeed, since

Tλv(t) = v(t) for t ∈ [0, 1], we have

‖v‖ = ‖Tλv‖ ≥
∫ 1

0
k(δ)G(1, qs)φ–1

(

λ

∫ 1

0
sβ–1H(1, qτ )f

(
v(τ )

)
dqτ

)

dqs

≥
∫ 1

0
k(δ)G(1, qs)φ–1

(

λ

∫ 1

0
sβ–1H(1, qτ )m0φ

(
v(τ )

)
dqτ

)

dqs
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≥
∫ 1

0
k(δ)ψ–1

2
(
sβ–1)G(1, qs)φ–1

(

λ

∫ 1

0
H(1, qτ )m0φ

(
τα–1‖v‖)dqτ

)

dqs

≥ ψ–1
2 (λm0)‖v‖A2 > ‖v‖,

a contradiction. Therefore the BVP of fractional q-difference Eq. (1.1) has no positive so-
lution. The proof is completed. �

4 Some examples of application
Example 4.1 Consider the following fractional q-difference equation BVP:

⎧
⎨

⎩

D
3
2
q (D

5
2
q u(t)) = λ(7u(t) – 6 sin(u(t))), 0 < t < 1,

u(0) = Dqu(0) = Dqu(1) = 0, D
5
2
q u(0) = Dq(D

5
2
q u(1)) = 0.

(4.1)

Here q = 1
2 , α = 5

2 , β = 3
2 , φ(u) = u, f (u) = 7u – 6 sin u. Take ψ1(x) = ψ2(x) = x, δ = 0.9.

By a simple calculation we obtain � 1
2

( 5
2 ) ≈ 1.1906, � 1

2
( 3

2 ) ≈ 0.9209, A1 ≈ 0.05523, A2 ≈
0.00811, F0 = 1, f∞ = 7, f∞ψ1(A–1

1 ) ≈ 126.74271, F0ψ2(A–1
2 ) ≈ 123.30456, ψ2(A–1

2 )f –1∞ ≈
17.6194 and ψ1(A–1

1 )F–1
0 ) ≈ 18.10610.

Obviously, f∞ψ1(A–1
1 ) > F0ψ2(A–1

2 ). By Theorem 3.1 we obtain that BVP (4.1) has at least
one positive solution for each λ ∈ (17.61494, 18.10610).

Example 4.2 Consider the following fractional q-difference equation BVP with φ-Lapla-
cian:

⎧
⎨

⎩

D
3
2
q (φ(D

5
2
q u(t))) = λ (u3(t)+u2(t))(sin(u(t))+9)

25u(t)+1 , 0 < t < 1,

u(0) = Dqu(0) = Dqu(1) = 0, φ(D
5
2
q u(0)) = Dq(φ(D

5
2
q u(1))) = 0.

(4.2)

Here q = 1
2 , α = 5

2 , β = 3
2 , φ(u) = |u|u, and f (u) = (u3+u2)(sin u+9)

25u+1 .
Take ψ1(x) = ψ2(x) = x2, δ = 0.9. By calculating we get A1 ≈ 0.07088, A2 ≈ 0.01550, F∞ =

0.4 and f0 = 9. Thus, f0ψ1(A–1
1 ) > F∞ψ2(A–1

2 ). By Theorem 3.1 we obtain that BVP (4.2) has
at least one positive solution for each λ ∈ (462.24260, 497.6280425).

Example 4.3 Consider the following fractional q-difference equation BVP:

⎧
⎨

⎩

D
3
2
q (φ(D

5
2
q u(t))) = λ

(20u2(t)+u(t))(sin(u(t))+2)
u(t)+1 , 0 < t < 1,

u(0) = Dqu(0) = Dqu(1) = 0, D
5
2
q u(0) = Dq(D

5
2
q u(1)) = 0.

(4.3)

Here q = 1
2 , α = 5

2 , β = 3
2 , φ(u) = u, and f (u) = (20u2+u)(sin u+2)

u+1 . Take ψ1(x) = ψ2(x) = x, δ = 0.9.
By calculating we have A1 ≈ 0.05523, A2 ≈ 0.00811, F0 = f0 = 2, F∞ = 60, f∞ = 20, and
u < f (u) < 60u for u > 0.

(i) By Theorem 3.1 we obtain that BVP (4.3) has at least one positive solution for each
λ ∈ (6.1653, 9.05305).

(ii) By Theorem 3.5 we obtain that BVP (4.3) has no positive solution for each
λ ∈ (0, 0.30177).

(iii) By Theorem 3.6 we obtain that BVP (4.3) has no positive solution for each
λ ∈ (123.30456, +∞).
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Example 4.4 Consider the following fractional q-difference equation BVP with φ-Lapla-
cian:

⎧
⎨

⎩

D
3
2
q (φ(D

5
2
q u(t))) = λ (u3(t)+u2(t))(arctan(u(t))+8)

40u(t)+1 , 0 < t < 1,

u(0) = Dqu(0) = Dqu(1) = 0, D
5
2
q u(0) = Dq(D

5
2
q u(1)) = 0.

(4.4)

Here q = 1
2 , α = 5

2 , β = 3
2 , φ(u) = |u|u, and f (u) = (u3+u2)(arctan u+8))

40u+1 . Take ψ1(x) = ψ2(x) = x2,
δ = 0.9. Then we get A1 ≈ 0.07088, A2 ≈ 0.01550, f0 = 8, F∞ = 0.23927, and 1

5φ(u) < f (u) <
9.57080φ(u) for u > 0.

(i) By Theorem 3.2 we obtain that BVP (4.4) has at least one positive solution for each
λ ∈ (520.02293, 831.91078).

(ii) By Theorem 3.5 we obtain that BVP (4.3) has no positive solution for each
λ ∈ (0, 20.79777).

(iii) By Theorem 3.6 we obtain that BVP (4.3) has no positive solution for each
λ ∈ (20800.91719, +∞).

5 Conclusions
This research establishes the existence of at least one or two positive solutions in terms of
different eigenvalue intervals for the BVP of φ-Laplacian fractional q-difference equation,
by applying the Green function and Guo–Krasnoselskii fixed point theorem on cones.
This enriches the theories for fractional q-difference equations and provides the theo-
retical guarantee for the application of fractional q-difference equations in such fields as
aerodynamics, electrodynamics of complex medium, capacitor theory, electrical circuits,
control theory, and so on. At the same time, we also consider the nonexistence of a positive
solution in terms of the parameter λ. In the future, we will use bifurcation theory, critical
point theory, variational method, and other methods to continue our works in this area.

Acknowledgements
The authors wish to thank the reviewers for their comments and efforts toward improving this manuscript.

Funding
The author is very grateful to the referees for their very helpful comments and suggestions. The research project is
supported by the National Natural Science Foundation of China (11772007), Beijing Natural Science Foundation
(1172002, Z180005), the Natural Science Foundation of Hebei Province (A2015208114), and the Foundation of Hebei
Education Department (QN2017063).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceptualization, CY and JW; methodology, CY; data curation, JW and SW; original draft preparation, BZ; review and
editing, JW. All authors have read and agreed with the published version of the manuscript. All authors read and
approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 February 2021 Accepted: 1 November 2021



Wang et al. Advances in Difference Equations        (2021) 2021:499 Page 15 of 15

References
1. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)
2. Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15(2), 135–140 (1966)
3. Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Math. Proc. Camb. Philos. Soc. 66, 365–370 (1969)
4. Han, Z., Lu, H., Zhang, C.: Positive solutions for eigenvalue problems of fractional differential equation with

generalized p-Laplacian. Appl. Math. Comput. 257, 526–536 (2015)
5. Xu, X., Zhang, H.: Multiple positive solutions to singular positone and semipositonem-point boundary value

problems of nonlinear fractional differential equations. Bound. Value Probl. 34, 1–18 (2018)
6. Jiang, W., Kosmatov, N.: Solvability of a third-order differential equation with functional boundary conditions at

resonance. Bound. Value Probl. 81, 1–20 (2017)
7. Yang, Y.Y., Wang, Q.R.: Multiple positive solutions for p-Laplacian equations with integral boundary conditions. J.

Math. Anal. Appl. 453(1), 558–571 (2017)
8. Liu, X., Jia, M., Ge, W.: The method of lower and upper solutions for mixed fractional four-point boundary value

problem with p-Laplacian operator. Appl. Math. Lett. 65, 56–62 (2017)
9. Jannelli, A., Ruggieri, M., Speciale, M.P.: Analytical and numerical solutions of time and space fractional

advection–diffusion–reaction equation. Commun. Nonlinear Sci. Numer. Simul. 70, 89–101 (2019)
10. Jannelli, A., Rrggieri, M., Speciale, M.P.: Exact and numerical solutions of time-fractional advection–diffusion equation

with a nonlinear source term by means of the Lie symmetries. Nonlinear Dyn. 92(2), 543–555 (2018)
11. Ma, K., Sun, S., Han, Z.: Existence of solutions of boundary value problems for singular fractional q-difference

equations. J. Appl. Math. Comput. 54(1–2), 23–40 (2017)
12. Zhai, C., Ren, J.: Positive and negative solutions of a boundary value problem for a fractional q-difference equation.

Adv. Differ. Equ. 2017, 82 (2017). https://doi.org/10.1186/s13662-017-1138-x
13. Guo, F., Kang, S., Chen, F.: Existence and uniqueness results to positive solutions of integral boundary value problem

for fractional q-derivatives. Adv. Differ. Equ. 2018, 379 (2018). https://doi.org/10.1186/s13662-018-1796-3
14. Araci, S., Sen, E., Acikgoz, M., Srivastava, H.M.: Existence and uniqueness of positive and nondecreasing solutions for a

class fractional bounday value problems involving the p-Laplacian operator. Adv. Differ. Equ. 2015, 40 (2015).
https://doi.org/10.1186/s13662-015-0375-0

15. Li, X., Han, Z., Sun, S.: Existence of positive solutions of nonlinear fractional q-difference equation with parameter. Adv.
Differ. Equ. 2013, 260 (2013). https://doi.org/10.1186/1687-1847-2013-260

16. Wang, J., Yu, C., Guo, Y.: Positive solutions for a class of singular boundary value problems with fractional q-difference
equations. J. Funct. Spaces 2015, 1–8 (2015)

17. Han, Z., Lu, H., Zhang, C.: Positive solutions for eigenvalue problems of fractional differential equation with
generalized p-Laplacian. Appl. Math. Comput. 257, 526–536 (2015)

18. Wang, H.: On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281, 287–306 (2003)
19. Duran, U., Acikgoz, M., Araci, S.: A study on some new results arising from (p, q)-calculus. TWMS J. Pure Appl. Math.

1(11), 57–71 (2020)
20. Acikgoz, M., Ates, R., Duran, U., Araci, S.: Applications of q-umbral calculus to modified Apostol type q-Bernoulli

polynomials. J. Math. Stat. 14, 7–15 (2018)
21. Atici, F.M., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14(3), 341–352 (2007)
22. Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory

Differ. Equ. 70, 1 (2010)
23. Anna, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations. Springer, Berlin (2012)
24. Krasnoselskii, M.A.: Positive Solution of Operator Equation. Noordhoff, Groningen (1964)

https://doi.org/10.1186/s13662-017-1138-x
https://doi.org/10.1186/s13662-018-1796-3
https://doi.org/10.1186/s13662-015-0375-0
https://doi.org/10.1186/1687-1847-2013-260

	Positive solutions for eigenvalue problems of fractional q-difference equation with phi-Laplacian
	Abstract
	Keywords

	Introduction
	Preliminary results
	Main results
	Some examples of application
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


