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Abstract
Two new iterative methods for the simultaneous determination of all multiple as well
as distinct roots of nonlinear polynomial equation are established, using two suitable
corrections to achieve a very high computational efficiency as compared to the
existing methods in the literature. Convergence analysis shows that the orders of
convergence of the newly constructed simultaneous methods are 10 and 12. At the
end, numerical test examples are given to check the efficiency and numerical
performance of these simultaneous methods.
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1 Introduction
A wide range of theoretical and practical problems arise in various fields of mathematical,
economical, physical, and engineering sciences which can be formulated as a polynomial
equation of degree n with arbitrary real or complex coefficient:

f (x) = xn + an–1xn–1 + · · · + a0 =
n∏

j=1

(x – ζj) = (x – ζi)
n∏

j=1
j �=i

(x – ζj), (1)

where ζ1 · · · ζn denote all the simple or complex roots of (1). Approximating all roots of
the nonlinear polynomial equation using simultaneous methods has a lot of applications in
sciences and engineering because simultaneous iterative methods are less time consuming
since they can be implemented for parallel processing as well. Further details about their
convergence properties, computational efficiency, and parallel processing may be found
in [1–25] and the references cited there in. The main objective of this paper is to develop
simultaneous methods which have a higher convergence order and are more efficient as
compared to the existing methods. A very high computational efficiency is achieved by
using two suitable corrections [26, 27] with convergence orders equal to ten and twelve
with a minimal number of function evaluations in each step.
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1.1 Construction of simultaneous methods for multiple roots
Consider two-step fourth-order Newton’s method [26] for finding multiple roots of non-
linear equation (1)

⎧
⎨

⎩
yi = xi – σ

f (xi)
f ′(xi)

,

zi = yi – σ
f (yi)
f ′(yi)

,
(2)

where σ is the multiplicity of exact root, say ζ , of (1). We would like to convert (2) into
a simultaneous method for extracting all the distinct as well as multiple roots of (1). We
use the third-order Dong et al. method [26] as a correction to increase the efficiency and
convergence order requiring no additional evaluation of the function:

⎧
⎨

⎩
vi = xi –

√
σ

f (xi)
f ′(xi)

,

ui = vi – σ (1 – 1√
σ

)1–σ f (vi)
f ′(xi)

.
(3)

Suppose that the nonlinear polynomial equation (1) has n roots. Then

f (x) =
n∏

i=1

(x – xi) and f ′(x) =
n∑

j=1

n∏

j=1
j �=i

(x – xi). (4)

This implies

f (xi)
f ′(xi)

=
n∑

j=1
j �=i

1
(x – xi)

=
1

1
x–xi

–
∑n

j=1
j �=i

1
(x–xj)

.

This gives

x – xi =
1

1
Ni(xi)

–
∑n

j=1
j �=i

1
(x–xj)

,

where 1
Ni(xi)

= f ′(xi)
f (xi)

or

f (xi)
f ′(xi)

=
1

1
Ni(xi)

–
∑n

j=1
j �=i

1
(x–xj)

. (5)

The multiple root equation (5) can be written as

σi
f (xi)
f ′(xi)

=
σi

σi
Ni(xi)

–
∑n

j=1
j �=i

σj
(x–xj)

. (6)

Replacing xj by x∗
j in (6), we have

σi
f (xi)
f ′(xi)

=
σi

σi
Ni(xi)

–
∑n

j=1
j �=i

σj
(x–x∗

j )

, (7)
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where

x∗
j = uj

(
using (3)

)
.

Using (7) in the first step of (2), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(k)
i = x(k)

i – σi
σi

Ni(x(k)
i )

–
∑n

j=1
j �=i

σj
(x(k)

i –x∗(k)
j )

, k = 0, 1, . . . ,

z(k)
i = y(k)

i – σi
σi

Ni(y(k)
i )

–
∑n

j=1
j �=i

σj
(y(k)

i –y(k)
j )

.
(8)

Thus we have constructed a new simultaneous method (8) abbreviated as MNS10M for
extracting all distinct as well as multiple roots of polynomial equation (1).

1.2 Convergence analysis
In this section, the convergence analysis of a family of two-step simultaneous methods (8)
given in a form of the following theorem is presented.

Theorem 1 Let ζ1, . . . , ζn be simple roots of (1). If x(0)
1 , . . . , x(0)

n are the initial approxima-
tions of the roots respectively and sufficiently close to the actual roots, then the order of
convergence of method (8) equals ten.

Proof Let εi = xi –ζi, ε′
i = yi –ζi, and ε′′

i = zi –ζi be the errors in xi, yi, and zi approximations
respectively. Consider the first step of (8), which is

yi = xi –
σi

σi
N(xi)

–
∑n

j=1
j �=i

σj
(xi–x∗

j )

,

where N(xi) = f (xi)
f ′(xi)

. Then, obviously, for distinct roots, we have

1
N(xi)

=
f ′(xi)
f (xi)

=
n∑

j=1

1
(xi – ζj)

=
1

(xi – ζi)
+

n∑

j=1
j �=i

1
(xi – ζj)

.

Thus, for multiple roots, we have from (8)

yi = xi –
σi

σi
(xi–ζi)

+
∑n

j=1
j �=i

σj
(xi–ζj)

–
∑n

j=1
j �=i

σj
(xi–x∗

j )

,

yi – ζi = xi – ζi –
σi

σi
(xi–ζi)

+
∑n

j=1
j �=i

σj(xi–x∗
j –xi+ζj)

(xi–ζj)(xi–x∗
j )

,

ε′
i = εi –

σi

σi
εi

+
∑n

j=1
j �=i

–σj(x∗
j –ζj)

(xi–ζj)(xi–x∗
j )

= εi –
σiεi

σi + εi
∑n

j=1
j �=i

–σj(x∗
j –ζj)

(xi–ζj)(xi–x∗
j )

= εi –
σi.εi

σi + εi
∑n

j=1
j �=i

Eiε
3
j

,

where x∗
j – ζj = ε3

j [26] and Ei = –σj
(xi–ζj)(xi–x∗

j ) .
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Thus

ε′
i =

ε2
i
∑n

j=1
j �=i

Eiε
3
j

σi + εi
∑n

j=1
j �=i

Eiε
3
j

. (9)

If it is assumed that absolute values of all errors εj (j = 1, 2, 3, . . .) are of the same order as,
say, |εj| = O|ε|, then from (9) we have

ε′
i = O(ε)5. (10)

From the second equation of (8), we get

zi = yi –
σi

σi
N(yi)

–
∑n

j=1
j �=i

σj
(yi–yj)

,

zi – ζi = yi – ζi –
σi

σi
yi–ζi

+
∑n

j=1
j �=i

σj
(yi–ζj)

–
∑n

j=1
j �=i

σj
(yi–yj)

,

ε′′
i = ε′

i –
σi

σi
ε′

i
+

∑n
j=1
j �=i

σj
(yi–ζj)

–
∑n

j=1
j �=i

σj
(yi–yj)

= ε′
i –

σi.ε′
i

σi + ε′
i(
∑n

j=1
j �=i

σj .(yi–yj–yi+ζj)
(yi–ζj)(yi–yj)

)

= ε′
i –

σi.ε′
i

σi + ε′
i(
∑n

j=1
j �=i

–σj .(yj–ζj)
(yi–ζj)(yi–yj)

) – ε′
iα

= ε′
i –

σiε
′
i

σi + ε′
i
∑n

j=1
j �=i

ε′
j Fi – ε′

iα
,

where Fi = –σj
(yi–ζj)(yi–yj)

. This implies

ε′′
i = ε′

i –
σi.ε′

i
σi + ε′

i(
∑n

j=1
j �=i

ε′
j Fi – αε′

i)
=

(
ε′

i
)2

(
∑n

j=1
j �=i

Fi – α

σi + ε′
i(
∑n

j=1
j �=i

ε′
j Fi – α)

)
=

(
ε′

i
)2Ci,

where Ci =

∑n
j=1
j �=i

ε′
j Fi–α

σi+ε′
i
∑n

j=1
j �=i

(ε′
j Fi–ε′

iα) . By (10), ε′
i = O(ε)5 and thus

ε′′
i = O

(
(ε)5)2 = O(ε)10,

which shows that the convergence order of method (8) is ten. Hence we have proved the
theorem. �

1.3 Improvement of efficiency and convergence order
To improve the convergence order of method (8) from 10 to 12, using same function eval-
uation, we use

Z∗
j = vj – σj

f (vj)
f ′(vj)

and vj = xj – √
σj

f (xj)
f ′(xj)
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instead of x∗
j = Z∗

j in (7), i.e.,

σi
f (xi)
f ′(xi)

=
σi

σi
Ni(xi)

–
∑n

j=1
j �=i

σj
(xi–Z∗

j )

, (11)

where Z∗
j is a fourth-order method [27]. Using (11) in the first step of (2), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(k)
i = x(k)

i – σi
σi

Ni(x(k)
i )

–
∑n

j=1
j �=i

σj
(x(k)

i –Z∗(k)
j )

,

z(k)
i = y(k)

i – σi
σi

Ni(y(k)
i )

–
∑n

j=1
j �=i

σj
(y(k)

i –y(k)
j )

.
(12)

Thus we have constructed a new simultaneous method (12), abbreviated as MNS12M for
extracting all multiple roots of polynomial equation (1). For multiplicity unity, we used
method (12) for determing all the distinct roots of (1), abbreviated as MNS12D.

1.4 Convergence analysis
In this section, the convergence analysis of a family of two-step simultaneous methods
(12) is given in a form of the following theorem.

Theorem 2 Let ζ1, ζ2, . . . , ζn be simple roots of (1). If x(0)
1 , x(0)

2 , x(0)
3 , . . . , x(0)

n are the initial
approximations of the roots respectively and sufficiently close to the actual roots, then the
order of convergence of method (12) equals twelve.

Proof Let εi = xi –ζi, ε′
i = yi –ζi, and ε′′

i = zi –ζi be the errors in xi, yi, and zi approximations
respectively. Consider the first step of (12), which is

yi = xi –
σi

σi
N(xi)

–
∑n

j=1
j �=i

σj
(xi–Z∗

j )

,

where N(xi) = f (xi)
f ′(xi)

. Then, obviously, for distinct roots, we have

1
N(xi)

=
f ′(xi)
f (xi)

=
n∑

j=1

1
(xi – ζj)

=
1

(xi – ζi)
+

n∑

j=1
j �=i

1
(xi – ζj)

.

Thus, for multiple roots, we have from (6)

yi = xi –
σi

σi
(xi–ζi)

+
∑n

j=1
j �=i

σj
(xi–ζj)

–
∑n

j=1
j �=i

σj
(xi–Z∗

j )

,

yi – ζi = xi – ζi –
σi

σi
(xi–ζi)

+
∑n

j=1
j �=i

σj(xi–Z∗
j –xi+ζj)

(xi–ζj)(xi–Z∗
j )

,

ε′
i = εi –

σi

σi
εi

+
∑n

j=1
j �=i

–σj(Z∗
j –ζj)

(xi–ζj)(xi–Z∗
j )

= εi –
σiεi

σi + εi
∑n

j=1
j �=i

–σj(Z∗
j –ζj)

(xi–ζj)(xi–Z∗
j )

= εi –
σi.εi

σi + εi
∑n

j=1
j �=i

Giε
4
j

,
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where Z∗
j – ζj = ε4

j [27] and Gi = –σj
(xi–ζj)(xi–Z∗

j ) . Thus

ε′
i =

ε2
i
∑n

j=1
j �=i

Giε
4
j

σi + εi
∑n

j=1
j �=i

Giε
4
j

. (13)

If it is assumed that absolute values of all errors εj (j = 1, 2, 3, . . .) are of the same order as,
say, |εj| = O|ε|, then from (13) we have

ε′
i = O(ε)6. (14)

From the second equation of (12), we have

zi = yi –
σi

σi
N(yi)

–
∑n

j=1
j �=i

σj
(yi–yj)

,

zi – ζi = yi – ζi –
σi

σi
yi–ζi

+
∑n

j=1
j �=i

σj
(yi–ζj)

–
∑n

j=1
j �=i

σj
(yi–yj)

,

ε′′
i = ε′

i –
σi

σi
ε′

i
+

∑n
j=1
j �=i

σj
(yi–ζj)

–
∑n

j=1
j �=i

σj
(yi–yj)

= ε′
i –

σiε
′
i

σi + ε′
i(
∑n

j=1
j �=i

σj(yi–yj–yi+ζj)
(yi–ζj)(yi–yj)

)
,

= ε′
i –

σiε
′
i

σi + ε′
i(
∑n

j=1
j �=i

–σj(yj–ζj)
(yi–ζj)(yi–yj)

)
= ε′

i –
σiε

′
i

σi + ε′
i
∑n

j=1
j �=i

ε′
j Hi

,

where Hi = –σj
(yi–ζj)(yi–yj)

. This implies

ε′′
i = ε′

i –
σiε

′
i

σi + ε′
i(
∑n

j=1
j �=i

ε′
j Hi)

.

If it is assumed that absolute values of all errors εj (j = 1, 2, 3, . . .) are of the same order as,
say, |εj| = O|ε|, then we have

=
(
ε′

i
)2

(
∑n

j=1
j �=i

Hi

σi + (ε′
i)2(

∑n
j=1
j �=i

Hi)

)
=

(
ε′

i
)2Di,

where Di =

∑n
j=1
j �=i

Hi

σi+(ε′
i )2 ∑n

j=1
j �=i

Hi
. By (14), ε′

i = O(ε)6 and thus

ε′′
i = O

(
(ε)6)2 = O(ε)12,

which shows that the convergence order of method (12) is twelve. Hence we have proved
the theorem. �
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Table 1 Number of operations (real arithmetic)

Methods ASm Mm Dm

New method (8) 19m2 + O(m) 12m2 + O(m) 2m2 + O(m)
Petkovic method (PJ10D) 22m2 + O(m) 18m2 + O(m) 2m2 + O(m)
New method (12) 18m2 + O(m) 10m2 + O(m) 2m2 + O(m)

2 Computational analysis
Here we compare the computational efficiency and convergence behavior of the Petkovic
et al. [28] method (abbreviated as PJM10D) and the new simultaneous iterative methods
(8) and (12). As presented in [28], the efficiency of an iterative method can be estimated
using the efficiency index given by

EF(n) =
log r

D
, (15)

where D is the computational cost and r is the order of convergence of the iterative method.
The number of addition and subtraction, multiplications, and divisions per iteration for
all n roots of a given polynomial of degree m is denoted by ASm, Mm, and Dm. The com-
putational cost can be approximated as

D = D(m) = wasASm + wmMm + wdDm, (16)

and thus (15) becomes

EF(m) =
log r

wasASm + wmMm + wdDm
. (17)

Applying (17) and by data given in Table 1, we calculate the percentage ratio ρ((8), (X))
and ρ((12), (X)) [28] given by

ρ
(
(8), (X)

)
=

(
EF(8)
EF(X)

– 1
)

× 100 (in percent), (18)

ρ
(
(12), (X)

)
=

(
EF(12)
EF(X)

– 1
)

× 100 (in percent), (19)

where X is the Petkovic method PJM10D. These ratios are graphically displayed in Fig. 1(a),
(b), (c). It is evident from Fig. 1(a), (b), (c) that the new methods (8) and (12) are more
efficient as compared to the Petkovic method PJM10D.

We also calculate the CPU execution time, as all the calculations are done using Maple 18
on (Processor Intel(R) Core(TM) i3-3110m CPU@2.4 GHz with 64-bit operating system.
We observe that CPU times of the methods MMS10M and MNS12M are less than those
of PJM10D, showing the dominant efficiency of our methods (8) and (12) as compared to
them.

3 Numerical results
Here some numerical examples are considered in order to demonstrate the performance
of our family of two-step tenth-order simultaneous methods, namely MNS10M (8) and
MNS12M (12). We compare our family of methods with the Petkovic et al. [28] method of



Shams et al. Advances in Difference Equations        (2021) 2021:495 Page 8 of 11

Figure 1 (a)–(c) show percentage computational efficiency of simultaneous methods MNS10M, MNS12M,
and PJ10D, respectively

convergence of order ten for finding all distinct roots of (1) (abbreviated as PJM10D). All
the computations are performed using Maple 15 with 64 digits floating point arithmetic.
We take ∈= 10–30 as a tolerance and use the following stopping criteria for estimating the
roots:

(i) ei =
∣∣f

(
x(k+1)

i
)∣∣ <∈,

where ei represents the absolute error of function values in (i)
Numerical test examples from [10, 28, 29] are provided in Tables 2, 3, and 4. In all tables,

CO represents the convergence order, n represents the number of iterations, and CPU
represents execution time in seconds. All calculations are done using Maple 15 on (Pro-
cessor Intel(R) Core(TM) i3-3110m CPU@2.4 GHz with 4 GB (3.89 GB USABLE)) with
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Table 2 Residual errors of simultaneous methods PJM10D, MNS10D and MNS12D for finding all the
distinct roots of polynomial equation used in Example 1

Method CO n CPU e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

PJM10D 10 3 1.234 1.7e-4 8.6e-5 3.4e-5 2.5e-4 1.2e-3 2.4e-4 3.5e-4 1.2e-5 113.9e-0 209.0e-0 8.8e-4 2.8e-4
MNS10D 10 3 0.656 1.8e-36 5.8e-39 5.0e-41 1.6e-22 1.1e-21 7.5e-45 8.8e-30 7.3e-46 3.5e–4 1.6e-3 1.9e-33 3.6e-59
MNS12D 12 3 0.563 1.4e-60 2.2e-62 0.0 0.0 3.0e-63 1.0e-62 2.2e-62 0.0 9.2e-62 1.2e-58 1.0e-59 1.4e-59

Table 3 Residual errors of simultaneous methods PJM10D, MNS10D, MNS10M, MNS12D and
MNS12M for finding all the distinct as well as multiple roots of polynomial equation used in
Example 2

Method CO n CPU e1 e2 e3 e4 e5 e6 e7 e8

PJM10D 10 2 0.594 1.2e-1 3.0e-2 2.7e-1 7.9e-2 1.8e-1 3.1e-2 1.2e-1 8.2e-3
MNS10D 10 2 0.25 5.6e-62 3.9e-59 0.0 5.3e-58 1.2e-62 2.0e-58 1.8e-63 4.2e-59
MNS10M 10 2 0.65 9.1e-115 3.9e-174 0.0 1.0e-113 1.4e-120 1.7e-114 6.7e-193 10e-113
MNS12D 12 2 0.343 4.2e-64 1.2e-65 0.0 0.0 1.3e-71 1.7e-64 3.1e-67 0.0
MNS12M 12 2 0.282 1.1e-113 5.0e-177 0.0 2.3e-121 6.7e-125 6.6e-114 6.5e-197 5.4e-121

Table 4 Residual errors of simultaneous methods PJM10D, MNS10D, MNS10M, MNS12D and
MNS12M for finding all the distinct as well as multiple roots of nonlinear equation used in Example 3

Method CO n CPU e1 e2 e3 e4

PJM10D 10 2 0.125 9.3e-3 2.6e-4 1.2e-3 9.3e-3
MNS10D 10 2 0.079 1.0e-9 0.0 0.0 1.0e-9
MNS10M 10 2 0.068 0.0 0.0 0.0 0.0
MNS12D 12 2 0.078 1.0e-9 0.0 0.0 1.0e-9
MNS12M 12 2 0.093 0.0 0.0 0.0 0.0

64-bit operating system. For multiplicity unity in MNS10M and MNS12M, we get the nu-
merical results for distinct roots, i.e., MNS10D and MNS12D respectively. We observed
that numerical results of the methods MNS10D, MNS10M, MNS12D, and MNS12M are
comparable with those of the PJM10D method but have a lower number of iterations.

Example 1 Consider

f (x) = x12 – (2 + 5i)x11 – (1 – 10i)x10 + (12 – 25i)x9 – 30x8 – x4 + (2 + 5i)x3

+ (1 – 10i)x2 – (12 – 25i)x + 30,

with exact roots

ζ1,2 = ±1, ζ3,4 = ±i, ζ5,6 =
√

2
2

±
√

2i
2

, ζ7,8 = –
√

2
2

±
√

2i
2

, ζ9 = 2i,

ζ10 = 3i, ζ11,12 = 1 ± 2i.

The initial approximations have been taken as

(0)
x1 = 1.3 + 0.2i,

(0)
x2 = –1.3 + 0.2i,

(0)
x 3 = –0.3 – 1.2i,

(0)
x 4 = –0.3 + 1.2i,

(0)
x 5 = 0.5 + 0.5i,

(0)
x 6 = 0.5 – 0.5i,

(0)
x 7 = –0.5 + 0.5i,

(0)
x8 = –0.5 – 0.5i,

(0)
x9 = –0.2 + 2.2i,

(0)
x 10 = 0.2 + 2.3i,

(0)
x 11 = 1.3 + 2.2i,

(0)
x 12 = 1.3 – 2.2i.
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Example 2 Consider

f (x) = (x + 1)2(x + 2)3(x2 – 2x + 2
)2(x2 + 1

)2(x – 2)3(x + 2 – i)2,

with exact roots

ζ1 = –1, ζ2 = –2, ζ3,4 = 1 ± i, ζ5,6 = ±i, ζ7 = 2, ζ8 = –2 + i.

The initial approximations have been taken as

(0)
x1 = –1.3 + 0.2i,

(0)
x2 = –2.2 – 0.3i,

(0)
x 3 = 1.3 + 1.2i,

(0)
x 4 = 0.7 – 1.2i,

(0)
x 5 = –0.2 + 0.8i,

(0)
x 6 = 0.2 – 1.3i,

(0)
x 7 = 2.2 – 0.3i,

(0)
x 8 = –2.2 + 0.7i.

Example 3 Consider

f (x) =
(
ex(x–1)(x–2)(x–3) – 1

)4,

with exact roots

ζ1 = 0, ζ2 = 1, ζ3 = 2, ζ4 = 3.

The initial approximations have been taken as

(0)
x1 = 0.1,

(0)
x2 = 0.9,

(0)
x 3 = 1.8,

(0)
x 4 = 2.9,

3.1 Results and discussion
From Tables 2–4 and from Fig. 1(a)–(c), we conclude that

• Our methods MNS10D and MNS12D are more efficient as compared to PJM10D in
terms of the number of iterations and CPU time.

• Our methods MNS10M and MNS12M are applicable for multiple as well as distinct
roots, whereas PJM10D is applicable for distinct roots only.

4 Conclusion
We have developed here two simultaneous two-step methods of order ten and twelve,
namely MNS10D, MNS10M, MNS12D, and MNS12M for determination of all the dis-
tinct as well as multiple roots of nonlinear polynomial equation (1). From Tables 1–4, we
observed that our methods are very effective and more efficient as compared to the exist-
ing method PJM10D [28].
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