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Abstract

In this work we propose an accelerated algorithm that combines various techniqyes,
such as inertial proximal algorithms, Tsenges splitting algorithm, and more, for solving
the common variational inclusion problem in real Hilbert spaces. We establish a
strong convergence theorem of the algorithm under standard and suitable
assumptions and illustrate the applicability and advantages of the new scheme far
signal recovering problem arising in compressed sensing.
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1 Introduction
LetH be areal Hilbert space such that,- and - are the inner product and the induced
norm, respectively. We are interested in the viational inclusion problem (VIP) which is

to“nd u H such that
0 (F+Q)u, (1.1
whereF:H H is asingle-valued mapping anG:H 2" is a multivalued mapping.

The solution set of VIP (L.1) is denoted by F + G){0). These VIPsZ1.1) include as partic-

ular cases many mathematical problems, such as variational inequalities, split feasibility
problem, convex minimization problem, and linear inverse problem, which can be ap-
plied in many ways, such as machine learning, statistical modeling, image processing, and
signal recovery, see irg]..7, 21]. Many splitting algorithms have been introduced and im-
proved to “nd a solution of VIP (1.1); one of the famous splitting algorithms is the forward-
backward splitting algorithm, see in14] for more details. It is well known that VIP (.1)

is equivalent to the following “xed point equationu = J°(l ... F)u, whereJ°® is the re-
solvent operator ofG de“ned by J° = (I + G)-!such that > 0. The following naturally
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introduced forward-backward splitting algorithm has been proposed id]
Uk+1:JGk(| kF)LIk, >0k 0. (1.2)

In 2015, Donoghue and Candeéed §] showed that the forward-backward splitting algo-
rithm (1.2), which is reduced to the proximal gradient algorithm for convex optimization
problems, may get a lot of iterations whel is the gradient of a convex and di erential
function. Finding a process to speed up the convergence of algorithms is very important.
Before that, in 1964, the inertial extrapolation technique, which is called the heavy ball
method, was introduced by Polyak2[] to speed up the convergence of iterative algo-
rithms. Later on, the inertial extrapolation has been used for VIP4.Q) and improved
by many mathematicians, see ir2[ 15, 18]. The inertial proximal algorithm is the one of
using the inertial technique with the forward-backward algorithm. The following inertial
proximal algorithm has been proposed by Mouda® and Olinyl[7]:

e = Uk + k(Ug ..Uk..J,

Uk+1 = J(i (rk kF(Uk)), k 0O, (13)

where{ (} is a positive real sequence. Based on the condition generated in terms of the
sequencdqug} and parameter ¢ under a cocoercivity conditionF with respect to the so-
lution set, the weak convergence of the iterative sequence was established. For obtaining
the strong convergence, Cholamjiak et alf][introduced Halpern-type forward-backward
splitting algorithm (HTFBSA) involving the inertial technique in a Hilbert space. This al-
gorithm was generated by a “xed element H and

Fe = Uk + KUk ..Uk 9,

Uk+1 = agW + (l .. Ak ..bk)l’k + ka(i (I’k kF(I’k)), k 1, (1.4)

where{ax} and{by} are sequencesin [0, 1]. After that, Yambangwai et &7] extended the
HTFBSA to the following modi“ed viscosity inertial forward-backward splitting algorithm
(MVIFBSA):

e = Uk + k(Ug .. Uk..J,

Uk+1 = Ak (rk) + (1 ..k ..bk)rk + kaGk (rk kF(I’k)), k 1, (15)

where isa -contractive onH.

Other developments and modifying of the forward-backward splitting algorithm have
been introduced to speed up the algorithmes convergence. A well-known modi“ed
forward-backward algorithm is Tsenges splitting algorithm2f]. This algorithm uses
an adaptive line-search rule with parameter, and converges weakly in a real Hilbert
space. Recently, Gibali and Thon@] presented two additional extensions of the forward-
backward splitting algorithm; these modi“cations, presented next, are inspired by Mann
and viscosity techniques.

Strong convergence of the above two algorithms is established under Lipschitz continu-
ity and monotonicity of the operatorF.
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Algorithm 1 Mann Tseng type algorithm (MTTA)

Initialization: Given{ay},{bx} (0,1), (0,1),and ;>0.Letu; H andsetk:=1.

Iterative stepsConstruct{ux} by using the following steps:

Step 1.Compute

S(:JC:(O kF)Uk.

If ux = &, then stop ands; is a solution of (L.1). Otherwise

Step 2Compute

k=%... k(FSk ..Fuk)

and

Uk = (1 .. 8k .. b)ug + bty

Update

min{ —&¥_} if Fu =Fs;

— Fuy..Fg !
k+1 — k-

K otherwise.

Replacek by k + 1 and then go toStep 1.

(1.6)

(1.7)

(1.8)

Algorithm 2 Viscosity Tseng type algorithm (VTTA)

Initialization: Given{ax} (0,1), (0,1),and ;>0.Letu; H andsetk:=1.

Iterative stepsConstruct{ux} by using the following steps:

Step 1.Compute s according to (.6).

If ux = &, then stop ands is a solution of (L.1). Otherwise

Step 2Computety according to (L.7) and

Uker = 8k (Ug) + (1 .. &)tk

where isa -contractive onH. Update g.; according to (L.8).

Replacek by k + 1 and then go toStep 1.

Page 30f 19

While all the above introduction is focused on a single variational inclusion problem
(1.1), many real-world problems require to “nd a solution that ful“ls several constraints.
These constraints can be reformulated via a nonlinear functional model, and thus in this
work we wish to focus on the common variational inclusion problem (CVIP). The CVIP

consists of “nding a pointu  H such that

0 (F+Gju,

whereF : H H are single-valued mappings an@; : H

(1.9)

2" are multivalued map-

pings for alli = 1,2,...K. We assume that the solution set of the problem systerh.9)
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is nonempty. Recently, Yambangwai et ak§] studied an image restoration problem in
which several blurred “Ilters were considered, and the mathematical model used there is
the common variational inclusion problem. A parallel inertial forward-backward splitting
algorithm for solving this problem was introduced and analyzed. Some results of the paral-
lel algorithm for solving the common variational inclusion problem and associated issues
have been reported, se@][9..13, 23].

Inspired by the above works, we focus on the common variational inclusion problem and
present a new modi“ed Tsenges splitting algorithm for solving it with strong converges in
real Hilbert spaces.

The paper is organized as follows. We “rst recall some basic de“nitions and results in
Sect.2. The new algorithms and their analysis are introduced in Se8t.In Sect.4 we con-
sider as an application a signal recovery problem with several blurred “Iters, and compare
and illustrate computational advantages of the method. Final remarks and conclusions are
given in Sectb.

2 Preliminaries

In what follows, recall thatH is a real Hilbert space. LeC be a nonempty, closed, and
convex subset oH. We denote by and  weak and strong convergence, respectively.
We next collect some necessary de“nitions and lemmas for proving our main results.

Definition 2.1 LetG:H 2" be a multivalued mapping. TherG is said to be
(i) monotone if for all (x,u), (y,v) graph(G) (the graph of mapping G)

u..v,x..y 0,

(ii) maximal monotone if there is no proper monotone extension of graph(G).

Lemma 2.2 ([25]) Let{ax} and {c} be nonnegative sequences of real numbers such that
Y ka1 <, and let{bc} be a sequence of real numbers such thiatsup, by O.If
there exists & N such that forany k kg,

ar1 (L..oWax+ kb +
where{ } is a sequence i(0,1)suchthat) ,_; «= ,thenlimy ax=0.

Lemma 2.3 ([16]) Let{ ¢} be a sequence of real numbers such that there exists a sub-
sequencg k}j o of{ i} satisfying < e+ forallj 0.De"ne a sequence of integers

{ (K « by
(K):=max{n k: n< s} (2.1)
Then{ (K)}k x is a nondecreasing sequence such that (k)= ,and forall k
k ,we have that +1and ()+1-
3 Mainresult

In this section we present our new parallel inertial Tseng type algorithm (PITTA) for solv-
ing (1.9. For the convergence analysis of the proposed method, we assume the following
assumptions forali=1,2,...K.
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Assumption 1 H is a real Hilbert spacel; : H  H is anL;-Lipschitz continuous and
monotone mapping andG; :H 2" is a maximal monotone operator.

Assumption2 =X (F + G;)-{0) is nonempty.

Assumption 3 { «} [0, ),{b,} (b,b) (O,1..a,) forsome >0,b >0,b >0, and
{an} (0,1)satis“edimy ax=0and) ,_;an=

Assumption4 :H Hisa -contractive mapping.
Next the algorithm is presented.

Lemma 3.1 Assume that Assumptiond..4 hold, then any sequencé li} in Algorithm
PITTA is nonincreasing and converges tosuch thatmin{ 1' L—ii} iforalli=1,2,...K.

Proof See B, Lemma 5]. O

Algorithm 3 Parallel inertial Tseng type algorithm (PITTA)
Initialization: Given ; (0,1)and | >O0foralli=1,2,...K. Select arbitrary elements
Ug,u; H and setk:=1.
Iterative StepsConstruct {ux} by using the following steps:
Step 1Setry =ux + k(uk ..Uk...) and compute, foralli =1,2,...K,

ﬁ(:J?(l_.;ﬁ)m.

Ifre=g foralli=1,2,...K, thenstop andry, . Otherwise
Step 2Compute, foralli =1,2,...K,

ti =9 - w(Fs .-Fire)
and

tx :=th,ik :argmax{”tli( ..rk|| i=1,2,. K}
Step 3Compute

Uez = @ (k) + (L ..k .. biui + bty
and update, foralli =1,2,...K,

min{ |, )i Rrc= R

; otherwise.

[
k+1 —

Replacek by k + 1 and then repeatStep 1.
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Lemma 3.2 Letu . Then under Assumptiond. 4, we haveforalli =1,2,...K,

[ou? ren 22 DS 3.1
and

lt-sd ks, (32)
where | = -k .

k+1

Proof In the same manner asd, Lemma 6], we obtain that inequalities3.1) and (3.2
hold. O

Lemma 3.3 Suppose thatimy rk s( =0foralli =1,2,...K.Ifthere exists a weakly
convergent subsequenieg } of {ri}, then under Assumptiong. .4, we have that the limit of
{ri} belongs to .

Proof The proof is similar to the proof of B, Lemma 7]. g

With the above results we are now ready for the main convergence theorem.

Theorem 3.4 Suppose thalimy a_i Uk ..Ugx..1 =0, then under Assumptiond. .4, we
have y M ask , Wherep =P ().

Proof First, sincelimy  [1...(})2=1... 2>0,0necan“ndm; Nsuchthatl...()?>0
forallk Ko, whereky = maxi=1 2, x M;. Letu , from (3.1), we get

Itk u|  re..u (3.3)
forallk Kko. Next, we divide the proof into the following claims.
Claim 1 {uy}is a bounded sequence

By the sequence{a—t Uk ...Ux..1} converges to 0, we have that there exists a constant
M O suchthat, forallk N,

ik Ul 1 M. (3.4)

From the de“nition of r, and combining @.3) and (3.4), we obtain, for allk ko,

Itiu]  reeu = fuct k(uiue ) -

k
Uk ..U + — Ug..Ug 18k
a

Ug..u +aM .
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From the de“nition of i, we get, for alk ko,

[ Me ..U (3.5)

and

tg..u Ug ..U +acM . (3.6)

By Assumption4 and using @.6), the following relation is obtained for alk  kg:

Ugrs U = [Ja( (Ui) ..u) + (1.8 .. b (U .. u) + byt .. u)|
ak|| (uk)..u||+(1..ak..bk) Ug ..U +Dbg ﬂ(..l]
a| ) ... ] +a W..u|+@..a) uc.u +abM

[1.a@...)] uc..u +ae(]| (u)..uf+M)

=[1.a@. )] uc.u +ad .. )M

(Uy..u +M }

max4q Ug..U ,
{ 1...

This leads to a conclusion that ug4 ...u max{ Uy, ..U M} foranyk ko.

Consequently, the sequencgii} is bounded. In addition,{ (uk)} is also bounded. Since
is a closed and convex seP, is a -contractive mapping. Now, we can uniquely

“nd p with p =P (1) due to the Banach “xed point theorem. We also get that,

foranyu ,

((W.pu.p) o (3.7)

Now, foreachk N, set := ug..u 2.
Claim 2 There is My > 0such that

b(L .2k b)) U dk 2 ke e rax(| () - ]? +Mo)
forallk ko.

Applying (3.6), we have, for alk ko,

e 2 (U p +aM )2
= k+ak(2M Ug .. 1 +akM2)

k+axMg (3.8)

for someMg > 0. For anyk ko, it follows from the assumption on and (3.8) that

ki1 = [la( (U)o 1) + (LA ) (Ui ) + bt --M)H2
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ak“ (uk)..p||2+(1..ak..bk) k + by ﬁ(p 2..bk(1..ak..bk) Uk...t_k 2
akH (uk)..p||2+(1..ak) k+akbkM0..bk(1..ak..bk) Uk..ﬂ( 2

K +ak(|| (Uk) ..“||2+ Mo) bk(l Ak bk) Uk .ﬁ( 2,
Therefore, Claim2 is obtained.

Claim 3 There isM > 0such that

k+1 [1..ak(1...)] k+ak(1"')[3—l\./l.'a_t Uk..Uk”,]_iI

+a(l... )[lZ_M U ..tk +12 ( (p)..p,uk+1..u)]

forallk ko.

Indeed, settingc, = (1 .. by)uy + betx. From inequality 8.5 and the de“nition of ry, we
have

G H (Lby) u o +by te.p
(1bk) Uk ..l + by Mg ..
Ug .. 1 +be k Uk ..Uk 1 (3.9)

and
Uk .. Ck :bk Uk H( (3.10)

forallk ko. Hence, from the assumption on, and 3.2, (3.9), and 3.10, we obtain, for
allk ko,

w1 = (L@@ - 4) +a( (U - (1)) - AUk - 0 (M - (W)

J(1 a4+ @ W) e ()] - Befuc G+ (1), Uk - 4)
(L..a) G0 2+a] (u)... (p)||2+2ak Ok .. U, Uge1 .. 1

+2a( (1) .. 1, Uer - 1)

(L..a)( uc..pt +by g uk..uk___1)2+ak 2 +2a O..Uk Ugsp ..M
+2a( (W) .. H, Uges .. )

(1..8) k+2k Uc.. ]l Ug. U1+ 2 U U 1?+ae

+2aby Uit Uier 0+ 28 (W) M Uk o M)

[1.ak@..)] k+ Kk Uklia (2 U+ U l)

+2aby Uitk Uier o+ 28 (W) M Uk . M)

[1..8c(L...)] k+3M K Uc..Ux 1 +2Magbg ug ..Ix

Page 8 of 19
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+2a( (M) ..H,Uer - )
3M

[1 La(l... )] k+ak(d... )|:1— : a—t Uk --Uk...li|

+a(l... )|:12—NI U - tx +12 ( (p)..u,uk+1..u>:|

for M := supp nf Uk .-,  Ug..Ux 1} > 0. Recall that our task is to show thaty W,
which is now equivalent to showing that 0 ask

Claim4 ¢ Oask

The proof is divided into the following two cases.

CaseaWecan“nd N N satisfying that, forallk N, the inequality +1 k holds.
Since each term  is nonnegative, itis convergent. Due to the fact théimy ~ ax = 0and
limg by (0,1), and by Clain?,

Jim - ug LI =0. (3.11)

Indeed, we immediately get

. . k
1 Ug ..rq =1 — Uk ..U a=0. 3.12
klm k- Tk klm a k - Uk...1 8K ( )

In addition, from the de“nition of t, and by using the triangle inequality, the following
inequalities are obtained:

Itere] tre te ..U + Ug..Iq
and
Il gl + It -5
foralli=1,2,...K. It follows from inequality (3.2 that
(Lo )re-sd oo + ougrk
foralli=1,2,...K. Sincelimg [1...(L)2]:1...i2>0,(3.1])and(3.13,
Jim | .5 =0 (3.13)
foralli=1,2,...K. Note that, for eachk N,

Uk+1 .. Uk Uk+1 -- Ik + te .. Uk

akH (uk)..uk||+(2..bk) Uk..I_k . (3.14)

Consequently, sincdimy  ax =0 and by @.14), limy Uk+1 .- U = 0. Next observe
that, for the reason that{ui} is bounded, there isv  H such thatu,, ~ w asj for
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some subsequencfuy} of {uc}. By 3.12, we getr,  w asj . Then Lemma3.3
together with (3.13 implies thatw . From 3.7), it is straightforward to show that

liinsup< (W) .. 4, U ..u):klim( (W) Uk ) =( (W) W) O
Sincelimy Uk+1 .. U =0, the following result is obtained:

lilinsup< (K) .. 1, Uk ..p) 1imsup< (K) .. 1, Uk ..uk>+limsup( (W) .., ug ..4.1}

n n
0.
Applying Lemmaz2.2to the inequality from Claim 3, we can conclude thatimy k=0.
CasebWecan“ndk, Nsatisfyingthatt, nand , < +iforalln N.According

to Lemma2.3 the inequality (+1 is obtained, where :N  Nis de“ned by

(2.1, andk k forsomek N. Thisimplies, by Claim2, forallk max{ko,k }, that

b (k)(l..a (k)..b (k)) u (k)--I_(k) 2

W wata gl W )b +Mo),

Similar to Case a, sinca, 0 ask , we obtain

Furthermore, an argument similar to the one used in Case a shows that

liinsup< (W) - 1 U o+t u) 0. (3.15)
Finally, from the inequality (+1 and by Claim3, for all k  max{ko,k }, we
obtain

3M
W (1.8 @@...)] wata .. )[— Yy (k)...li|
1... a (
M _
+a go1... )|:1— uw--Ig + 1 < (W) ..y,u (k)+1..{.l>i|.
Some simple calculations yield
M © y u + l u t
(k)+1 1. a © K Y (k)..1 1. K -t (k)
2
+ 1 ( (M) ..U e 4J.> (3.16)
From this it follows that lim sup, @+1 0. Thus,limg «+1 = 0. In addition, by

Lemma2.3

li li =0.
klm K klm (k)+1

Hence, we can conclude that converges strongly tqu. O
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4 Numerical illustrations
In this section we consider a signal recovery problem in compressed sensing that involves
several blurring “Iters. The classical problem involving a single “lter is phrased as follows:

b=Hx+ , (41)

wherex RN is the original signalb RM is the observed signal with noise, andH
RM*N (M <N) is a “lter matrix. Clearly solving system4.1) is equivalent to solving the
following regularized least squares problem:

1
min > Hx..b 3+ x4, 4.2)

x RN

where >0 is a parameter. Next, leg(x) = % Hx ..b 2andh(x) = x 1,then g(x)=
H!(Hx..b) ismonotone and H 2-Lipschitz continuous. Besides,h(x), the subdi erential
of h at x, is maximal monotone, see2]. In addition, from Proposition 3.1(iii) of [5],
xisasolutiontoproblem@.2) 0 gXx)+ h(x) x=prox y(I... g)x)
forany >0, whereprox ,(X) = argmin, n{h(u)+ zi X..u 2}
Here we consider the following model for the signal recovering problem consisting of
various “lters:

o1
min = Hix..b %"' 1 X 1,
x RN 2

o1
min = Hox..b %‘l‘ 2 X 1,
x RN 2

1
min — H3X..b3 %"' 3 X 1, (43)
x RN 2

min } Hix..bk 5+ k X 1,
x RN
where, for alli =1,2,3,...K, Hj is a “Iter matrix, b; is an observed signal, and; > 0.
Problem @.3) can be seen as problem (9 through the following settingsH = RN, Fi(-) =
(3 Hi()..bi 3),andGi()= (; - p)foralli=1,2,3,...K.
For the experiments in this section, we choose the signal size toe= 1024 andM =
512, and the original signak is generated by the uniform distribution in [...2, 2] witim
nonzero elements. We use the mean-squared error to measure the restoration accuracy

de“ned as follows MSEy = % Uk ..X §< 5x 10-°and suppose

min{ y, %‘} if Ux= Uk 4

k= 1 ]
7 otherwise

forallk N.Inthe “rst part, we solve problem §.2) by considering di erent components
within PITTA (Algorithm 3)whereK =1: ;, 1, (-),_k,bk, andag. LetH be the Gaussian
matrix generated by the MATLAB routinerandn(M, N), the observatiorb be generated by
white Gaussian noise with signal-to-noise ratio SNR=40 and:= 1. Given that the initial
points ug, u; are generated by commenchndn(N, 1).
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Table 1 Numerical results of;

1 0.5 0.7 0.9 0.95 0.99
No. of iter. 19,213 15,373 12,642 12,038 13,232
Elapsed time (s) 12.5727 10.5476 8.7374 8.3056 9.0985

Table 2 Numerical results of

i 10 5 1 0.1 0.01
No. of iter. 14,636 9189 6096 5719 5566
Elapsed time (s) 10.4622 6.9668 4.3429 4.0706 3.9709

Table 3 Numerical results of (})

6] ) 1 sin() & sinf) 1 cosf) -+ cosf)
No. of iter. 4712 4864 4574 4591 4506
Elapsed time (s) 4.1631 3.7430 3.5067 3.5412 3.4410

Table 4 Numerical results o?k

K No. of iter. Elapsed time (s)
0 4072 4.9433
1
4080 4.3624
(k+1? Ug-dg 1
i 4072 3.1511
(+1P uk.ukI_12+(k+1?
T 4073 31753
1 3925 3.0562
(LY U g1
Table 5 Numerical results dfy
b No. of iter. Elapsed time (s)
1a.a) 4293 4.5991
5(L .ax) 3099 2.5936
@5(1 .aK) 2421 2.2488
@(l .aK) 2295 1.9456
on(L -ax) 2201 1.8822

Case 1We compare the performance of the algorithm with di erent parameters, by
setting {=7.55, ()=3(), k= a = gopegy» andby = 3(L .. a). Then the
results are presented in Tablé.

Case 2We compare the performance of the algorithm with di erent parameters ! by
setting 1 =0.95, and select (-), ", andby are the same as in Case 1. Then the results
are presented in Tabl&.

Case 3We compare the performance of the algorithm with di erent mappings () by
setting 1 =0.95, 1=0.01, and selecty,ay, andby are the same as in Case 1. Then the
results are presented in Tabl8.

Case 4\We compare the performance of the algorithm with di erent parametersy by
setting 1 =0.95, £1=0.01, ()= % cos(+), and selecky and by are the same as in Case 1.
Then the results are presented in Tablé.

Case 5We compare the performance of the algorithm with di erent parameterby by
setting 1=0.95, 1=0.01, ()= 1—10cos(-), PE , and seleciy as in Case 1.
Then the results are presented in Tablg.

1
U U1 A+ (k1A

1
(k+1)1'1 Ug.-Ug 1



Suparatulatorn et alAdvances in Di erence Equations  (2021) 2021:492

Table 6 Numerical results af;

Page 13 of 19

ak No. of iter. Elapsed time (s)
%1 1610 1.2904
1929 1.5377
K+1000
k1+—31 9650 7.6941
10¢+1) 1771 1.4143
1
To0ET) 2918 3.1259
Table 7 Numerical comparison of “ve algorithms
m nonzero elements
m=20 m=40 m =60 m =80 m =100
MTTA Elapsed time (s) 1.8664 2.2307 4.0934 4.0526 7.7653
No. of iter. 1957 2851 4725 5269 8970
VTTA Elapsed time (s) 1.7425 2.2868 3.7257 4.3852 7.8369
No. of iter. 2109 2922 4759 5291 9100
HTFBSA Elapsed time (s) 5.1177 5.5682 7.4075 7.3936 10.0403
No. of iter. 13,658 14,136 19,379 19,207 23,863
MVIFBSA Elapsed time (s) 1.5619 2.2659 3.7905 4.2519 7.5121
No. of iter. 3727 5229 8635 9680 17,044
PITTA Elapsed time (s) 1.6738 2.2040 3.6526 4.0617 7.3839
No. of iter. 1944 2719 4523 5032 8893
T O S U S [ P T S
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2 ' v v1[‘)0 “' 2(‘)0 vJU‘O‘“ ”4&) sllu 6(‘)0' ' v'ﬂfﬂ 500' vvy 9(‘10 v v 10‘00'
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Figure 1 From top to bottom: the original signal, the measurement, and the reconstructed signals by the “ve
algorithms in Tabl@ for m = 100

Case 6We compare the performance of the algorithm with di erent parametersy by

setting 1=0.95, £=0.01, ()= cos(), k=
the results are presented in Tablé.

1
(k+1)l'l Ug..Ug. 1

, and by

- 9
100

(1..a). Then

We noticed that in all the above six cases, selectiag = lel forall k N and setting

e, K 1, £,and () asin Case 6 yield the best results.

In the next experiment, we wish to compare the performance of MTTA (Algorithni),
VTTA (Algorithm 2), HTFBSA, MVIFBSA, and PITTA for solving problem4.2) with one
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Figure 2 The mean-squared error versus the number of iterations ferL00
Table 8 Numerical results of PITTA
Inputting m nonzero elements
m=20 m =40 m =60 m =80 m =100
Hq Elapsed time (s) 1.5507 2.6985 3.7521 7.5174 8.4918
No. of iter. 1799 2970 4336 8629 9932
Ho Elapsed time (s) 1.4325 4.4381 3.6034 5.9576 8.7588
No. of iter. 1791 3112 4597 6907 10,175
Hs Elapsed time (s) 1.5883 2.3403 3.5121 6.9216 7.5436
No. of iter. 2026 2996 4406 8751 8389
H1,H2 Elapsed time (s) 1.1125 1.6056 2.0113 2.9192 3.4436
No. of iter. 616 890 1124 1563 1888
H1,H3 Elapsed time (s) 1.9713 1.6221 2.1273 2.8935 3.2136
No. of iter. 625 917 1192 1611 1722
Ha,Hz Elapsed time (s) 1.8236 1.5904 1.9945 2.6373 3.2237
No. of iter. 670 892 1127 1478 1753
H1,H2,H3 Elapsed time (s) 1.2404 1.6589 2.0204 2.9801 3.2592
No. of iter. 417 623 766 1004 1187
Table 9 Numerical comparison of two algorithms
m nonzero elements
m=16 m=32 m=64 m=128
PMHA Elapsed time (s) 1.1742 1.2011 1.5303 1.5309
No. of iter. 1696 1700 1928 2111
PITTA Elapsed time (s) 0.6402 0.8081 1.3495 2.3308
No. of iter. 379 464 790 1399

“Iter, that is, K = 1. We suppose thaH,b, ,ug, andu; are the same as in the “rst part and

selectax = 7

L forallk N.We sethy, «, 1, 11, and (-) are the same as in Case 6. For
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Figure 3 From top to bottom: the original signal and the measurement by usiag-,, andHz, respectively,
with m =100
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Figure 4 From top to bottom: the reconstructed signals by using each inputrfer 100

MTTAand VTTA,let ;=0.95and { =0.01. De“new by usingrandn(N, 1) for HTFBSA.
Further, for anyk N, we select \ = ng for HTFBSA and MVIFBSA. The results are
presented in Table7 and Figs.1 and 2.

Based on the above results, we can see that our proposed algorithm is less time consum-
ing and requires lower number of iterations than the other four algorithms.

The “nal experiment considers PITTA for solving 4.3) with multiple inputs H;, and then
we compare it with the parallel monotone hybrid algorithm (PMHA) of Suantai et al2B].

Gaussian matrices are generated by the MATLAB routimendn(M, N). The observatiorb;
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Figure 5 The mean-squared error versus the number of iterationsferl00
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Figure 6 From top to bottom: the original signal and the measurement by ugingH,, andHs, respectively,
with m =128

is generated by white Gaussian noise with signal-to-noise ratio SNR=40; 1, ; =0.95,

and | =0.01foralli=1,2,3. Selecty =

1
k+1

and setug,u;, (), b and " are the same

asin Case 6 foralk N. Further, foranyk N and alli =1,2,3, we select} =0.75 and
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Figure 7 From top to bottom: the reconstructed signals by the two algorithms in Talite m = 128
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Figure 8 The mean-squared error versus the number of iterations ferl 28

S() = prox;lz(l .72 F)() for PMHA. The results are presented in Tables, 9 and
Hj 2

Figs.3..8.
From the above one can observe that incorporating all three Gaussian matridesg H>,
and H3) into PITTA is more e ective with respect to time and number of iterations than
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involving only one or two of them. PITTA also requires lower number of iterations than
PMHA.

5 Discussion

In this work we study the common variational inclusion problem (CVIP) and propose an
inertial Tsenges splitting algorithm for solving it. A parallel iterative method is presented,
and under standard assumption we establish its strong convergence in real Hilbert spaces.
An intensive numerical investigation with comparison to several related schemes is pre-
sented for signal recovery problem involving several “Iters. Our work extends and gener-
alizes some related works in the literature and also demonstrates great practical potential.
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